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Abstract: - The paper deals with simulation experiments on the nonlinear system represented by the isothermal 
continuous stirred tank reactor. At first, the mathematical model derived from the material balances inside the 
reactor will be introduced and then the steady-state and the dynamic analyses were performed on this model. As 
a result of these studies, the optimal working point and the choice of the external linear model for the 
identification will be obtained. The spectral factorization with pole-placement method and linear-quadratic 
approach were employed in the controller design and computation. Both types of adaptive controllers have 
parameters for tuning of the output response. Moreover, controllers have satisfied basic control requirements 
such as the stability, the reference signal tracking and the disturbance attenuation. 
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1 Introduction 
It is known that the great majority of system has 
nonlinear behavior. The control of these processes 
with the conventional controllers with fixed 
parameters could lead to the unstable, inaccurate or 
unwanted output response when the state of the 
system change or the disturbance occurs. The 
adaptive control [1] is one way how we can solve 
these problems. This control method uses idea from 
the nature where plants or animals “adapt” their 
behavior to the actual state or environmental 
conditions. The adaptive controller adapts 
parameters or the structure to parameters of the 
controlled plant according to he selected criterion 
[2]. 

Other very problematic feature from the control 
point of view is time delay. Although this paper 
does not deal with it, the problem of time delay is 
described nicely in [3], [4], [5], [6] and [7]. Other 
solving methods and examples could be found in [8] 
and [9]. Agent based learning is described in [10]. 

The adaptive approach here is based on the 
choice of the External Linear Model (ELM) as a 
linear approximation of the originally nonlinear 
system, parameters of which are identified 
recursively and parameters of the controller are 
recomputed according to identified ones. The choice 
and the order of the ELM come from the dynamic 
analysis. The  -models [11] used here are special 

type of discrete-time (DT) models parameters of 
which are related to the sampling period. It was 
proofed, that parameters of the -model approach to 
parameters of the continuous-time (CT) model for 
the small sampling period [12].  
The polynomial synthesis [13] together with the 
spectral factorization, the Pole-placement method 
and the Linear-Quadratic (LQ) approach [14] were 
used for designing of the controller. The product of 
this synthesis is the continuous-time controller 
which satisfies basic control requirements such as 
the stability, the reference signal tracking and the 
disturbance attenuation. The resulted controller is 
called “hybrid” because it works in continuous-time 
but its parameters are recomputed in discrete time 
intervals together with the  -ELM identification. 

There are several types of chemical reactors. The 
main groups are tank reactors and tubular reactors. 
The continuous stirred tank reactor (CSTR) is ideal 
from the control point of view – it could have 
variety of quantities which can affect the 
production.  

There are two ways how we can observe the 
behavior of the system – by experiments on the real 
system or its smaller real model [14]. This method 
produce more realistic results but it could be 
dangerous or time and money demanding. The other 
approach uses modeling techniques for creating of a 
mathematical model as an abstract representation of 
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the system. The mathematical model in the form of 
the set of Ordinary Differential Equations (ODE) is 
then subjected to simulations which show the static 
and the dynamic behavior of the system. The role of 
the simulation grows nowadays with the increasing 
speed and the decreasing price of computers. 

The contribution is divided into six main parts. 
The second part after this introduction will describe 
simulated nonlinear system which is the isothermal 
Continuous Stirred-Tank Reactor (CSTR) the 
mathematical model of which is described by the set 
of five ordinary differential equations  [16]. The 
third part will present the results of the steady-state 
and dynamic analyses, the fourth part gives an 
overview and the theoretical background to used 
hybrid adaptive control while the fifth part presents 
results of the control. The last, the sixth, part is 
conclusion. 

All results shown in this contribution come from 
the simulation on the mathematical model and they 
were done on the mathematical simulation software 
Matlab. Detailed simulation of similar chemical 
reactor can be found for example in [17]. 
 
 
2 Nonlinear System 
The nonlinear system here is represented by the 
Isothermal Continuous Stirred Tank Reactor with 
complex reaction inside [18]. This reaction could be 
described by the scheme: 
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and the schematic representation of this reactor is 
in Fig. 1. 

The full mathematical description of the system 
is of course very complex. Introduction of the 
assumptions usually reduce this complexity. We 
assume that the reactant inside is perfectly mixed 
and the volume is constant during experiments. As 
the reactor is isothermal, the temperature of the 
reactant is not taken into the account.  

The mathematical model comes from material 
balances inside the reactor. In this case, as we have 
five state variables (concentrations of the 
compounds A, B, X, Y and Z), the mathematical 
model is represented by the set of five ordinary 
differential equations (ODE): 
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 (2) 

where q denotes volumetric flow rate, V is used 
for volume of the reactant, cA, cB, cX, cY and c Z are 
concentrations, k1-3 are rate constants and t is time. 

 

 
Fig. 1 Scheme of the isothermic Continuous Stirred 

Tank Reactor 
 
We can say, that the system is nonlinear mainly 

because of the multiplication of the state variables. 
The fixed parameters of this reactor are shown in 
Table 1. 
 
 
3 Simulation Analyses 
Once we have the mathematical model, we can 
subject it to simulation analyses. The steady-state 
and the dynamic analyses were used in our case. 
Because of the length of this contribution, the 
concentrations of the products X, Y and Z are 
observed in the simulation studies 
 
3.1 Steady-state analysis 
The goal of the steady-state analysis is to observe 
the behavior of the system in the steady-state, e.g. 
for time t  ∞.  
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The mathematical solution lays is relatively 
simple – this condition means that all derivatives 
with respect to time in equations (2) are equal to 
zero, i.e. 

    0
d
dt

  (3) 

The set of ODE (2) is then simplified to the set 
of nonlinear algebraic equations which could be 
solved for example by the Simple iteration method. 

 
Name of the 
parameter 

Symbol and value of 
the parameter 

Volume of the reactant V = 1 m3 
Rate constant of the 
reaction 1 k1 = 5×10-4 m3.kmol-1.s-1 

Rate constant of the 
reaction 2 k2 = 5×10-2 m3.kmol-1.s-1 

Rate constant of the 
reaction 3 k3 = 2×10-2 m3.kmol-1.s-1 

Input concentration of 
the concentration cA cA0 = 0.4 kmol.m-3 

Input concentration of 
the concentration cB cB0 = 0.6 kmol.m-3 

Input concentration of 
the concentration cX cX0 = 0 kmol.m-3 

Input concentration of 
the concentration cY 

cY0 = 0 kmol.m-3 

Input concentration of 
the concentration cZ cZ0 = 0 kmol.m-3 

Table 1 Fixed parameters of the reactor 

 
There could be theoretically six input variables 

to the system – volumetric flow rate of the reactant 
q and five initial concentrations cA0, cB0, cX0, cY0 and 
c Z0. On the other hand, practical experiences have 
shown, that only volumetric flow rate of the reactant 
q could be used. 
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Fig. 2 Computation of the steady-state values of 
concentrations cX and cY through the iterations 

 
The results of the first steady-state analysis in 

Fig. 2 and Fig. 3 show the iterations in 
computations. It can be clearly seen, that the set of 
nonlinear algebraic equations converges to the 
accurate results relatively quickly, after 15-17 
iterations. 
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Fig. 3 Computation of the steady-state values of the 
concentration cZ through the iterations 

 
The second steady-state analysis computes 

steady-state values of the state variable for different 
values of the volumetric flow rate  
q = <0; 0.01> m3.s-1 as an input variable. 
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Fig. 4 The steady-state characteristics of 
concentrations cX and cY for various volumetric flow 
rate q 
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Fig. 5 The steady-state characteristics of 
concentrations cZ for various volumetric flow rate q 
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Fig. 4 and Fig. 5 have confirmed what we have 

expected – the system has nonlinear behavior. One 
output from the steady-state analysis is also an 
optimal working point of the system. In our case, 
the volumetric flow rate of the reactant q = 1×10-4 
was used as a working point. The steady-state 
values of all state variables in this point are then 

 
0.2407; 0.1324;

0.0024; 0.0057; 0.1513;

s s
A B

s s s
X Y Z

c c
c c c

 

  
 (4) 

 
 
3.2 Dynamic Analysis 
The dynamic analysis observes behavior of the 
system after the step change of the input variable, in 
our case again volumetric flow rate of the reactant. 
The mathematical meaning of this analysis is 
numerical solution of the set of ODE (2).  

There are several numerical methods which can 
be used. In our case, the Runge-Kutta’s standard 
method was used for several reasons. At first, it is 
old method with big theoretical background, 
accurate enough and at last but not the least it is 
easily programmable or even more it is build-in 
function in various mathematical software such as 
Matlab, Mathematica etc. 

The six step chages of the input q = ±30, ±60 and 
±100 % were performed and the results are shown in 
Fig. 6 - Fig. 7. 
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Fig. 6 The dynamic characteristics of the 
concentration cB after step changes of input 
volumetric flow rate q 
 

Note that all outputs in Fig. 6 – Fig. 9 represents 
the difference from its actual value and steady-state 
value of which is also an input condition to the 
dynamic study. As a result, all outputs starts from 
zero. This was done for better understanding of the 
system’s gain in the controller design. 
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Fig. 7 The dynamic characteristics of the 
concentration cX after step changes of input 
volumetric flow rate q 
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Fig. 8 The dynamic characteristics of the 
concentration cY after step changes of input 
volumetric flow rate q 
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Fig. 9 The dynamic characteristics of the 
concentration cZ after step changes of input 
volumetric flow rate q 

 
Some of the outputs have shown negative 

properties from the control point of view – see Fig. 
7 and Fig. 8 such as non-minimum phase behavior, 
nonlinearity etc. On the other hand, outputs cB and 
cZ in Fig. 6 and Fig. 9 could be described by first or 
second order transfer functions: 
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Interesting thing can be also find in the last 
graph, where positive change of the input produces 
negative course of the output concentration cZ and 
reverse.  

 
 

4 Control of the Plant 
The control strategy here is based on the Adaptive 
control. As there are a lot of adaptive approaches, 
the Adaptive control with External Linear Model 
(ELM) of the originally nonlinear system 
parameters of which are identified recursively. This 
approach satisfies that the controller could react 
immediately to the changes inside the system caused 
by the changes of the system’s state, disturbance 
influence etc. 
 
 
4.1 External Linear Model 
The choice of the ELM is tightly connected with the 
dynamic analysis. Let us suppose, that the ELM of 
the controlled output obtained from the dynamic 
analysis could be described by the second order 
transfer function with relative order one in the s-
plain, equation (6) 

Parameters of polynomials a(s) and b(s) are 
commensurable polynomials and the feasibility 
condition is fulfilled for    deg dega s b s .  

The transfer function is relation of the output 
from the system to the input which mathematically 
means that this continuous-time (CT) model (6) 
could be rewritten to: 
 ( ) ( ) ( ) ( )a y t b u t   (7) 

where a() and b() are polynomials from (6) 
and  is the differentiation operator. The 
identification of the CT model is not very simple. 
On the other hand, discrete-time (DT) identification 
could be inaccurate. Compromise between these two 
methods can be found in the use of so called Delta 
(-) models. This model uses a new complex 
variable γ defined generally as [19]: 

 
 
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
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
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    
 (8) 

The optional parameter  from the interval  
0 ≤  ≤ 1 then produces infinite number of the 

models. Parameter Tv denotes the sampling period. 
A forward δ-model was used in this work. The γ 
operator is then 

 10
v

z
T

 


    (9) 

and the continuous model (7) could be then 
rewritten to 
        a y t b u t     (10) 

where polynomials a(δ) and b(δ) are discrete 
polynomials and their coefficients are different from 
those of the CT model a() and b(). Time t' is the 
discrete time and with the new substitution t‘ = k – n 
for k ≥ n the -model for this concrete transfer 
function would be: 
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The equation (11) produces both the regression 
vector  and the vector of parameters 
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where y and u denotes the recomputed output 
and input variables to the -model and 
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The differential equation (11) has then the vector 
form: 
        1Ty k k k e k    δ δθ φ  (14) 

where e(k) is a general random immeasurable 
error. 

 
 

4.2 On-line Identification 
The unknown parameter from the differential 
equation (14) is the vector of parameters . The 
regression vector  is constructed from the 
previous values of the measured inputs u and 
outputs y. One of the controller’s tasks is compute 
this vector on-line during the control. 
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The Recursive Least-Squares (RLS) method was 
used for this challenge. This method is widely used 
for this on-line identification because it has big 
theoretical background and it is easily 
programmable. It might be modified with 
exponential or directional forgetting [20] because 
parameters of the identified system can vary during 
the control which is typical for nonlinear systems. 
The use of some forgetting factor could result in 
better output response.  

The RLS method with the changing exponential 
forgetting used here is described by the set of 
equations: 
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where optional the changing forgetting factor 1 
is computed from the equation 
      2

1 1k K k k       (16) 
and K is small number, in our case K = 0.001. 

 
 
4.3 Design of the Controller 
The control configuration is displayed in Fig. 10.  
 

 
Fig. 10 Control system configuration 

 
where G(s) represents the transfer function (5) of 

the controlled output and Q(s) denotes the transfer 
function of the controller in the continuous-time, 
generally: 

    
 

q s
Q s

p s
  (17) 

Polynomials q(s) and p(s) are similarly to 
system’s polynomials a(s) and b(s) commensurable 
polynomials with the properness condition 

   deg degp s q s . 

The Laplace transform of the transfer function 
G(s) in (6) is generally:   

    
       

Y s
G s Y s G s U s

U s
     (18) 

where Laplace transform of the input signal u is 
from Fig. 10 
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


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If we put polynomials a(s), b(s), p(s) and q(s) 
into (19) instead of Laplace transforms G(s) and 
Q(s), the equation (18) has form 
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


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Both fractions has the same denominators which 
is called a characteristic polynomial of the closed 
loop and this polynomial, in this case 
          a s p s b s q s d s     (21) 

where d(s) is a stable optional polynomial and 
the whole equation (21) is called Diophantine 
equation [13]. The stability of the control system is 
fulfilled if the stable polynomial d(s) on the left side 
of the Diophantine equation (21) is also stable 
polynomial.  

The basic control requirements such as an 
asymptotic tracking of the reference signal and the 
disturbance attenuation is attained if the polynomial 
p(s) includes the least common divisor of 
denominators of transfer functions of the reference 
w and disturbance v:  
      p s f s p s    (22) 

If we expect both these signals from the range of 
the step functions, the polynomial  
f(s) = s. The Diophantine equation (21) is then 
          a s s p s b s q s d s      (23) 

and the transfer function of the feedback 
controller is 

    
 

q s
Q s

s p s






 (24) 

As it is written above, the polynomial d(s) on the 
right side of the Diophantine equation (23) is the 
stable optional polynomial.  

There are several ways how we can construct this 
polynomial. The simples one is the based on pole-
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placement method where d(s) is divided into one or 
more parts with double, triple, etc. roots, e.g. 

 

   
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m m
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d s s s
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   


 (25) 

where i > 0 is optional position of the root. This 
variable affects the results of the control as you will 
see in the results. 

The disadvantage of the Pole-placement method 
can be found in the uncertainty. There is no general 
rule which can help us with the choice of roots 
which is, of course, different for different controlled 
processes. One way how we can overcome this 
unpleasant feature is to use spectral factorization. 
Big advantage of this method is that it can make 
stable roots from every polynomial, even if it is 
unstable. The polynomial d(s) is in this case 
      d s n s m s       d s n s g s   (26) 

where parameters of the polynomial n(s) are 
computed from the spectral factorization of the 
polynomial a(s) in the denominator of (6), i.e. 
        * *n s n s a s a s    (27) 

and the second polynomial m(s) is constructed 
with the use of Pole-placement method. The degree 
of polynomials  p s , q(s) and d(s) are in this case: 
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 The polynomial m(s) is then of the second 
degree because 
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and we obtain one double root ai. 
The second approach which can be used here 

employ spectral factorization and LQ approach. The 
polynomial d(s) is divided again into two parts: 
      d s n s g s   (30) 

Where n(s) comes from the spectral factorization 
explained above and the polynomial g(s), is 
computed with the use of the Linear Quadratic (LQ) 
tracking [14] which is based on the minimizing of 
the cost function in the complex domain 

     2 2

0
LQ LQ LQJ e t u t dt 



      (31) 

where φLQ > 0 and μLQ ≥ 0 are weighting 
coefficients, e(t) is the control error and 
 u t denotes the difference of the input variable. It 

practically means, that parameters of the polynomial 
g(s) are computed from the spectral factorization 

 

        
       

*

* *

LQ

LQ

a s f s a s f s

b s b s g s g s





    

   



  (32) 

Degrees of unknown polynomials  p s , q(s) and 
d(s) are for the fulfilled properness condition 
generally in this case: 
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Parameters of the unknown polynomials 
polynomials  p s , q(s) and d(s) are computed from 
the Diophantine equation (23) by the method of 
uncertain coefficients for both strategies. 
Polynomials a(s) and b(s) of the ELM are known 
from the recursive identification described in part 
4.2. 
 
 
5 Simulation results 
The control strategy described above is called 
“hybrid” because the computation of the control 
input is defined in the continuous time but the 
identification of the ELM runs in the discrete time 
with the use of -models. 

The simulation parameters for all studies are 
displayed in Table 2. 

 
 
6.1 Pole-placement Method 
The first simulation study was done for various 
values of the i as a position of the root in the Pole-
placement method.  

The transfer function of the controller Q(s) is 
then for the degrees of the polynomials computed in 
(28) is then 

    
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2
2 1 0

0

q s q s q s qQ s
s p s s s p

 
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


 (34) 

Three values of were tested – e.g. i  = 0.001, 0.002 
and 0.005. 
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Name of the 
parameter 

Symbol and value of the 
parameter 

Control input      100 %
s

s

q t q
u t

q


   

Controlled output     3.s
Z Zy t c t c kmol m      

Limitation of the 
input u(t) = <-100%; 100%> 

Sampling period Tv = 10 s 
Simulation time Tf = 60 000 s 
Number of step 
changes of w(t) 6 

Initial vector of 
parameters    0 0.1,0.1,0.1,0.1 T

δθ  

Table 2 Simulation parameters 
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Fig. 11 The course of the output variable, y(t), and 
the reference signal, w(t), for the control with Pole-
placement method 
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Fig. 12 The course of the input variable, u(t), for the 
control with Pole-placement method 

 
All courses presented in Fig. 11 and Fig. 12 has 

acceptable results except the very beginning of the 
control because the identification need some time to 
“adapt” as it starts from the general point (0). The 
value of the optional parameter i affects mainly the 
speed of the control and overshoots – decreasing 
value of this parameter produces smoother course of 

both input and output variables but without the 
overshoot. 

The controller has small problems at the very 
beginning of the control because of the recursive 
identification which starts from the general point 
(0) in Table 2. But after some initialization time, 
the recursive identification runs very smoothly – see 
Fig. 13 and Fig. 14 which present the course of the 
identified parameters for the i =0.002. 
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Fig. 13 The course of the identified parameters 
a1

and a0
  for control with Pole-placement method 
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Fig. 14 The course of the identified parameters 
b1

and b0
  for control with Pole-placement method 

 
 
6.2 LQ Approach 
The LQ strategy has two tuning parameters – 
weighting factors LQ and LQ.  
The transfer function of the feedback controller 
according degrees computed in (33) is in this case: 
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 (35) 

Experiments were shown, that effect of these factors 
is similar. As a result, we fixed factor LQ to LQ = 2 
and change only LQ = 0.0025, 0.05 and 0.5. The 
results are shown in Fig. 15 and Fig. 16. 

We have found values of LQ which have similar 
results as in previous simulation study in purpose. In 
this case, decreasing value of the weighting factor 
LQ produces quicker output response with 
overshoots. 

Fig. 17 and Fig. 18 presents the course of the 
identified parameters for this simulation study. The 
weighting factor LQ is 0.05 and LQ is 2. The results 
are very similar to the previous study – the 
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identification has problem only at the very 
beginning and it is relatively smooth after some 
initial time. 
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Fig. 15 The course of the output variable, y(t), and 
the reference signal, w(t), for the control with LQ 
method 
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Fig. 16 The course of the input variable, u(t), for the 
control with LQ method 
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Fig. 17 The course of the identified parameters 
a1

and a0
  for control with LQ approach 

 
 
6.3 Disturbance Attenuation 
Previous graphs have shown that first two control 
requirements for the stability and the reference 
signal tracking were accomplished. The disturbance 
attenuation as a last requirement was tested for two 
disturbances – the disturbance v1(t) on the input 
concentration cB0 and the disturbance v2(t) on the 
output concentration cZ from the system.  

Only one step change of the reference signal was 
performed during the simulation time  

Tf = 30 000 s. The first disturbance v1(t) = -15% cB0 
was injected to the system during the time  
t = <10 000; 30 000> s and the second one v1(t) = 
20% cZ through time t = <22 000; 30 000> s. The 
factor i was in the Pole-placement approach set to 
i = 0.002 and the weighting parameters in the LQ 
approach were LQ = 2 and LQ = 0.0002. 
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Fig. 18 The course of the identified parameters 
b1

and b0
  for control with LQ approach 
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Fig. 19 The course of the output variable, y(t), and 
the reference signal, w(t), for pole-placement (PP) 
and LQ approaches in the disturbance attenuation  
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Fig. 20 The course of the input variable, u(t), for 
pole-placement (PP) and LQ approaches in the 
disturbance attenuation  
 

Results in Fig. 19 and Fig. 20 shows the usability 
of both methods for controlling of systems where 
disturbances could occur. This hybrid adaptive 
controller deals with the disturbances in the input 
and output and it is worth to note that both 
disturbances affects the system from time  
t = <22 000; 30 000> s and with no big problem to 
the output response. 
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6 Conclusion 
The contribution shows two control approaches to 
the adaptive control of a nonlinear system 
represented by the isothermal CSTR reactor. The 
steady-state and the dynamic analyses have shown 
that the system has nonlinear behavior the 
concentration of the product Z, cZ, could be 
described by the second order transfer function with 
relative order one. This transfer function was used 
as an ELM of the system for the on-line 
identification in the control part. Both adaptive 
approaches with Pole-placement LQ include tuning 
parameters(i, LQ and LQ) which could affect the 
course of the output. Presented results have shown 
usability of these strategies for the nonlinear 
systems and they both satisfies basic control 
requirements including the disturbance attenuation. 
The future work will lead up to applicability of 
these methods to the real systems. 
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