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Abstract – This paper presents a clustering algorithm that is an extension of the Category Trees algorithm. 
Category Trees is a clustering method that creates tree structures that branch on category type and not feature. 
The development in this paper is to consider a secondary order of clustering that is not the category to which the 
data row belongs, but the tree, representing a single classifier, that it is eventually clustered with. Each tree 
branches to store subsets of other categories, but the rows in those subsets may also be related. This paper is 
therefore concerned with looking at that second level of clustering between the category subsets, to try to 
determine if there is any consistency over it. It is argued that Principal Components may be a related and 
reciprocal type of structure, and there is an even bigger question about the relation between exemplars and 
principal components, in general. The theory is demonstrated using the Portugal Forest Fires dataset as a case 
study. The Category Trees are then combined with other Self-Organising algorithms from the author and it is 
suggested that they all belong to the same family type, which is an Entropy-style of classifier. Some analysis of 
classifier types is also presented. 
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1 Introduction 

This paper presents a clustering algorithm that is 
an extension of the Category Trees [1] algorithm. 
Category Trees is a clustering method that creates 
tree structures that branch on category type and not 
feature. The development in this paper is to consider 
a secondary order of clustering that is not the 
category to which the data row belongs, but the tree, 
representing a single classifier, that it is eventually 
clustered with. Each tree branches to store subsets of 
other categories, but the rows in those subsets may 
also be related. This paper is therefore concerned 
with looking at that second level of clustering 
between the category subsets, to try to determine if 
there is any consistency over it. The mathematics for 
this problem could get quite complex and it will be 
argued that Principal Components [2] may be a 
related and reciprocal type of structure. This 
therefore poses an even bigger question about the 
relation between exemplars and principal 
components, in general. However, only a 
lightweight analysis of the mathematical properties 
is possible, really at the level of matching the 
different ingredients that are involved. The success 
criterion can also be decided in an iterative manner 
and may be the resulting clustered column with the 
lowest variance, or a lower variance compared to 
other results.  

A second development is the decision that a 
number of classifiers created by the author in fact 
belong to the same family type, which is an entropy-
style of classifier. They can even be combined to 

produce small improvements, where tests on a set of 
benchmark datasets demonstrate this and the 
properties that make them similar are described. 

The problem was formulated when considering 
geographical data that might change over time. It is 
therefore a time-series problem, but one where the 
data is placed into discrete time bands and is not 
continuous. The distributed nature of the input 
suggested that a category could be created from each 
input station, or sensor set. This is a bit unusual, 
because the classifier would then be expected to 
cluster with itself, but the problem was expanded to 
not consider this aspect, but the aspect of how the 
data rows in each individual tree and its branches 
may be related. The branches represent subsets of 
data rows for other categories, where the original 
idea was that comparing these subsets for feature 
analysis would be more accurate than looking at the 
whole dataset. With time series, it would also be 
possible to consider how the relation changes over 
time. In fact, that is a more advanced problem than 
what has been concluded for this paper, where this 
test case considers only the relation between all rows 
in the branches together. The theory was tested with 
the forest fires dataset [3] as a specific case and to 
verify the result, the smaller El Nino dataset [4][5]  
has also been looked at. 

The rest of this paper is organised as follows: 
section 2 describes some related work, while section 
3 summarises the Category Trees and the new 
methods. Section 4 describes the environmental case 
study and gives a result that might help when 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.4 Kieran Greer

E-ISSN: 2224-2872 30 Volume 20, 2021



   

monitoring forest fires. Section 5 discusses 
theoretical aspects, including principal components, 
and also presents test results for combining a set of 
the author’s own classifiers. Section 6 describes the 
properties of a family type of classifier that they 
belong to, while section 7 gives some conclusions 
and possibilities for future work. 

 
 

2 Related Work 
This paper has become an extension to an earlier 

paper [6] that presented a self-organising algorithm 
and it will be argued that Concept Trees [7][8] and 
even the Frequency Grid [9] are similar types of 
entropy-based classifier. With regard to the self-
organising algorithm, Adaptive Resonance Theory 
(ART) networks [10] were thought to be a close 
match and the Category Trees operate like Decision 
Trees [11][12][13]. The theory may have overlap 
with Principal Component Analysis (PCA) [2] and 
even the work of Oja [14] and others, who created 
neural network systems from these features. While 
principal components were learned, the problem 
reduced to a minimum when the features became 
similar, like a regression problem. It is interesting 
that Category Trees originated from trying to 
oscillate an error around a mean-centred value, 
created from a wave shape [15] representing the 
input data rows. That then became simply adjusting 
to the averaged batch row value. More specifically, 
similar ideas could be:  
• Zero-mean could relate to the original 

oscillating error. It was found however that if 
dealing with a single averaged batch value, a 
single adjustment would suffice instead.  

• Then of course the averaged values themselves 
and the closest fit to it. Not to realise maximum 
difference but to align the data rows with 
maximum similarity.  

• Variance was also a part of the theory for a new 
entropy equation [16] that is intended to give 
some measure of cohesion across a pattern. It 
can also measure the cohesion across a tree 
structure, with possibly arbitrary concepts in the 
branches. 

 
Using batch or averaged values is not new 

[17][18] and dates back to the early days of neural 
networks [19]-[21]. Measuring a juxtaposition 
between exemplars and principal components is 
unusual, when principal components are more often 

 
1 https://en.wikipedia.org/wiki/Kullback–

Leibler_divergence 

used as exemplars. Measuring the change in the 
variance is possibly more associated with Kullback-
Leibler divergence [22] and Information Gain theory 
[23]. As described in Wikipedia1, the Kullback–
Leibler divergence, (also called relative entropy), is 
a measure of how one probability distribution is 
different from a second, reference probability 
distribution. Entropy is represented in this paper by 
the variance. The reference distribution is then the 
original category exemplar and the new distribution 
is the exemplar after the data rows are re-clustered. 
Information Gain is then a method for measuring the 
entropy difference over different sets of variables. It 
does this by determining if the data can be split into 
certain subsets that may hold more consistent 
information than the whole dataset together. If the 
sum of the variances in the subsets is less than for 
the whole dataset, then that difference is the 
information gain, and it is also a reduction in the 
variance. 

 
 

3 Category Trees 
This section is a review of the Category Trees 

classifier [1]. The method is supervised, where each 
actual output category is assigned a classifier and the 
classifier learns to adjust from an averaged batch 
row value to the desired output value. This 
adjustment can in fact be done in a single step. 
Because each category is separate, it is like a neural 
network with a separate neuron for each output 
category and the value can be anything, but would 
typically be 1 or 0.5, for example. The classifier 
weight set therefore adjusts from the averaged batch 
row value to the value 0.5 or 1. Because the 
adjustment is for the averaged batch value, 
individual data rows may be closer to other classifier 
results. Therefore, after learning this adjustment, 
each data row is passed through each classifier 
again, and it is stored with the classifier that 
produces the smallest error with it. If the data row’s 
category is not the same as the classifier, then a new 
layer is created in the classifier and the data row is 
stored with a new classifier in the new layer that 
represents the new category. The difference being 
that subsequent layers would be trained on smaller 
and smaller subsets of data rows and the base 
classifier is always representative of the original 
category. Then to retrieve the category information, 
a data row is passed to each classifier and the one 
with the smallest error in the base layer is used. If it 
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has branches, then the row is passed to each branch 
and the one with the smallest error again used, until 
the process terminates at a leaf node. The category 
of that leaf node is then declared to be the category 
for the data row.  

The process is illustrated in Figure 1. The dataset 
contains two categories – A and B. Two classifiers 
are thus trained, one to recognise the averaged 
category A value and one for the averaged category 
B value. When each individual row is then passed 

through the classifiers, some of the B category rows 
are closer to the averaged category A value. 
Therefore, the A classifier branches to a new layer, 
where it recognises both its own category A rows 
and a subset of the category B rows. While this 
process should be very accurate, it is quite a shallow 
architecture and it may not generalise as well as it is 
able to learn the original data, but definitely still 
well-enough to be useful. The earlier paper [1] 
presented some ground-breaking results.

 
 

 
 
 

Figure 1. Schematic of the classifier in action. Phase 1 realises that classifier A also classifies part of 
category B better. Phase 2 then adds a new layer to classifier A, to re-classify this subset only. 

 
 

3.1 Secondary Clustering 
While each category can be distributed across 

any number of classifiers, there may also be the 
option to look at all of the data rows associated with 
each classifier tree separately. There is obviously 
some type of association there, because the data 
rows are closest to the classifier’s representing value 
and so their feature sets must also be close. And 
because it is for subsets of rows, the comparison 
should be more accurate than if the feature sets of 
the whole dataset were compared. If 10 data rows 
from category B are clustered through the category 
A classifier, for example, then the averaged feature 
set for category B when it is similar to category A, 
can be from those 10 rows only. This is one 

possibility that would work with a supervised 
approach, when the categories are known and the 
representing value would probably also be a 
centroid. The Iris dataset [24], for example, is 
perfectly centered, with only 10 data rows clustered 
with other categories. Section 4 describes another 
possibility that may be useful when the representing 
value is an exemplar, but not a centroid. In that case, 
it represents something, but it may not be at the 
center of the category. 

 
3.2 Recursive Clustering 

As with entropy classifiers in general, such as 
Information Gain [23], a decision can be made to 
split a dataset on a set of variables that would 
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produce a better entropy for the split parts. Deciding 
on the variable set can be arbitrary and iterative. 
Thus, there are different representations for a good 
category set and adjusting the result from an 
educated guess could be an option. If the selected 
category groups do not produce centroids, then 
individual data rows may be clustered with 
classifiers, other than their own base category, but 
further clustering of each classifier using the new 
sets of data rows, may continue to refine the 
exemplar.  

Quite simply, when the rows are re-clustered 
with the closest exemplar, the process can be 
repeated by creating new exemplars from the new 
row batches and then re-clustering on those again. 
This can repeat until a minimum number of changes 
occur. If the process is supervised, with known 
category groups, then this should not improve the 
clustering performance by very much, but it may 
benefit an unsupervised or a semi-supervised 
procedure more. This may also mean that if it is 
better for the environmental scenario, then the 
distributed stations are semi-supervised at best and 
can gain knowledge through the secondary 
clustering. This also means that using Category 
Trees in a supervised environment would be an 
upper bound on how well it can classify a problem. 
Any skew can be learned directly by the classifiers. 
If instead, the recursive clustering can adjust the 
exemplars to a slightly different orientation, then the 
hope would be that an unsupervised environment 
that cannot inherently learn the skew, would benefit 
from the adjustment more, and it would help to align 
any guessed category set with the real one. 

 
 

4 Forest Fires Case Study 
The forest fires dataset [3] gives readings for a 

year, from Portugal’s Monteshino natural park in the 
north east of Portugal. This was actually the first 
dataset that was tested, when it became clear that 
larger datasets could not be processed easily, but it 
is unlikely that the solution is specific to this one 
dataset only. The idea is to create categories based 
on the distributed nature of the input, where the 
dataset is divided into a 9x9 matrix and each location 
can represent a category. The fires that occurred in 
each region over the period of a year were recorded 
with the month and day of the fire and some sensor 
indicators. The weather sensors recorded 
temperature, relative humidity, wind speed and rain. 
As well as this, the fire indicators of Fine Fuel 
Moisture Code (FFMC), Duff Moisture Code 
(DMC), Drought Code (DC) and Initial Spread 
Index (ISI) were recorded with each weather 

reading. The original paper tried to predict when 
fires might occur and was more successful with the 
small fires. This paper suggests some type of relation 
between the location cells, where if there is a fire in 
one grid location, then other locations might also be 
vulnerable. The output criterion was taken to be the 
month that the fire occurred in and in fact there was 
a clear correlation there in the results. But there was 
also a large spread of related grid cells and so it 
might not be very accurate for predicting exactly 
when a fire would take place. 

Deciding to convert the sectors into classifiers is 
an arbitrary decision, albeit with some intuition. 
Then there is also the output criterion, which has 
been selected to be the month of the year. This again 
is arbitrary and not implicit in the data, apart from 
the fact that it is what is being measured. Then a 
subset of the other variables was used to realise the 
relation between these two variables. The dataset 
was therefore divided into baches of rows, one batch 
for each grid location that had fires. The classifier 
for that location learned the average input value and 
used that as an exemplar for the location. After 
learning the averaged value, each row was presented 
to each classifier and it was clustered with the one it 
was closest to. That produced a new set of row 
batches for each classifier. The month for each row 
in each batch was then analysed and its variance was 
calculated. The average variance for the rows 
clustered for the classifiers was compared to the 
variance for each grid cell without clustering and the 
result is shown in Table 1. 

 
 

 Month of the Fire 
Variance Before 1.32 
Variance After 0.35 

 
Table 1.  Variance values for each Forest Fires 

Month variable before and after the clustering. 
 
 
The surprising result was that the classifiers 

aligned the rows based on the month of the fire. A 
description of some of the clustered rows in given in 
Appendix A. Further analysis showed that a 
classifier might not have any of its own rows 
clustered with it, so while the average value 
represents the batch set of rows, no individual row 
from that batch might be clustered with the 
classifier. As the first two clusters in Appendix A 
show, there are no data rows from the sector finally 
clustered with it. This could suggest that the 
clustering criterion is not distance-based. The 
classifier therefore does not produce a centroid, at 
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the centre of the category, but some other 
representative value. This is explained further in 
section 5. The environmental result however, would 
be that because the data is clustered consistently on 
the month, it could help a fire service to monitor the 
region, as it could follow the sequences of locations 
when any fires started in one of them. 
 
4.1 El Nino Dataset 

The smaller El Nino dataset [4][5] was also 
tested. Any row with a missing value was removed 
first, resulting in 507 rows and then each buoy was 
allocated to be a category. This also related to a 
specific location and then columns 4 to 8 were used 
to train the classifier. The variance of each of these 
columns was then compared before and after the 
training, for each category, where the result is shown 
in Table 2. The re-clustering of the rows has 
therefore produced a smaller variance in 4 of the 5 
variables and an almost equal variance in the fifth 
one. This is slightly different to the forest fires 
dataset, when the output variable was not included 
in the training rows. 

 
 

 Zon.  
Wind 

Mer. 
Wind 

Humidity Air 
Temp. 

S.S 
Temp. 

Variance 
Before 

1.15 1.1 2.1 0.38 0.245 

Variance 
After 

0.85 0.8 1.5 0.26 0.25 

 
Table 2. Variance values for each El Nino 
variable before and after the clustering. 

 
 

5 Category Trees as Principal 

Components 
The case study shows that a classifier may not 

end up with any of its own category rows clustered 
with it. If the relation was for centroids, then it 
would be expected that the rows for the category 
would be clustered with it and so possibly each 
classifier value is an exemplar instead. Therefore, 
the clustering is not based on distance alone and the 
use of exemplars might point to a principal 
component that is not aligned exactly with its input 
data, but with some other type of feature set.  

Principal Component Analysis converts the data 
into vectors of maximum variance. The PCA vector 
lines replace the data rows and when learned can be 
used to discriminate where the dataset changes most. 
Principal components are statistically the most 
significant features. The exemplars of this paper 
would instead represent directions of minimum 

variance, or maximum similarity. While that 
similarity is defined by some arbitrary criterion, it 
may be possible to formulate this problem in a 
general sense. It could be imagined that in an 
unsupervised setting, where these variable sets are 
not known, some iterative process could try different 
combinations and maybe measure the variance over 
the output criteria, to select the best matching 
combinations with the lowest variances.  

The following section does not test the iterative 
process, but adds the category trees to some of the 
author’s own algorithms and repeats some earlier 
tests for comparison. 

 
5.1 Tests Over Benchmark Datasets 

The test scenario is a repeat of the tests carried 
out in [6], which reported results for a new self-
organising algorithm. A computer program has been 
written in the C# dotnet language, by the author for 
his own algorithms and used to test some benchmark 
datasets that can all be found in the UCI Machine 
Learning repository [25]. The data was presented 
with the category information removed and also with 
the row order randomised. The only information the 
self-organising algorithm used to start with was the 
distance between each of the data rows. From that, it 
created initial sets of clusters based on closest 
distances, using a full-linking and cross-referencing 
method that is described in [6]. It is also an 
agglomerative method, where the stopping criterion 
used was the cluster set just before the actual number 
of clusters fell below the desired number. This 
probably results in a bias towards a larger number of 
clusters in the result. The strength of the algorithm 
is that it can produce coherent cluster sets, meaning 
that the data rows in each cluster would all belong to 
the same actual category. It was then possible to 
calculate the error for this as follows:  

 
1. For every sub-cluster, retrieve from the dataset, 

the category for each row.  
2. Remove the set of rows with the largest count 

for a single category. 
3. The coherence error is then the number of rows 

left.  
 
So, for example, if a cluster set contains data 

rows for categories as follows: A, A, A, B, B, then 
there would be 2 incorrect nodes. If the dataset 
actual categories were: A, A, A, B, B, C, C, then the 
error would be 4.  

As stated in section 3.2, using Category Trees in 
a supervised environment would be an upper limit 
on the performance. The tests therefore, were for the 
self-organising algorithm, but then compared to new 
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versions that also include the Category Trees 
classifier. The self-organising algorithm uses a 
closest distance measure to cluster individual nodes 
and then a new Frequency Grid [9] to further cluster 
those events. Because the supervised Category Trees 
can learn an inherent skew and even re-align to a 
different set of vectors, using the unknown results of 
the self-organising algorithm as the base cluster set 
for the trees may help to re-align some of those data 
rows again, to produce a more correct orientation. 
Then there is also the idea of recursively feeding the 
Category Trees result back to itself. In this case, only 
1 recursive feedback was used. The results of using 
these 3 algorithms are given in Table 3, where: 

 
• SO is the self-organising algorithm by itself.  
• SO-CT is the self-organising algorithm, that 

feeds into standard category trees, that feed into 
the next self-organising level.  

• SO-SRCT is the self-organising algorithm, that 
feeds into category trees that use the secondary 
ordering and 1 phase of recursion, before 
feeding back into the next self-organising level.  

• Each cell score gives: the number of clusters 
first, then the percentage of cohesion, as 
described above, and then the frequency grid 
version that produced the result.  

• The average cluster error is the number above 
the actual number of 3.7, and the average 
accuracy percentage is the cohesion accuracy. 

 
The self-organising algorithm scores very well 

by itself, so there is not much room for 
improvement. Each test was run over 3 iterations 
instead of 10 and this produced better results than 
what was published in [6]. The results from 50 tests 
were then averaged to give the final score. The 
results for fewer iterations also showed a much more 
even split between version 1 or version 2 of the 
frequency grid. With relation to other heuristics, a 
value above 90% is considered to be acceptable for 
unsupervised clustering for the more separable 
datasets, such as the Iris dataset. 
 

 
 

 SO SO-CT SO-SRCT 
Iris (150-3) 5-94%  V1 7-93%  V1 4-91%  V1 
Wine (178-3) 8-91%  V1 5-98%  V1 9-95%  V1 
Zoo (101-7) 8-99%  V2 15-98%  V2 15-98%  V2 
Hayes-Roth (132-3) 4-69%  V1 4-71%  V1 4-77%  V2 
Heart Disease Cleveland (303-5) 7-77%  V2 7-73%  V2 13-80%  V1 
Sonar (208-2) 4-82%  V2 3-88%  V1 3-88%  V2 
Wheat Seeds (210-3) 7-88%  V2 10-97% V1 8-97%  V1 
Average Cluster Error 2.44 3.7 4.3 
Average Accuracy Percentage 85.5% 86.5% 89.5% 

 
Table 3. Test results on some benchmark datasets. 

 
 

5.2 Test Conclusions 
The results are very pleasing and are what the 

author would like to demonstrate. But the values can 
still change quite a lot and so while they are accurate 
and representative, they should also be taken with a 
pinch of salt. While the error is improved, the 
number of clusters also increases, which is not a 
good result, but not as serious as the error reduction. 
The idea is that the supervised Category Trees can 
introduce a skew to the self-organised clusters and 
that will help them to re-align to a more accurate set 
of exemplars. If the secondary clusters and recursive 
feedback also has an effect, then better still, because 
the first category tree learning phase can only learn 
the cluster set presented by the self-organising 
algorithm. The adjustment comes in the second 

recursive stage. Note however that if an optimum 
result is achieved, any further stage will move away 
from it and so only 2 stages were tried in the 
recursive procedure. Also, if the test dataset is 
properly formed, then the exemplars are also 
centroids and the secondary clusters would be 
almost the same. 

Changing the number of test runs had a 
significant effect, where it was reduced from 10 to 3 
in this set of tests. More significantly, the value was 
also used for the final ensemble loop, which is like a 
Random Forest [12][13]. The cluster ordering had to 
be randomised before this final frequency grid stage, 
because the ordering has an effect on the clusters that 
it produces, see [6], section 4.2.1. After the top 
counts that create the clusters however, there are a 
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large number of lower counts that could produce a 
lot of overlap in the different ensemble sets. If the 
number of random sets is reduced, then the overlap 
is also less and this may help to keep the different 
category clusters separate. The frequency grid also 
produced clusters with a large variation of frequency 
counts in the first layer, but the counts became much 
more uniform in subsequent clustering layers. This 
may be why a smaller ‘test runs’ value gave a better 
performance, because it was also used to determine 
the number of ensemble cycles. Especially with a 
global optimum, the values can tend to the minimum 
value and then saturate, when they all receive a 
similar score. It can be better to stop the training 
before the saturation happens and use the more 
variable output, albeit with a slightly larger error 
value. Time is then a factor, where certain variables 
with a greater affinity to the minimum value, will get 
there first. 

Overtraining is a well-known problem, but that is 
typically when comparing with a different test 
dataset and it usually still produces a better fit in the 
train dataset. In fact, the ensemble loop should 
probably be a separate value, so that this problem 
does not occur. New tests confirm that this 
correction would be an option. Concerning the 
preference for version 2 of the frequency grid, it 
produces larger clusters to start with and so it would 
probably work better with fewer ensemble 
aggregations afterwards. The classifier rather than 
the overlap determines the clusters. 

 
 
6 The Same Family of Classifiers 

A second tree structure suggested by the author 
is a Concept Tree [7][8] . This stores concepts of 
arbitrary nature, with the simple mathematical rule 
that a child node cannot have a larger frequency 
count than its parent. It is interesting that Category 
Trees also supports this rule. As classifiers in 
branches store only subsets of nodes, they are likely 
to reduce their number of rows each time, which is 
like reducing a frequency count. If the variance 
inside of each tree is less than for the global 
population, then that gives the desired cohesion that 
the Concept Tree requires. It may be the case that 
Category Trees, Concept Trees and even the 
Frequency Grid, belong to the same family of 
classifier. Category Trees are maybe a supervised 
version, where Concept Trees are semi-supervised 
or unsupervised. This family of classifier makes use 
of averaged or batch values instead of individual 
local values. It is concerned with reducing the 
entropy or variance of the structure, which is again a 
global error correction over smaller local 

corrections. Even the Frequency Grid clusters use 
the largest count from a global table and not local 
relations. It may be the case that the counting rule of 
the Concept Tree that also occurs in the Category 
Tree structure leads to global minima, compared to 
the much more diverse landscape that a neural 
network might produce [21]. Using this in 
conjunction with fewer links between nodes could 
also be a factor.  

If the search space is a global optimum, even a 
relatively shallow one, then it makes sense that only 
one correction is required to move to the best result. 
It is clear that the nature of the classifier and even its 
structure, is related to the error surface topology that 
it produces. But it is not the case that all single-layer 
classifiers produce global optima, where feedback 
between nodes could be a factor. It is now easy to 
see however, the uneven error topology for a fully 
connected multi-layer neural network with different 
weight sets and so the number of dimensions in a 
move may be more significant. Hill-climbing, for 
example, only leads to local optima, but it only deals 
with local information. The new classifier family is 
able to obtain information at a global level and then 
each move is very low dimension, only 1 dimension 
or link really. The cost then is a reduction in the level 
of detail in the information. 

This is also interesting, because in more abstract 
terms, operations for one of the classifiers can 
maybe be tried on the other one. The similarity 
becomes even more pronounced when both tree 
structures perform a slight adjustment, through an 
internal recursive update, as described here in 
section 3.2 and in the paper [8] section 7.3, for the 
Concept Trees. In that paper, it was like a matching 
process that refined itself, by a small amount. 

 
 

7 Conclusions 
This paper has introduced a new clustering 

method that can improve the variance for similarity, 
across the cluster sets. It is based on the Category 
Trees algorithm, which is a supervised approach, but 
the new method may eventually work in an 
unsupervised manner. The method creates 
exemplars instead of centroids and poses the 
question if exemplars and principal components are 
related in some way. Environmental data is used as 
a case study and the result could help the fire service 
to monitor a region for fires. The advantages are the 
high levels of accuracy and the simplicity of the 
design, compared to many levels and number of 
weights in neural networks, for example. A set of the 
author’s algorithms have been placed into a family 
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type that is an entropy-style of classifier. Test results 
on combinations of this family show improved 
results to what was published previously for the 
classifiers and also that the different classifiers can 
work well together.  

 
7.1 Future Work 

The author has an interest in building a brain-like 
model and he hopes to integrate the self-organising 
unit into that. The secondary clustering is interesting 
because it provides information that is not directly 
available and the process can possibly be automated. 
It results from Category Trees that branch on 
category type and not feature. Most classifiers 
branch on feature and so an investigation into 
whether this is a unique aspect of Category Trees 
would be one option.  

Because the row numbers are reduced, this could 
lead to more accurate analysis of similarities or 
differences between row sets, clustered in the same 
classifier. Or between feature subsets and the 
exemplar itself. Principle components are directions 
of maximum variance over the features, while the 
new components are directions of maximum 
similarity, again over the features. This therefore 
indicates two bounds on the problem. Can they be 
used together and give an understanding to the space 
between them? If we have one set of these 
components, would that help to guess what the other 
set might be? One other direction of research may be 
to look more closely at the classifier structure and try 
to relate this with the error surface. Do 
monotonically decreasing or increasing counts 
across layers produce certain types of error surface, 
for example? 
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Appendix A – Examples of the 

Forest Fires Clusters 
This appendix lists some of the clusters generated 

by the secondary ordering of the Category Trees 
classifier. There were several clusters for the August 
– September time period, where two are displayed 
first. Note that there are no rows from the (1, 2) 
sector in that cluster or from the (1, 3) sector in that 
cluster. 

 
Rows clustered for Sector (1, 2) 
X, Y, month, day, FFMC, DMC, DC, ISI, temp, 

RH, wind, rain, area 
2,4,aug,tue,94.8,108.3,647.1,17,20.1,40,4,0,0 
2,4,aug,wed,92.1,111.2,654.1,9.6,20.5,35,4,0,1.64 
4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0 

4,3,aug,wed,92.1,111.2,654.1,9.6,20.4,42,4.9,0,0 
6,3,aug,fri,91.1,141.1,629.1,7.1,19.3,39,3.6,0,1.56 
6,4,aug,thu,95.2,131.7,578.8,10.4,20.3,41,4,0,1.9 
 
Rows Clustered for Sector (1, 3) 
1,4,aug,wed,91.7,191.4,635.9,7.8,19.9,50,4,0,82.75 
2,2,sep,fri,92.4,117.9,668,12.2,23,37,4.5,0,0 
2,2,aug,tue,92.1,152.6,658.2,14.3,21.8,56,3.1,0,0.52 
3,4,sep,sun,92.4,124.1,680.7,8.5,22.5,42,5.4,0,0 
4,4,sep,sun,93.5,149.3,728.6,8.1,22.9,39,4.9,0,48.55 
5,4,aug,tue,88.8,147.3,614.5,9,17.3,43,4.5,0,0 
5,4,aug,tue,95.1,141.3,605.8,17.7,24.1,43,6.3,0,2 
6,5,sep,fri,93.3,141.2,713.9,13.9,22.9,44,5.4,0,0 
7,4,aug,sun,91.4,142.4,601.4,10.6,20.1,39,5.4,0,2.74 
7,5,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0 
8,6,aug,tue,92.1,152.6,658.2,14.3,20.1,58,4.5,0,9.27 
8,6,aug,tue,96.1,181.1,671.2,14.3,21.6,65,4.9,0.8,0 
 
These were different cluster sets for the Winter 

period: 
Rows Clustered for Sector (4, 6) 
3,5,mar,mon,87.6,52.2,103.8,5,9,49,2.2,0,0 
4,5,jan,sun,18.7,1.1,171.4,0,5.2,100,0.9,0,0 
4,6,dec,sun,84.4,27.2,353.5,6.8,4.8,57,8.5,0,8.98 
4,6,dec,thu,84.6,26.4,352,2,5.1,61,4.9,0,5.38 
4,6,dec,fri,84.7,26.7,352.6,4.1,2.2,59,4.9,0,9.27 
6,3,feb,sun,84.9,27.5,353.5,3.4,4.2,51,4,0,0 
6,3,nov,tue,79.5,3,106.7,1.1,11.8,31,4.5,0,0 
6,5,jun,sat,53.4,71,233.8,0.4,10.6,90,2.7,0,0 
8,6,dec,wed,84,27.8,354.6,5.3,5.1,61,8,0,11.19 
 
Rows Clustered for Sector (7, 3) 
3,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,10.73 
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,17.85 
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,22.03 
4,4,dec,mon,85.4,25.4,349.7,2.6,4.6,21,8.5,0,9.77 
6,5,dec,tue,85.4,25.4,349.7,2.6,5.1,24,8.5,0,24.77 
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