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Abstract—We consider a compartmental model of SEIIRDtype which describes the time evolution of the COVID-19
epidemy at the level of a country. For the reproduction number R(t), the crucial parameter which influences the
number of new cases, we consider an explicit form as a combination of trigonometric, exponential and gaussian
functions. The coefficients of the individual parts can be adapted in order that the profile of R(t) matches different
scenarios. Their common structure illustrates the real behaviour observed in most countries. Initially we can observe
large values of R(t) which enforce the first wave of the epidemy, followed by a rapid reduction below 1 due to a first
lockdown which can have different intensities. The second phase consists of a relaxation of the restrictions having as a
consequence an increase of the reproduction number within a range over 1. The numerical simulations show that in
this case, after a period of some months with a low level of daily cases, the occurrence of a second wave is
unavoidable, being inherent to the nature of the model. The intensity of the second wave depends on how much and
how long the reproduction number R(t) has been over the threshold value of 1, but also on the intensity of the first
lockdown. All simulations show that the behaviour of the model is very sensitive with respect to the reproduction
number. Small changes in its values may have a significant impact on the long-term evolution of the epidemy at the
country-level.
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1. Introduction

The basic approach used for the modeling of epidemies is
the SIR-model, see [1], [2]. It belongs to the so-called com-
partmental models, since the population is divided into several
compartments: S - susceptible, 1 - infected and R - recovered.
The dynamics occurs in several stages, by transitions from one
stage to the next. Susceptible individuals can get the disease by
contact with infected ones. The corresponding rate is directly
proportional to the numbers S and /, while the transition from
I to R occurs at a rate proportional to the number [ of infected
individuals. A person in this last stage is already immune and
cannot contribute anymore to the spread of the disease. The
system of ordinary equations which corresponds to the basic
SIR model is the following:

ds S
@ - Py
dl S
= L=

b N

dt
= a1 (1)

—a-1
dR

dt

The number N denotes the size of the whole population and
the presence of the factor N~! is necessary for the correct
scaling of the bilinear terms. The coefficients of the linear
terms, i.e. the rates of passing from one state to another,
are inversely proportional to the average time spent in the
corresponding state. With T;,r being the average time spent
in the infectious state, we can therefore assume that o = TZ.;L},
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while for the transmission rate S we can consider the form
B = R(¢) -Ti;}. The term R(t) denotes the time dependent
effective reproduction number, i.e. the average number of
further infections produced by the contacts with one infectious
individual. At the beginning of the epidemy its value is equal
to Rg, the so called basic reproduction number, but after that
it may vary due to restrictions, social distancing, increased
frequency of testing, etc.

The equilibria of system (1) are given by the property I = 0,
while S and R are constants with S + R = N. The second
equation can be written as

dl S
— R I I B

therefore, if for all ¢ we have R(t)-S/N —1 < 0, in particular
if R(t) < 1, then we have dI/dt < 0, so the epidemy will
vanish in a short time, since the number of initially infected
individuals decays exponentially. However, if at a certain time
t we have R(t)-S/N—1 > 0, then the epidemy will eventually
spread among a large part of the population, since the size of
the initially infected population grows exponentially starting
with the beginning of the dynamics, till either S(¢) or R(t)
will become small enough in order to ensure that dI/d¢ < 0.

In the long-time behaviour, the solutions will approach in
both cases an equilibrium state with / = 0 and constant
values of S and R, which depend on the initial condition
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and on the time-dependent reproduction number R(¢). The
stability analysis of the SIR model is performed in paper
[3] along that for related systems, with additional transitions
corresponding to birth, death or reinfection. In turns out that
in the enhanced models, besides the trivial equilibria with
I = 0 (stable if R(t)S/N < 1, in particular if R(t) < 1
for all ¢, and unstable if R(t)S/N > 1), there exists also a
nontrivial endemic equilibrium state whose stability is shown
by a Lyapunov function.

The SEIR model, see [1], [2], considers the additional state
E of exposed individuals during the incubation time, situated
between S and I, where they don’t show yet the symptoms
and cannot spread the disease.

In context of the outbreak of the COVID-19 pandemy at
the beginning of 2020, several compartmental models of type
SIR, SEIR and modifications of them were applied in order
to describe the evolution of this disease. The papers [4] and
[5] present an overview of such models with applications to
COVID-19. Applications to concrete countries are presented
in [6], [7], [8], [9], where the authors employ extensions of
the SEIR model. In the latter reference, the parameters of
the model were estimated using a particle swarm optimization
(PSO) algorithm.

The paper [10] considers a SIIRD model with time-
dependent transmission rate in order to account for the features
of the COVID-19 disease and for the publicly available
statistical data, which are used to fit the parameters of the
model. The statistics record the numbers of new infections,
the current infections, the recoveries and the deaths. Since
data for E are not available, a model of SEIR type was not
considered. Instead, a component D was added, which counts
the death cases and transitions into D were considered from
the state I and sometimes directly from S, in the case of
infections reported only after the death of the individual. In
the considered model, the infectious state is split into two
stages. In the first one, I3, which lasts relatively short, the
individual can spread the disease, while death is unlikely
to occur. The following stage I lasts until the individual
is reported as recovered or dead and for this category it is
assumed that it does not contribute to the spread of the disease.
The parameter estimation method used in the mentioned paper
employs a numerical solver for the ODE system which uses
as predictor the path of a stochastic jump process which
is based on the variations of the data set, after which the
precision is improved by using correction steps of Runge-
Kutta type. The solutions computed in this way are subjected
to an optimization procedure which searches for the set of
parameters which minimizes the mean square error between
the computed and the given data.

In the present paper we consider a SEIIRD model as an
extension of the model in [10]. That is, we add also the state
of exposed individuals, accounting for the incubation period.
The corresponding system of ordinary differential equations
together with the considered values of the parameters is
presented in Section II. The goal is to perform several nu-
merical simulations in order to analyze the influence of the
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reproduction number R(t), that is of the average number of
new infections produced by one individual, on the evolution
of the epidemy. For this purpose we consider the following
form:

co - (€701 4 e=0001t (005(0.05¢) + 0.1 sin(0.5¢))

+0.025 + 060670'0001(15760)2
—0.001(t—120)?

R(t) =
+ 01908—0.001@—190)2

=+ c300€
A2
70.001(157340) ) (2)

+c120€

_~_C2roe—oA001(t—250)2
O

—0.001(¢t—300)2
+c3a0€

co is a scaling constant and the first row of the expression
above describes the basic shape of R(t). The second row
ensures that its values remain positive and the coefficient
ceo controls the magnitude of the first lockdown, while the
coefficients of the gaussian functions in rows 3-5 can be
properly adjusted in order to simulate several scenarios at later
stages of the epidemy. Typical profiles can be seen in Figure 2.
The goal is to describe the behaviour which could be observed
in several countries. At the beginning of the epidemy, the
values of the reproduction number were well over 1, but due to
timely restrictions followed by a lockdown, R(¢) fell under the
threshold value of 1. In the next phase of gradual relaxations,
its values increased again slightly over 1, remaining in this
range for a period of several months. After this time span
with relatively low infection numbers, a second wave of the
epidemy emerged, in most cases significantly larger than the
first one.

data for Germany, 15.09-15.12.2020

R() fl
daily new cases *1e-4 Il
25+ 7-day moving average I

05}
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days

Fig. 1. Evolution in Germany between 15.09-15.12.2020

This behaviour at later stages for Germany is illustrated in
Figure 1. After the lockdown during the first wave in March-
April 2020, the number of new infections remained for several
months at a relatively low level, although the reproduction
number R(t) was constantly larger than 1. Starting with the
middle of October, the second wave began to emerge, which
led to a partial lockdown between 1.11-15.12.2020. The effects
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on the reproduction number can be seen also in the picture,
where starting with the 45th day of the considered time span
the values of R(t) were pushed significantly downwards, but
oscillating around the treshold value of 1. This is reflected
in relatively constant figures of daily new infections till
the beginning of December, when the reproduction number
jumped again at a level significantly over 1. The consequence
was a further increase of the daily new infections, which
motivated the introduction of a harder lockdown starting with
16.12.2020, but whose effects aren’t captured by this picture.

In Section III we present the results of the numerical
simulations of the SEIIRD model in the case of three scenarios
with successive reduction of the reproduction number R(¢) in
order to analyze the impact on the occurrence and on the
magnitude of the second wave of the epidemy. The basic
profiles are illustrated in Figure 2. The differences between
them consist in the magnitude of R(¢) on the interval between
ca. 200-350 days. We start with a profile R(¢) > 1 in this
interval, a property which holds also for the second one, but
with smaller values, while the third profile is the smallest,
being even < 1 for ¢ > 280.

reduction of the reproduction number R(t)

R(t)
TTRW
251 R(t)

151

AN

1 “A";“f“;‘ - f

05}

0 50 100 150 200 250 300 350 400
t (days)

Fig. 2. The standard profiles of R(t) in each of the three scenarios

These properties are obtained by modifying R(t), the
standard profile used in the first scenario. For R'(t) we
multiply cos0 with the factor 0.5 in order to simulate the
second scenario of additional mild restrictions. For R*(t) we
additionally multiply c3p9 with the factor 0.8 in order to push
the reproduction number below 1.

In each of these three scenarios we consider three variants of
the profile of R(¢) (the exact values of the parameters will be
given in the corresponding subsections). The standard profile
in each scenario has ¢y = 1 and corresponds to those presented
above and depicted in Figure 2. The second profile in each
scenario has the same parameter values except ¢y = 1.02,
that is, we consider values of R(t¢) which are only with 2%
larger. The simulations show that the results are extremely
sensitive with respect to the reproduction number and that
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a small modification, as in this example, leads to significant
changes in the behaviour. More precisely, in the latter case, the
amplitude of the second wave will turn out to be considerably
larger. The third profile corresponds to proper adjustments of
the parameters, such that the magnitude of the first lockdown
(which can be seen in Figure 2 around ¢ = 60 days) is smaller,
that is, the profile of R(t) is here above the standard one, but
at later times always slightly below it. It will turn out that a
milder lockdown at the beginning of the spread of the epidemy
has an important influence on the second wave, which appears
earlier and has a larger magnitude than in the case of the
standard profile.

As a general conclusion of the simulations we can state that
the profile of the reproduction number R(¢) has a significant
influence on the evolution of the epidemy, the model being
highly sensitive regarding this parameter. After the first lock-
down, when the values of R(t) climb again beyond 1, the
apparition of the second wave is inevitable, although the daily
new infections might stay at low levels for several months.
The moment of emergence and the magnitude of the second
wave depend on how much and how long the reproduction
number R(t) has been over the threshold value of 1, but also
on the intensity of the first lockdown.

2. The Seiird Model

In this paper we consider the following system of ordinary
differential equations:

ds R(t) S

> - ) PRy S

di Tin 1 N fla S

dFE R(t) S 1

_— frnd . I o —_ T . E

dt Ty — N Tine

dl -1 -1

E = T‘lncE_Tznfll

dl. _ _

7152 = T‘in}'ll_Tco’rlw'IQ_Md'I2
dR

- = 71 .7

dt conv 2

dD -

T pq - Io + fig - S 3)

These equations correspond to the following states: S -
susceptible, E' - exposed (infected individuals during the
incubation time), I; - individuals during the infectious state,
when they can spread the disease, I - individuals which are
still counted as “active cases”, but which are not infectious
anymore, R - recovered and D - dead.

R(t) is the time-dependent reproduction number, T;,. the
average incubation time, T, the average time spent in the
infectious state and 7,.,, the average convalescence time,
spent in the state I5. Deaths are considered to take place either
directly from the state .S at rate fiy or from the state I at rate
Had-

The precise form of R(t) will be given in the next section.
For the average incubation time we take T;,. = 5, while
for the other parameters we consider the following values,
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which are of the same order as those computed in [10]
based on the statistical data for several countries: Tj,; =
4, Tponw = 14,19 = 5-1073, fig = 1075, The population
is considered to be N = 4 - 107 individuals and we consider
as initial conditions: S(0) = N — 900, E(0) = 600, [;(0) =
300, I2(0) = R(0) = D(0) = 0.

Our goal is to perform numerical simulations in several
scenarios involving different profiles of R(t) in order to obtain
a qualitative comparison of the dynamics of the spread of
the infection among the population of a generic country. The
most important parameter which accounts for this and which
is also presented in all statistics is the number of daily new
infections. Therefore, the focus of the diagrams of the next
section Xvi}l be put on this number, given in our model by

ng = T;1.E(s) ds and which is computed by numerical

wmc

integraﬁon of the approximation of the component £ of the
system (3). Its numerical solution as well as the integrals
are computed using MATLAB. The settings for the solver
ode45 were set in order to obtain a high precision, i.e. very
small, adapted, time discretization steps and the integrals were
computed using the trapezoidal rule over a nonuniform grid.

3. Numerical Simulations

In this section we will perform numerical simulations for
three different scenarios corresponding to different degrees of
reduction of the reproduction number R(t) after ¢ = 200 days,
in order to analyze the impact on the possible second wave.
In each particular scenario we compare the results for three
different profiles of the reproduction number R(t): a standard
one, a profile scaled with the factor 1.02 and a third profile
which initially (around ¢ = 60 days) has a less significant
reduction of R(t), which corresponds for example to a less
severe lockdown, but which afterwards has similar values or
even slightly smaller than the standard profile.

The general form of R(t) is given by (2) and the exact val-
ues of the parameters are given in each of the next subsections.

3.1. Scenario 1

For the basic profile of the reproduction number R;(t)
we consider Co = 1, Cep = 1.05,0120 = —0.2,0190 =
2, ca50 = 0.55, c300 = 1.5, c340 = 0.8. The second simulation
is performed for 1.02- Ry (t), i.e. for ¢g = 1.02 while all other
parameters are the same as before and for the third simulation
R5(t) corresponds to the values ¢y = 0.9,c60 = 1.3,¢120 =
—0.270190 = 2,0250 = 0.55,0300 = 1.5,0340 = 0.9. This
latter choice ensures that the initial reduction around ¢ = 60
days is not as significant as for the basic profile, but at later
times this modified profile does not exceed the former one.

In this first scenario all three considered profiles for the
reproduction number are in a time interval approximately
between days 100 and 300 continuously over the critical
threshold of 1, see Figure 3.

The results of the simulations are depicted in Figure 4.

We can note that, due to the fact that the reproduction
number stays constantly over 1 for ca. 200 days, the emergence
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reproduction number R(t)
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Fig. 3. The profiles of R(t) in Scenario 1
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Fig. 4. Daily new cases in Scenario 1

of a second wave of new infections, significantly larger than
the first one, is inevitable. This is the case although the number
of daily new cases is for a relatively long time, between days
100-250, significantly lower as in the first wave, especially
for Ry(t) and 1.02 - Ry (t). Comparing the magnitude of the
second wave, we remark that the dynamics of the infection
is very sensitive with respect to the reproduction number. By
scaling the profile with the factor 1.02, the second wave is
about two times larger than in the case of the original profile
of Ry (t). Moreover, the second wave corresponding to R (t)
occurs earlier and is significantly larger than the reference one,
although the first wave is quite similar. The reason for this
behaviour lies in the fact that, due to the less severe lockdown
around ¢ = 60, at the end of the first wave we have more
infectious individuals than in the standard case.

The conclusions of the simulations in the frame of this first
scenario can be summarized as follows. The model exhibits
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a high degree of sensitivity with respect to the reproduction
number R(t). If its values stay long enough over the critical
threshold of 1, the occurrence of a second wave is inherent
to the model, even if it can stay far from such a behaviour
for several months. This phenomenon could be observed in
many countries, a particular case being Germany, as shown in
Figure 1. The magnitude of the second wave depends however
strongly on the particular form of R(¢), even if in the case of
the first wave the differences were almost negligible.

A substantial reduction below 1 of the reproduction number
during the early stages of the epidemy can delay the occur-
rence of the second wave and significantly lower its magnitude.
This can be a possible explanation for the situation in China,
where in the first months a severe lockdown was imposed,
but after some time all restrictions could be lifted. The
possible new cases which could have appeared in the meantime
might be at any moment under control, being immediately
isolated and prohibited to spread the disease. Nevertheless,
this approach is possible only if the disease is not widespread
among the population, a state which was achieved by a strong
reduction of R(t) for a certain period, even closer to 0 as in
our simulations. On the other hand, even in this situation, if
new cases may appear unobserved while their number is not
significant enough, the emergence of a second wave is still
possible, even if it may appear with a significant delay.

3.2. Scenario 2

In the second scenario we consider the same coefficients as
in the first one, except for taking co59 = 0.275, i.e. the half of
the standard value. Furthermore, we consider here also three
different profiles for R(t), similar to scenario 1.

reproduction number R(t)

Ry®

- 1.02°R; (1)

R Ry (1)

0 50 100 150 200 250 300 350 400
t (days)

Fig. 5. The profiles of R(t) in Scenario 2

This modification still keeps the profiles of R(t) over 1
during the days 100-300, but the values around ¢ = 250 are
smaller than in the first scenario, as illustrated in Figure 5.

The results of the numerical simulations are plotted in
Figure 6. The second wave of infections can be observed also
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Fig. 6. Daily new cases in Scenario 2

in this case, but the amplitude is much lower than in scenario
1. Its magnitude is comparable to that of the first wave, in the
case of the standard profile R'(t) being even smaller.

The conclusion is that a proper reduction of the reproduction
number R(t) about one month before the emergence of the
second wave, even if it still remains above 1, will lead to
a milder second wave of infections compared to the basic
scenario.

3.3. Scenario 3

In the third scenario we consider the same coefficients as in
the basic one, except for taking co50 = 0.275 and c3p9 = 1.2.
That is, in addition to the second scenario, we further lower
the profile of R(t), bringing it around ¢ = 300 below the
critical treshold of 1, as can be seen in Figure 7.

reproduction number R(t)

. R,
o5l - 1.02°R (1)

——— R,(t)

0.5

0 50 100 150 200 250 300 350 400
t (days)

Fig. 7. The profiles of R(t) in Scenario 3

In this case, as shown in Figure 8, the magnitude of the
second wave is for all three profiles of R(t) lower than that
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of the first wave.

daily new cases
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1000 - for 1.02°R(t)
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600
400 |
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Fig. 8. Daily new cases in Scenario 3

4. Conclusion and Discussion

In this paper we considered a SEIIRD system of differential
equations modeling the dynamics of the COVID-19 pandemy
at the level of a generic country. The goal was to analyze the
dependance of the new infection cases on the reproduction
number R(t) by performing numerical simulations in different
scenarios. For the different profiles of R(t) we considered an
explicit form as a combination of trigonometric, exponential
and gaussian functions. The coefficients of the individual parts
can be adapted in order that the profile of R(¢) matches
different scenarios.

The results exhibited a high sensitivity with respect to this
parameter. Small global or local changes can lead to major
differences in the dynamics of new infections at later times.
They influence especially the magnitude of the second wave,
which emerges if the reproduction number stays for a certain
time (a couple of months) above the critical threshold of 1,
even if during this period the number of daily new cases might
stay at a relatively low level.

Nevertheless, the amplitude of the second wave can be
significantly reduced either if the intensity of the lockdown
at an early stage is strong enough, within the same duration,
or if one manages to reduce the reproduction number R(t)
at a right moment before the occurrence of the second wave.
Based on the present numerical simulations, we can observe
empirically that the second wave emerges after a period in
which R(t) was for long enough period above 1.

A further research topic could be therefore a more rigorous
quantification of this fact. Quantities of interest might be
LP-norms of R(t) — 1 on time intervals [¢1,t3] where the
reproduction number is above 1 and the goal would be to find
critical bounds of these norms which, when exceeded, might
be an indicator of the imminent approaching of the second
wave. Reducing R(t) before this event effectively occurs could
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be crucial for controlling its magnitude. Moreover, since the
numerical simulations showed that the intensity of the early
lockdown can have a significant impact on the second wave,
one can analyze a similar norm of the control function 1— R(t)
on time intervals where it is constantly below 1 and find critical
values which, in combination with the previous indicator, can
give insight into the magnitude of the second wave.

Additionally, if one would be interested in a long-term
simulation, then the model should be enhanced in order to
include features like immunity induced by vaccination of the
susceptible population, but also losing of immunity after a
given time period, regardless if it was obtained by passing
through the disease or by vaccination. In this case we expect
that the long-time behaviour of the system will approach an
endemic equilibrium, which contains a nontrivial amount of
infected population.
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