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Abstract: - Autonomous vehicle parking and obstacle avoidance navigation have drawn increased attention in 
recent times for autonomous vehicle-related solutions. Existing autonomous vehicle parking algorithms 
generally fail to mimic the human-like tendency to adapt naturally, and most of these designs are practically 
fixed. They do not preserve adaptive nature with machine dynamics, especially vehicles related. In this paper, a 
novel fuzzy-based adaptive dimension parking algorithm (FADPA) is proposed that integrates obstacle 
avoidance capabilities to a standalone parking controller that is made adaptive to vehicle dimensions in order to 
provide human-like intelligence for parking problems. This algorithm adopts fuzzy membership thresholds with 
respect to vehicle dimensions to enhance the vehicle's path during parking with taking care of obstacles. It is 
generalized for all segments of cars, and different simulation results are presented to show the effectiveness of 
the proposed algorithm. 
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1 Introduction 
Autonomous vehicle parking system [1]–[25] 
should be capable of parking a vehicle without any 
human intervention at the same time should be 
capable of parking in any environmental conditions. 
These systems should address designs and 
implementation related heterogeneous issues like 
trajectory planning, steering control, and continuous 
scanning of the environment for dynamicity. 
Literature suggests that researchers have worked on 
them individually or in a combination of a few of 
them as multi-tasking. The major challenge to build 
these systems remains the dynamicity of the 
environment and the feedback control. Behavior-
based robot navigation architectures [11], [26]–[29] 
can be used as an integrated part vehicle parking 
system to track any unforeseen obstacle present in 
the surrounding. Navigation architectures required 
contactless sensing of the environment as an input, 

so many authors [10], [13], [23], [30]–[35] have 
used infrared sensors, ultrasonic sensors, LIDAR, 
laser sensors, and CCD sensor for their intelligent 
system design. 

Literature suggests that numerous algorithms for 
parking problems involved fuzzy logic theory 
because of its ability to use linguistic information 
required for complex systems to formulate a 
controller's rule base. Human-like intelligence can 
be easily mimicked by machines via a fuzzy set 
theory. For obstacle avoidance based navigation, 
linguistic information obtained from sensors is 
fuzzified to select membership functions and values 
heuristically, by experimentation or expert rules. 
However, most of the time, these fuzzy membership 
values are fixed for a specific set of models. 

An expert human driver can drive through 
optimal gaps with little sense of obstacles and 
understand vehicle dynamics. A drive-through 
experience is different whenever a person drives a 
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small hatchback or large Special utility vehicles 
(SUVs). However, using such human-like 
intelligence by obstacle avoidance module of a 
parking model, one unique set of fuzzified 
membership ranges as incorporated in literature may 
not work for all different segments of vehicles, i.e., 
hatchback, sedan or SUV, etc. It should be noted 
that the perceptual inference of distances in the 
same fixed environment by different dimension 
vehicles is different, as conceptually shown in Fig. 
1(a-c). These facts reveal that a predetermined and 
fixed set of thresholds used in existing models for 
fuzzy-based vehicle control must be made adaptive 
by considering parameters, including vehicle size. 

In this paper, we propose a novel fuzzy-based 
adaptive dimension parking algorithm that utilizes a 
parameter derived from the vehicle's actual 
dimensions, provides the capability to adapt fuzzy 
variable membership values of parking module, and 
successfully parking a car with different sizes. In 
our earlier work [24], we developed a hybrid 
intelligent autonomous vehicle parking system with 
an inbuilt obstacle avoidance module. In this work, 
we integrate our proposed algorithm to the obstacle 
avoidance module. We have experimented with 
results with two different segments of the vehicle. 

This paper's organization is as follows: In 
Section II, initially, a block diagram of the 
autonomous vehicle parking system is briefly 
discussed, and it is followed by an explanation of 
the proposed fuzzy-based adaptive dimension 
parking algorithm. In Section III, various scenarios 
for two different segments of vehicles are simulated 
in a confined environment with the presence of 
moving obstacles to visualize the application of the 

proposed algorithm. Finally, the conclusions are 
given in Section IV. 

 
2 Fuzzy based adaptive dimension 

parking algorithm (FADPA) 
 
 
Parking algorithms found in literature aim to 

solve the problem of fixed-sized vehicles. Once 
sensing of the surrounding environment is 
completed by sensors mounted on the vehicle, the 
next task is to infer them correctly to provide inputs 
to build models. However, threshold senor values to 
create such inference systems are heuristically or 
experimentally trained and are fixed in most cases. 
Due to these limitations, parking algorithms 
applicable for one set of fixed-size vehicles may not 
work efficiently if the vehicle dimensions are 
changed. The parking algorithm's perspective is 
altogether different tasks for a hatchback (small) car 
than a big sedan car while driving to narrow passes 
or to park along the curb or reverse. In this section, 
we propose an algorithm that can optimize its 
parameters according to the vehicle's size and will 
be able to park different dimension vehicles 
efficiently. 

An intelligent autonomous parking system is 
developed, as shown in Fig. 2. An adaptive 
dimension parking controller executes fuzzy based 
adaptive dimension parking algorithm. This block 
diagram explains the working of a parallel parking 
controller to integrate an adaptive dimension 
parking controller. During parking maneuver, 
whenever the obstacles are sensed from the 
environment, a fuzzy controller called decision 

   

(a) Small size vehicle (b) Medium size vehicle (c) Large size vehicle 
Fig. 1. A typical “U shape” scenario indicating dynamic (different) inference of the same environment by 
different sized vehicles 
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controller will switch Car-like mobile robot's 
(CLMR) command to the adaptive dimension 
parking controller. This controller's primary purpose 
is to detour CLMR safely away from the obstacles 
and avoid any collision with taking care of its final 
destination. Model of CLMR, sensors' calculations, 
detailed rule base, and working of these controller 
systems are explained in our earlier work [24]. The 
proposed work primarily focuses on the algorithm 
that is implemented to design an adaptive dimension 
controller, as shown in Fig. 2. 

 

 

Fig. 2. Block diagram of a hybrid autonomous 
parking system 
 
2.1 Proposed Algorithm 

 Let car-like mobile robot (CLMR) be with the 
size of length L and width W.   

 Let total SN ultrasonic sensors be placed on the 
robot to sense the surrounding environment, as 
shown in Fig. 3. These sensors are represented 
as S1, S2… Sk, Sk+1… SN. 

 

Fig. 3.   Ultrasonic Sensor placement 

 Let assume there are three different grouped 
sensor distances d1, d2, and d3 obtained from N 
number of ultrasonic sensors mounted on 
peripheral of the vehicle as shown in Fig. 4 
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Fig. 4.   Ultrasonic Sensors arrangement on CLMR 

 All three distance groups are further fuzzified 
again into three different membership functions 
Near, Medium, and Far as defined below. 

 Their thresholds are taken as a function of 
length L and width W, and it is assumed to be 
constant for any vehicle size drive. These 
membership functions are defined as: 
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Fig. 5.   Fuzzy Membership function for distances 
d1, d2, and d3. 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2020.19.33 Naitik M. Nakrani, Maulin M. Joshi

E-ISSN: 2224-2872 279 Volume 19, 2020



The shape and value of membership functions 
used for distance d1, d2, and d3 are shown in 
Fig. 5. 
 
2.2 Generalization Steps 

 We define a Constant K, which is chosen from 
the actual vehicle dimension and used to modify 
thresholds of fuzzy membership functions 
varying according to vehicle dimension.  
Constant K can be taken from the range derived 
from given length (L) and  width (W) as, 

 















WL

WL

L

W
K

L

W ,min
2

 (5) 

 

 Multiply, this factor “K” with a threshold range 
of fuzzy membership functions as, 
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 Execute parking of given CLMR, as shown in 
Fig. 2 with these modified threshold 
membership functions. 

 
This algorithm is generalized for any dimension 
vehicle and can be used for any dynamic 
environment scenario. 
 

3 Simulation Results 
 
 

For demonstrating the proposed algorithm's 
practicality and efficacy, a parking scenario with a 
moving obstacle is created. Different cases are 
considered for parking of CLMR that exhibit the 
proposed algorithm's ability to execute additional 
capabilities like reverse parking, obstacle avoidance, 
redirection in case of non-feasibility of parking, etc. 
A Matlab simulation environment of size 22 by 22 
m is created with a combination of a parking slot 
and static as well as moving obstacles. To match 
real vehicle dimension, CLMR length and width are 

taken as similar to Indian market available models 
Hyundai i20 (hatchback) and Hyundai Verna 
(sedan). The velocity of CLMR is taken as 1 m/s, 
and the vehicle is assumed to be equipped with 
ultrasonic sensors mounted on both front and rear 
sides to measure nearby obstacle distances. The 
velocity of a moving obstacle is considered lesser 
than the velocity of CLMR. The environment 
surface is assumed as flat. 

Two different scenarios are considered to 
demonstrate the effect of applying the scaling factor 
'K'. Both cases are simulated for different lengths 
and width of CLMR, different values of 'K' with 
moving obstacle. Results will show how effective 
and intelligently CLMR can pass through the 
narrow pass during parking, which is usually 
avoided with prefixed membership function 
thresholds. This algorithm is generalized and hence 
can be applied for commonly available different 
sized four-wheel autonomous vehicles. 
 
3.1. Case 1: Huyndai i20 Length-3996 mm, 

width- 1734 mm 
 
For this case, the L: W ratio is set to match with the 
real vehicle dimension of Hyundai i20 to fit in the 
environment setup shown in Fig. 6. Apart from 
static obstacles shown as boundaries of parking 
place, an additional moving obstacle is assumed to 
come in the path of CLMR being parked from the 
opposite end.  CLMR is considered to be executing 
a reverse parking strategy for a given parallel 
parking algorithm.  Further, for practical reasons 
moving obstacle's relative speed is assumed to be 
lesser than the rate of CLMR. 
 

 

Fig. 6.   A typical case scenario indicating initial and 
final locations of CLMR and initial position and 
direction of a moving obstacle. 
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 A typical case scenario indicating initial and 
final locations of CLMR and initial position and 
direction of a moving obstacle is shown in Fig. 6.  
Fig. 7 and Fig. 8 highlight two different paths, 
followed by two CLMRs having different values of 
K. 
 In the first case (having K equals 1), fuzzy 
variable membership thresholds are set as per (2), 
(3), and (4). Fig. 7(a-b) shows CLMR approaching 
parking (moving left). At the same time, moving 
obstacle (moving right) is continuously coming 
nearer to CLMR. Fig. 7(c) shows instant when a 
moving obstacle blocks the path of CLMR and 
finding no direct path CLMR starts moving right  
(start of obstacle avoidance behavior ). Fig. 7(d-f) 
show successful obstacle avoidance of CLMR. After 
resuming reverse parking, as shown in Fig. 7(g- h), 
finally, CLMR reaches the desired parking location 
as per Fig. 7(i). 
  

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 7.   Step sequence of reverse parallel parking 
with K=1, no scaling 

 In the second case (K is selected as 0.25), fuzzy 
variable membership thresholds are set as per (6), 
(7), and (8). With these values, the inference is 
changed, and CLMR tries to detour the optimal path 
while parking.  In this case, also, Fig. 8(a-b) shows 
CLMR approaching parking (moving left). At the 
same time, moving obstacle (moving right) is 
continuously coming nearer to CLMR.  Here, Fig. 
8(c) shows instant when moving obstacle tries to 
block the path, but still, CLMR is finding sufficient 
space to maneuver in between moving obstacle and 
wall (target steering behavior).  Fig. 8(d-f) shows 
successful maneuvering of CLMR still under the 
moving obstacle's influence. In Fig. 8(g-h) CLMR 

continues reverse parking, and finally, CLMR 
reaches the desired parking location as per Fig. 8(i). 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 8.   Step sequence of reverse parallel parking 
with K=0.25 

3.2. Case 2: Hyundai Verna Length-4440 

mm, width-1729 mm 
For this case, L: W ratio is set to match Hyundai 
Verna's real vehicle dimension to fit in the 
environment setup shown in Fig. 9. To check its 
outcome with hatchback size vehicle, all the 
environment condition taken for this case is similar 
to Hyundai i20 scenario. A typical case scenario 
indicating initial and final locations of CLMR and 
initial position and direction of a moving obstacle is 
shown in Fig. 9.  Fig. 10 and Fig. 11 highlight two 
different paths followed by two CLMRs having 
different K values. 
 

 

Fig. 9.   A typical case scenario indicating initial and 
final locations of CLMR and initial position and 
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direction of a moving obstacle. 

 In the first case (having K equals 1), fuzzy 
variable membership thresholds are set as per (2), 
(3), and (4). As the dimension of Hyundai Verna is 
higher than that of the Hyundai i20, the inference of 
fuzzy thresholds are high. Due to the result, CLMR 
takes a path to avoid moving obstacle with higher 
safety of margin. Step by step sequence of CLMR 
steering action is shown in Fig. 10(a-i).  
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 10.   Step sequence of reverse parallel parking 
with K=1, no scaling 

In the second case (K is selected as 0.25), fuzzy 
variable membership thresholds are set as per (6), 
(7), and (8). With these values, the inference is 
changed and CLMR tries to detour the optimal path 
while parking.  Even though fuzzy thresholds are 
higher compared to hatchback segment vehicles, 
Fig. 11(a-i) show CLMR approaching towards 
parking (moving left) with the optimal route as 
space is available to move between obstacles. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 11.   Step sequence of reverse parallel parking 
with K=0.25 
 

4 Conclusion 
In this paper, a fuzzy-based adaptive dimension 
parking algorithm integrated with an autonomous 
parking controller is developed. The obstacle 
avoidance system takes information from the 
ultrasonic sensor array that is assumed to mount on 
the peripheral of CLMR. This sensor information is 
grouped and fuzzified using the proposed algorithm 
based on vehicle dimensions. As shown from the 
simulation value of constant K can optimized path 
taken by CLMR. The value of K can be set 
heuristically or practically.  This algorithm can be 
tested further to make it practically useable in 
commercial vehicles. 
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