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Abstract – This paper describes a design that can be used for Explainable AI and also autonomous clustering. A 
2-level structure is proposed, with a lower level ensemble of patterns created by self-organisation, linking with 
an upper knowledge-based level that can be hierarchical. This provides a transition from mixed ensemble masses 
to specific categories. Clusters are learned in an unsupervised manner, using a new self-organising algorithm, but 
can then be split again when the upper knowledge layer is able to define each related category. Links between 
the two levels help the system understand that the concepts are learned, or missing links can define that they are 
guessed only. A main contribution is a new clustering algorithm for producing the pattern ensembles, that is itself 
an ensemble which then converges through agglomerates. To help with the problem of random data ordering, 
multiple solutions can also be combined using the same clustering technique, when the averaged result is more 
robust. Tests measure both how coherent the ensembles are, which means that every data row in the cluster 
belongs to the same category, and also the optimal number of clusters produced by a solution. Results show good 
accuracy over a set of benchmark datasets. As part of the theory, a teaching phase would help the classifier to 
learn the true category prototype in the knowledge layer. This knowledge would be global and then used to infer 
correct classifications in any unsupervised and local cluster, thereby reducing the teaching time. 
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1 Introduction 
This paper describes a design that can be used for 
Explainable AI and also autonomous clustering. It 
can probably be integrated into an existing cognitive 
model [1] (also [2]-[4]) at the boundary between the 
lower and middle levels, where the knowledge is 
aggregated. The design describes a lower level self-
organising unit that is a nested ensemble of patterns. 
The upper level can be hierarchical, where each end 
node represents an individual concept, so there is a 
transition from mixed ensemble masses to specific 
categories. Pattern ensembles are learned in an 
unsupervised manner, using a new self-organising 
algorithm, but can then be split again when the upper 
knowledge layer is able to define each related 
category. Links between the two levels help the 
system understand that the concepts are learned, or 
missing links can define that they are guessed only. 
This paper proposes some new clustering algorithms 
for producing the pattern ensembles, that are 
themselves an ensemble which converges through 
agglomerates. To help with the problem of random 
data ordering, multiple solutions can also be 
combined using the same clustering technique, when 
the averaged result is more robust. Tests measure 
both how coherent the ensembles are, which means 
that every data row in the cluster belongs to the same 
category, and also the optimal number of clusters 
produced by a solution. Test results show good 

accuracy over a set of benchmark datasets. As part 
of the theory, a teaching phase would help the 
classifier to learn the true category prototype in the 
knowledge layer. This knowledge would be global 
and then used to infer correct classifications in any 
unsupervised and local cluster, thereby reducing the 
teaching time. This would lead to each category 
aggregating from several unsupervised clusters, but 
also feeding back to the ensembles to help define 
nesting. As the information is added, cross-
referencing between the two structures allows it to 
be used more widely. 

With this process, a unique structure can build up 
that would not be possible by either method alone. 
The upper level stores aggregated prototype 
information as categories, but must link back with 
the data sources that created it and represent 
features. If a pattern sub-cluster becomes associated 
with two or more categories, that sub-cluster is 
separated, but only needs to recognise the difference 
in the row sets that belong to its base cluster 
classifier, not the whole dataset. The discrimination 
problem is therefore made simpler by reducing the 
problem size. There is also a lot of cross-referencing 
between the self-organised clusters and the taught 
tree and the globally shared category information 
would help the classifiers to learn more quickly and 
to share partial results. The algorithms in this paper 
mostly use processes and equations that the author 
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has used previously, but it is more important to 
understand the broad algorithm and underlying 
theory, because a lot of the functions could probably 
be replaced by other ones. 

The rest of this paper is organised as follows: 
section 2 describes some related work. Section 3 
describes the unsupervised clustering theory, while 
section 4 describes two clustering algorithms that 
have been tried. Section 5 then introduces the 
supervised clustering theory with the teaching and 
section 6 gives some test results. Section 7 then 
gives a discussion on some open issues, while 
section 8 gives some conclusions on the work. 

 
2 Related Work 

A relatively recent AI topic is Explainable AI 
(XAI) [5]. With this, the system is able to give an 
explanation, in human terms, of how it came to a 
decision. This is intended to increase trust in the 
system that is no longer a black box, but can be more 
transparent. It would also allow humans to interact 
with the system more easily because it will have to 
share a common language for the explanation. 
DARPA (The US Defence Advanced Research 
Projects Agency) [6] consider this to be the next 
stage in AI, especially with regard to autonomous 
systems that may take actions on their own. 
Concerning this paper, there is a small amount of 
feedback available from the new structure that could 
be used to allow for more intelligent interaction by a 
human operator.  

 
2.1 Unsupervised Learning 

Other AI models have been developed based on 
similar types of design, with a knowledge layer 
sorting a pattern layer. The Adaptive Resonance 
Theory neural network [7][8], for example, has an 
architectural similarity. There are different variants, 
but it was designed with an unsupervised bottom 
layer that would try to match its input with a static 
set of categories (memory) in the upper layer. The 
upper layer is trained to cluster input from the lower 
layer into categories. After a category is learned, it 
only responds to new input that passes a matching 
vigilance threshold, and so future updates also 
maintain the current category learning. If there is no 
suitable match, a new category may be created by 
promoting a node in the upper layer to that status and 
using it as the new category prototype. Matching the 
input to the category uses a self-organising winner-
takes-all approach and leads to a type of resonance 
between the two layers, which has often been 
compared with the human brain. The network was 
later found to suffer from a statistical property that 

meant the order in which the data was presented 
would affect how it was clustered. A relatively new 
version called TopoART [9] is able to address this 
problem, as the shapes of the clusters do not depend 
on the order of creation of the associated categories. 
The Frequency Grid algorithm [2] that is used later, 
also suffers from this problem, where an 
improvement is suggested in section 4.2.1. The 
comparison with the ART network is the upper 
knowledge layer that is a static memory and a lower 
self-organising layer. Both systems would balance 
weights, flowing in both directions, but different to 
the ART network would be that the self-organising 
units of this paper produce unlabelled categories that 
are then correctly labelled, or the labels are later 
corrected, whereas with the ART network it is the 
whole data row. The next example is therefore a 
closer match that provides another layer on-top of 
the ART network, to store the type of information 
that is imagined. 

The paper [10] also uses a Fuzzy-ART network 
and explains it quite nicely. ‘Fuzzy ART performs 
unsupervised learning of categories under 
continuous presentation of inputs through a process 
of ‘adaptive resonance’ in which the learned patterns 
adapt only to inputs considered to be relevant. Thus 
the ART models solve the so-called stability-

plasticity dilemma where new patterns are learned 
without forgetting those already learned.’ The paper 
tackles the problem of when an input might belong 
to more than 1 category, or cluster. They take a 
hybrid approach of combining the neural network 
with a background theory made from defeasible 
logic. Defeasible logic programming (DeLP) 
contains both strict and defeasible rules, in the form 
of Horn clauses. The rules are created as part of the 
clustering process and then help to determine future 
membership when there is ambiguity. It is 
interesting that this architecture would match with 
the cognitive model [1][3] and the first procedural 
logic design. 

 
2.2 Supervised Learning 

While generative models [11][12] are a hot topic, 
it is not clear that this design can make use of them. 
A generative model captures the essential features of 
a pattern distribution, but its purpose is then to 
produce new examples of it, not necessarily verify 
correctness. The upper knowledge layer of this paper 
would expect to gain information from external 
sources as well, and some attempt to summarise it 
might be considered. Because existing structure is 
used, Transfer Learning [13][14][15] might be a 
better option. With this, knowledge learned from one 
problem is applied to a different problem. The paper 
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[14] describes a process for labelling unlabelled data 
that is also self-taught. They describe that semi-
supervised learning typically makes the assumption 
that the unlabelled data can be labelled with the same 
labels as the classification task, and that these labels 
are merely unobserved [16]. Transfer learning 
typically requires further labelled data from a 
different but related task, and at its heart typically 
transfers knowledge from one supervised learning 
task to another. Because self-taught learning places 
significantly fewer restrictions on the type of 
unlabelled data, in many practical applications it is 
much easier to apply. Then there is also self-taught 
clustering [15] that uses auxiliary data to learn the 
salient features in the problem dataset. This would 
be related to unsupervised clustering. 

 
2.3 Clustering 

Concerning other algorithms, the Self-
Organising Map (SOM) [17] is obviously of interest, 
or SOM with extensions [18]. The teaching phase 
would more than likely be a winner-takes-all 
approach and would override what the self-
organising clusters decide.  There is no idea of a 
topology with this new algorithm however, just a 
similarity match. Other algorithms that consider sets 
of closest nodes include DBSCAN [19], kNN or k-
Means [20]. k-Means clustering is a global method, 
where k data points are selected as centroids or 
prototypes and the other data points are clustered 
with the nearest centroid (mean). Measurements are 
therefore always taken with the centre of the cluster. 
kNN clustering is a local method, where a point is 
assigned to the class most common among its k 
nearest neighbours. In fact, the method of this paper 
clusters locally first in the unsupervised layer and 
would then correct that through global categories in 
the proposed supervised layer. DBSCAN stands for 
‘Density-based spatial clustering of applications 
with noise’. It uses a density-based approach, where 
points closely packed together, inside of a certain 
radius for example, are clustered together. A 
difference with these algorithms is that the new 
method considers not only the points nearest to the 
node in question, but the points nearest to its nearest 
nodes as well. In that respect, DBSCAN may be 
more similar, because considering these node sets 
would produce overlap in node selection, leading to 
a count for how many times any node is included, 
through its second-order associations. In that respect 
the algorithm is looking for a more densely packed 
region of shared nodes. 

A fully-connected architecture has always been 
suggested for a biological model, see for example 
[21], which would support the idea of considering 

second-order associations. While the proposed 
whole system is most likely new, it is the use of these 
second-order counts, along with the other novel 
clustering algorithms (Frequency Grid [2]) that are 
the main contribution of this paper. Then if 
aggregating results are required, Random Forests 
[22][23] are another ensemble method that are used 
with Decision Trees [24]. While Decision Trees 
branch on attributes and not category, the clustering 
process is very similar. Training with Random 
Forests is probably quite different however. In that 
case, the dataset is split into n different sets, each 
with maybe 60-80% of the original dataset. Each 
variation is trained on a Decision Tree and the results 
are aggregated together. The Random Forest is 
therefore the training process that uses multiple 
variations of the dataset and also the aggregation 
process afterwards. Section 4 describes the 
clustering algorithms of this paper. 

The paper [25] makes some interesting 
comments about Boolean Factor Analysis that 
would relate to this ensemble-hierarchy and may 
therefore be earlier related work. Their Hopfield-
modified network takes the input signal vector and 
factors it into a low-level signal space of relations or 
clusters. The low-level factors would represent the 
first clustering stage. One idea is to further self-
organise based on distinct features, as well as closest 
distances. Columnar characteristics can therefore 
become important and decisions can be taken, 
maybe with some judgement on related features. At 
the heart of Deep Learning [26] is the idea of 
learning an image in discrete parts. Each smaller part 
is an easier task and the next level can then combine 
the smaller parts until the whole image is learned. It 
might be interesting to compare the branching with 
something like this, because it also reduces the 
problem complexity. 

 
3 Unsupervised Clustering 

Theory 
Self-organisation is more often used to extract 

patterns from data, than to learn known categories 
and does this using some type of distance or 
similarity measurement. The self-organising process 
relies on some basic theories as follows: The process 
starts by associating every data row with the row it 
is closest to, according to some measure, such as 
Euclidean Distance. If each row is then clustered 
with its closest row, this should actually lead to 
natural breaks in the data that lead to a set of natural 
clusters. It is very likely that there will be more 
breaks than actual categories in the dataset and so 
each actual category will be represented by several 
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clusters. However, if each cluster is considered in 
isolation, it will also be found to have sub-clusters 
that can be recognised through the same closest link 
mechanism. These sub-clusters are only obvious 
when the larger enclosing pattern is removed and the 
cluster is considered by itself. The sub-clusters 
might then be helpful, because they can isolate data 
rows that do not really belong together. Clustering 
using centroids has to consider average values, 
where it cannot skew weight values to obtain a 
desired result. Therefore, data from different 
categories can easily get mixed together. A re-
clustering phase would then be able to move the 
more isolated data rows to other clusters. Through 
this method, the cluster may become a centre of 
attraction for the category it represents and its 
centroid will become more accurate, as more and 
more data rows for the same category are added. 

While that is the theory, it does not work out quite 
so well in practice. One big problem with self-
organisation is the fact that it has to choose the 
centre of the data that it is clustering. The algorithm 
does not know what the actual category is and so it 
cannot directly discriminate. Taking any sub-
clusters too literally is probably dangerous as well, 
because the averaged values rely on there being 
distance consistency across the whole cluster, which 
does not have to be the case. This is OK if there are 
few categories and the data is well-balanced, but the 
self-organising mechanism cannot learn any 
inherent skew in the dataset. A supervised approach, 
on the other hand, is able to adjust its discrimination 
lines, because it can be told directly about a 
particular error and so it can then adjust a weight set 
based on this. The teaching phase is therefore 
intended to make the self-organised patterns more 
accurate. It is postulated that because some of the 
classification has been learned and can be used as a 
sound basis, the teaching phase can help to build up 
a more accurate picture of the whole data set with 
fewer presentations. The upper knowledge layer is 
firstly presented with prototypes and so it knows 
what to look for in its other sources. An experience-
based approach would look for these prototypes and 
verify their accuracy in the real world. Matching 
with an object in the real world would help to label 
it and confirm the structure, for example. It would 
then feed this new ‘knowledge’ back down to the 
unsupervised layer, to help to correct it and if a 
prototype has been learned from one cluster set, it is 
then global and can be used to verify other cluster 
sets as well. 

 

4 Clustering Algorithms 
Two clustering algorithms have been tried for 

this problem. A first attempt was based more on 
node distances and is not the current algorithm of 
interest, whereas a second attempt, based more on 
the Frequency Grid, is currently the algorithm of 
interest. 

 
4.1 Distance-Based 

This first attempt uses closest nodes to create the 
large clusters and then a frequency grid inside of 
each cluster to split them again, with the intention of 
providing some robustness through shifting the 
centroid centres each time. The frequency grid is 
equivalent to clustering based on popular count 
associations. The algorithm could be accurate in 
some cases but it produced too many clusters to be 
practical. This failing is shown in Table 1 of section 
0. The self-organisation phase would cluster based 
on closest distance, but it would also try to create the 
largest and most coherent cluster sets possible. 
Algorithm 1 gives an example for this type of 
clustering. 

 
Algorithm 1. Closest-Distances Example 
 

1. Link each data row with the row it is closest to, 
according to some measure. 

2. Create clusters by placing all data rows that are 
linked together into a cluster. 

3. For each cluster: 
a. Use a Frequency Grid to do a count of the 

rows any other row is closest to. 
b. Use the grid to create sub-clusters in the 

cluster. 
c. Special cases include a sub-cluster with only 

1 entry, or single column features. 
4. Create branches in each base classifier for each 

sub-cluster part and create a centroid for each 
sub-cluster. Also add a new sub-cluster for any 
additional rows. 

5. Try to combine any of the base clusters as 
follows: 

a. Determine an average distance ū between the 
sub-clusters in the cluster. 

b. Determine a distance x between two clusters. 
c. If the distance x is less than the average sub-

cluster distance ū, then combine the two 
clusters. 

6. Re-calculate the centroids for each cluster and 
sub-cluster. 

7. Take each data row in turn again and add it to 
the cluster whose centroid it is now closest to. 
Go to step 3. 
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8. The process can stop when data rows are not 
moved or the total number of clusters does not 
change. 

 
4.2 Distance and Frequency Grid 

The algorithm of section 4.1 could be accurate in 
some cases, but it is also a bit messy. Relying on 
node distances inside of clusters is not very reliable. 
The average row position and distance can change 
across the whole cluster, for example. The algorithm 
of this section is a lot cleaner but also more 
simplistic and so extensions to it are also suggested. 
This second algorithm uses a brain-inspired idea of 
full linking between the nodes, to find a better 
closest match. A difference with something like 
DBScan, for example, is that this algorithm 
considers not only the points nearest to the node in 
question, but the points nearest to its nearest nodes 
as well. Each clustering phase measures the k-
nearest clusters to every other cluster, where a 
cluster is a single node to start with. But instead of 
just considering the node’s k-clusters, it aggregates 
all of the k-clusters for the nodes closest to the node 
in question. The intention is to produce a more 
robust association count, which can consider that 
while a node may be closer, if it is really part of a 
different category, it will have other associations 
that the rest of the k-cluster nodes do not have. 
Filtering over a combined and cross-referenced list 
for several mini clusters, would therefore help to 
remove this as noise. The algorithm for the brain-
inspired with frequency grid clustering is described 
in Algorithm 2. 

 
Algorithm 2. Single Pass Algorithm 
 

1. Set each node, representing a single data row, to 
be a separate cluster. 

2. Create a new layer of clusters using Algorithm 
3. 

3. Set the new layer as the next layer to cluster and 
check the stopping criteria.  

3.1. This can include a closest match with a 
preferred number of clusters. 

4. If stopping criteria not met, then Go to step 2. 
 
 
Algorithm 3. Brain-Inspired Frequency Grid 
 

1. Measure the distances between all of the clusters 
and for each cluster, store the closest k other 
clusters. 

2. Each cluster then is associated with k other 
clusters and they are also each associated with k 
other clusters. 

3. For each cluster: 
3.1. Do a count over all of the associated cluster 

names, to find the most popular k clusters 
overall. 

3.2. Store this set as the local cluster set for the 
cluster node. 

4. Convert each cluster set into an event, or input 
data line for the frequency grid. 

4.1. Train the frequency grid with the input data 
lines and it will produce another set of 
clusters, based on most popular association 
counts. 

4.2. Create a new layer in the model that groups 
all nodes (clusters) suggested by the 
frequency grid together. 

4.3. Let each new cluster be represented by its 
centroid value, or averaged data row. 

 
4.2.1 Ensemble Improvement 

The problem with the frequency grid is that it is 
sensitive to the order in which nodes are processed. 
This includes data row ordering, or simply the order 
that they occur in a layer of nodes. If the dataset is 
randomly ordered therefore, it will have an effect on 
the result and so it may be better to produce several 
results that are related to each other and aggregate 
over those, so that the more commonly occurring 
parts are kept and the more-noisy parts are removed. 

There are at least two solutions to the problem of 
random ordering. One option would be to make the 
set membership fuzzy, where the frequency grid 
would allow a node to be a member of all clusters 
that have an equal association count with it. But that 
drastically changes the nature of the frequency grid. 
It is supposed to have that type of relationship for 
between-cluster links, but not for a full membership 
of more than one cluster. It would in effect, merge 
those cluster parts, when they would lose some 
meaning. The second option is to use an ensemble of 
solutions, in the style of random forests. For this 
problem, the random solutions stem from the same 
base and so they have the same root set of values. 
This is simply something that might be statistically 
significant. Aggregating over several solutions, the 
more commonly occurring parts will remain and the 
noisy or less commonly occurring parts will receive 
lower statistical counts and can be removed. The 
batch process that uses the ensemble algorithm is 
described in Algorithm 4. 

 
Algorithm 4. Batch process for averaged test 

results 
 

1. While (run ensemble test) 
a. For (i = 0 to test runs) 
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i. Generate a randomised data ordering. 
ii. Use Algorithm 3 to produce a cluster set. 

iii. Save the cluster set as a solution set. 
b. Process all solution sets together, using the 

ensemble method of Algorithm 5. 
i. This produces something like (tr*tr*n) new 

solutions from the multiple single-pass 
algorithm runs. 

c. Convert the new solutions to cluster lists of 
node names. 

d. Use cluster lists as the input to another 
frequency grid. Only one final stage, so don’t 
randomise. 

e. Convert frequency grid clusters to a new 
cluster list of node names. 

f. Create new layer and nodes from that 
ordering and cluster using Algorithm 3. 

g. Save these clusters as a solution. 
2. If stopping criterion met, then stop. 
3. Average the results to give the final result set. 

 
Algorithm 5. Ensemble algorithm 
 

1. For (i= 0 to phases - helps to reduce the number 

of clusters) 
a. Convert last solution set to cluster lists of 

node names. 
b. For (j = 0 to test runs) 

i. Randomise the first cluster list ordering. 
ii. Use as input to a frequency grid. 

iii. Convert frequency grid clusters to second 
cluster list of node names. 

iv. For (k = 0 to test runs) 

1. Randomise the second cluster list 
ordering. 

2. Create new layer and nodes from that 
ordering. 

3. Cluster the new layer using Algorithm 
3. 

4. Save the result as a solution set for the 
next phase. 

 
4.2.2 Consolidate through Hierarchy 

In fact, there is a further opportunity to use a 
clustering process at the very end of the ensemble 
tests. If each ensemble run produces a result, then 
instead of averaging the result scores, the result 
solutions can be stored and used as the input node 
sets for a final clustering process. This introduces the 
idea of hierarchical clustering that can cluster the 
cluster units themselves. It is more like the whole 
process being repeated in new levels. 

 
5 Supervised Teaching Theory 

As part of a theory, new to the system would be 
a second supervised stage that would teach the 
correct category and help to explain the 
classification decisions. When a value for an actual 
category is learned, this information might also be 
used to measure a confidence that the classification 
is correct. For example, if links between the self-
organised cluster and the taught cluster do not exist, 
then there is a high probability of a guess, but if links 
are present, then the information of the self-
organised cluster can be used with confidence. 
Figure 1 is a graphic that describes some of the 
processes, including a new layer of linking nodes.  

 
 
 

 
 

Figure 1. Graphic of the possible interactions between the two cluster structures. 
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Through this process, unlabelled categories can 

be labelled. The idea is that in the real world we may 
make some assumptions based on what we can 
determine, but we would also know that they are 
guesses. We would wait for proof before considering 
them to be true and we would then use the ‘known’ 
knowledge to correct any of the related assumptions. 
The self-taught learning system of [14] probably has 
similar aspirations and they note that self-taught 
learning perhaps also more accurately reflects how 
humans may learn, since much of human learning is 
believed to be from unlabelled data. 

With the supervised training phase, the classifier 
is allowed to ask for the actual category(s) of the 
selected cluster(s) and will make a permanent record 
of that in the knowledge layer, with links back to the 
unsupervised parts. Once learned, the classifier can 
therefore ask the knowledge layer for some 
matching evidence and use it to correctly classify a 
new part of some unsupervised cluster. Any new 
proof is added to the knowledge tree as global 
evidence, from where it can be used by any of the 
cluster groups. As the more local and unsupervised 
parts become aggregated in a supervised category, 
that category prototype can return a truer centroid 
value. This again looks like branching on category 
type and not feature and so it should maintain links 
to the source data that created it. In fact, the 
unsupervised clusters are separated based on 
features and then link with the knowledge trees that 
are based on category. It would also be expected that 
the knowledge layer in a real system could learn 
from other sources as well, making the prototype 
representations more robust. 

 
5.1 Tree Structure 

As more rows are learned, the category node in 
the knowledge tree therefore becomes more accurate 
and there may be a constant ripple effect of updating 
the unsupervised mini clusters and re-assigning the 
data rows with minimal structural changes. To start 
with however, more major structural changes are 
likely, until the knowledge layer prototypes 
stabilise. A tree structure is appropriate because that 
is how the category groups can correct themselves 
and it reflects the same nesting in the ensemble. For 
example, ensemble group SC2 has been split into 
abstract nodes CT21 and CT22, because the known 
prototypes indicate two categories in the ensemble 
group SC2. Further learning might indicate that, for 
example, abstract node CT21 can also be split into 
more categories. That split would produce a new tree 
level with new abstract nodes that would re-link the 

tree structure to their respective prototypes. After the 
prototypes are stable however, it may be a case of 
structurally changing the new clusters only. The tree 
structure however starts to look like Category Trees 
[4], which is known to be very accurate. 

 
6 Implementation and Testing 

It has only been possible to test the self-
organising structure so far. A computer program has 
been written in the C# dotnet language and used to 
test some benchmark datasets that can all be found 
in the UCI Machine Learning repository [27]. Two 
tests have been carried out, one for the algorithm of 
section 4.1 and one for the algorithm of section 4.2. 
No information about the clusters was given to the 
program, except for the desired number as a stopping 
criterion. The clusters were generated internally by 
the program, resulting in sets of nodes inside of each 
cluster that would hopefully be coherent with each 
other, meaning that they would all belong to the 
same actual category. It was then possible to 
calculate the error for those as follows:  

 
1. For every sub-cluster, retrieve from the dataset, 

the category for each row.  
2. Remove the set of rows with the largest count 

for a single category. 
3. The coherence error is then the number of rows 

left.  
 
So, for example, if a cluster set contains data 

rows for categories as follows: A, A, A, B, B, then 
there would be 2 incorrect nodes. If the dataset 
actual categories were: A, A, A, B, B, C, C, then the 
error would be 4. The tests in section 6.1 are really 
only a marker and a more complete set of tests is 
described in section 6.2. 

 
6.1 Distance-Based 

As a marker to compare with, tests were firstly 
carried out on the algorithm of section 4.1. If the data 
was already well separated and the number of actual 
categories was low, then the self-organising process 
could realise the original categories by itself, but a 
stopping criterion, or knowing when it had 
converged might be problematic. This was the case 
for the Iris [28] and the Wine [29] and Zoo [30] 
datasets. A lot of other datasets showed that the self-
organising structure cannot perform well enough by 
itself. This was also found to be the case in [18] who 
used variants of the SOM to successfully cluster the 
Iris data but could not cluster the Abalone dataset, 
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for example. It was also a characteristic of the 
process that in cases when incoherent data was 
higher, it might start with a smaller number of 
clusters, but by trying to reduce this, the number 
would in fact increase. So, by trying to move data 

rows from the first-assigned cluster would in fact 
fragment the clusters more. Other factors such as re-
combining clusters, can also really increase the 
error. 

 
 

Dataset Incoherent S-O Clusters Actual Clusters 

Iris 2 of 150 30 3 
Wine 4 of 178 18 3 
Zoo 7 of 101 18 3 

 
Table 1. Example of self-organised coherence. ‘Incoherent’ shows how many data rows were not coherent, or 

of the same actual category, as the rest of their cluster. ‘S-O Clusters’ shows how many separate clusters were 
created. ‘Actual Clusters’ gives the correct number. 

 
 

6.2 Distance-Based and Frequency Grid 
This section gives test results for the algorithm of 

section 4.2, which could probably be considered for 
practical problems. For this test, the preferred 
number of clusters was entered and the algorithm 
was run and stopped at the number of clusters just 
above or equal to the preferred number. The 
algorithm would initially decide the cluster sets 
using the closest-node associations and then reduce 
the number using the frequency grid. Comparisons 
were made between ordered and random datasets, 
and the single pass algorithm or the ensemble 
version. The only configuration for the ensemble 
was the number of runs inside the ensemble, set at 

10 and the number of closest-node associations, set 
at 5, meaning a total of 5x5 = 25 node counts. 

Using an ensemble is still a heuristic process and 
the result of each ensemble search can be different. 
The program therefore ran a number of ensemble 
tests for each dataset configuration and then 
averaged the results to get the final totals. With the 
ensemble testing, there would be a maximum of 50 
separate test runs for each dataset configuration. 
Each run would produce an averaged number of 
clusters and percentage of correct associations, for 
the clustering process. Those 50 results would then 
be averaged to produce a final result for the test. The 
test results are listed in Table 2.  

 
 
 

 O:B O:B,F R:B,F R:B,F,E R:B,F,E,H 

Iris (150-3) 4-68% 5-96.5% V1 5-61% V1 6-87.5% V1 4-89.5% V1 

Wine (178-3) 4-93% 4-97% V1 11-62% V1 6-86% V1 5-91.5% V1 

Zoo (101-7) 12-79% 8-92% V1 8-52.5% V1 12-83% V1 8-88% V1 

Hayes-Roth (132-3) 5-44.5% 4-42% V1 4-44% V2 9-51.5% V1 4-47.5% V1 

Heart Disease Cleveland (303-5) 8-57.5% 6-56% V1 6-55% V1 8-58% V2 6-58% V2 

Sonar (208-2) 3-54% 4-59% V1 3-55% V1 5-62% V1 6-61% V2 

Wheat Seeds (210-3) 5-89.5% 5-88.5% V1 5-60.5% V1 5-85.5% V2 5-87.5% V1 

Average Cluster Error 2.14 1.43 2.29 3.57 1.71 

Average Accuracy Percentage 69.5% 76% 55.5% 73.5% 74.5% 

 
Table 2. Comparison of clustering methods: O: Ordered dataset, R: Random dataset, B: Brain-Inspired Closest 

nodes, F: Frequency Grid, E: Ensemble, H: Hierarchy. 
 

 

As a comparison, the first column gives the result 
using the closest-nodes clustering only, as described 
in section 4.1. It shows the number of clusters the 
test was stopped at, followed by the accuracy 

percentage for that number. The second column 
shows the full clustering algorithm, described in 
section 4.2, for ordered datasets, for a single test run. 
The third value in the cell is which version of the 
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frequency grid was used. The third column shows 
the full algorithm for a single run on randomly 
ordered datasets and then the fourth column runs the 
same test but uses the ensemble result of section 
4.2.1. The fifth column adds a final clustering stage, 
described in section 4.2.2. There are two versions of 
the frequency grid algorithm, indicated by ‘V1’ or 
‘V2’ in the table. The original version V1 seemed to 
work better, but in fact a lot of the comparisons were 
very close. Each cell value therefore indicates the 
best number of clusters with the related accuracy 
percentage and then which frequency grid version 
was used.  

With relation to other heuristics, a value above 
90% is considered to be acceptable for unsupervised 
clustering for the more separable datasets, such as 
the Iris dataset. That percentage level could be 
achieved for a single run, for example, 97% 
accuracy was possible, but with maybe twice as 
many clusters. In general however, the clustering 
result fell a bit below that level. Adding the final 
clustering stage does not seem to improve the 
accuracy by very much, but it does appear to reduce 
the number of clusters, which suggests that it has 
helped to consolidate the result. This means that it 
can get closer to the desired number of clusters 
through the frequency grid stages. What is of interest 
is the difference between the first random column 3 
and the ensemble versions, where the ensemble 
consistently outperforms the single clustering run. 
Comparing with the ordered dataset results of 
column 2, there is now a much smaller difference 
and so the ensemble process has compensated for the 
loss of accuracy in the frequency grid. The whole 
process however is quick and easy to use and even if 
the frequency grid is not the strongest algorithm for 
a particular problem, using the ensemble framework 
has consistently improved the results. Some other 
datasets with larger numbers of rows actually 
produced good results but training time was too slow 
(several hours) for the ensemble method at the 
moment. So this is certainly not a universal classifier 
but it can work well in some cases. 

 
7 Discussion 

While a teaching stage is proposed, it has not 
been fully formalised yet. It is interesting with 
respect to Explainable AI, which is important for 
improving trust in the system. For one thing, the 
reduced training time and the ability to infer from 
another cluster’s update would make the system 
more independent. It is then also able to reason about 
how confident it is in its decision. If there are no 
links from an ensemble part to the hierarchy part, for 
example, then the system can say that it does not 

know for certain that the ensemble part is correct, or 
that the system should try to find out more about that 
section of data. The system of this paper should also 
fit in well with the whole cognitive model [1] and 
with the ensemble-hierarchy structure in that model. 
It is interesting that the tree nodes become abstract 
representations of the ensembles, essentially for 
linking only, and the prototypes are aggregations of 
those. The transitions from local to global, or feature 
to category look very nice and fit well together, but 
that is probably just making explicit what is implicit 
in the standard models. 

It is probably the case that unsupervised 
clustering cannot be as accurate as supervised and 
that is probably a good thing. On the one hand, the 
supervised clustering is making use of a lot of other 
information that has already determined what the 
correct clusters are, probably input by a human user. 
On the other hand, the human must have made these 
decisions at some stage through an unsupervised 
process and so if enough information is available, 
the computer system should be able to do it as well. 
The author still thinks that if AI becomes intelligent 
enough to take over, there is no reason to think that 
it will be evil, but is more likely to do good. 
However, the ‘paper clips’ scenario and the 
consequences of that is a bit clearer to him now. If a 
system is able to self-organise accurately enough 
with just some raw data, then it does not have any 
understanding outside of that and so it might in fact 
make bad decisions while having good intentions. 
So that could make the system more dangerous. 
Then again, if it ever reached a human level of 
intelligence, it would surely be able to learn when it 
had made a mistake and be able to correct it. 

 
8 Conclusions 

This paper describes an unsupervised clustering 
approach that can then be corrected through a 
teaching process. The teaching phase may also allow 
the system to infer other classifications by itself and 
therefore reduce the time required to learn correctly. 
Data rows are firstly assigned to a classifier in an 
unsupervised manner, which represents them using 
a centroid. If there are errors, then further layers can 
create new centroids for subsets of the classifier 
rows. These centroids therefore define paths through 
the classifier branches and guide an input to its 
closest match. As part of the unsupervised system, it 
would probably be better to have more smaller 
clusters that are more accurate. This is because the 
supervised part can provide additional help not 
available for the unsupervised clustering, but the 
unsupervised part still needs to make a reasonable 
attempt at producing accurate estimates. The 
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estimates might then be used for something like 
Transfer Learning, for example. The test results in 
section 6.2 suggest that the unsupervised clustering 
method could be a practical choice for some 
applications. This paper explains the theory of the 
process and has described some unsupervised results 
only. It will be difficult to implement the whole 
system and there are variations on what the best 
procedures might be, but if Category Trees [4] form 
the tree structure, then they are known to be 
accurate. 

As part of the ensemble learning, a final 
clustering stage does give the prospect of a 
hierarchical system in the ensemble clustering, that 
might increase its accuracy at each level. The 
clustering process would repeat, but instead merge 
results from the previous ensembles through a new 
frequency grid, where tests indicate that it would 
improve the accuracy. The test results show that it 
has consolidated the cluster structure and so this 
would also be passed on to the next stage. Any 
increase in accuracy would be attributed to the 
algorithm framework and so the frequency grid 
heuristic could be replaced by another heuristic and 
results could still be aggregated together. So that is 
really interesting for a modular system such as the 
human brain, for example.  
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