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Abstract: - Test Suite Minimization problem is a nondeterministic polynomial time (NP) complete problem in
software engineering that has a special importance in software testing. In this problem, a subset with a minimal
size that contains a number of test cases that cover all the test requirements should be found. A brute-force
approach to solving this problem is to assume a size for the minimal subset and then search to find if there is a
subset of test cases with the assumed size that solves the problem. If not, the assumed minimal size is gradually
incremented, and the search is repeated. In this paper, a quantum-inspired genetic algorithm (QIGA) will be
proposed to solve this problem. In it, quantum superposition, quantum rotation and quantum measurement will
be used in an evolutionary algorithm. The paper will show that the adopted quantum techniques can speed up
the convergence of the classical genetic algorithm. The proposed method has an advantage in that it reduces the
assumed minimal number of test cases using quantum measurements, which makes it able to discover the minimal
number of test cases without any prior assumptions.
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1 Introduction tion among the candidate solutions using fitness func-
tions [2]. SBSE can be applied to structural testing,
Software testing is a widely studied approach for as- model-based testing, mutation testing, temporal test-
sessing and improving software quality. Various tech- ing, exception testing, configuration and interaction
niques exist to perform software testing [[]. For ex- testing, stress testing, regression testing, and integra-
ample, there are functional techniques and structural tion testing [2]. Regression testing is used to test a
techniques. The functional techniques are when the modified version of a program [3]. It is expensive be-
program is viewed as a black box and the test cases se- cause engineers may start testing the modifed version
lection is based on the requirement or the software de- by retesting the test suite that is used to test the old
sign specification [|l]; meanwhile, the structural tech- program version.
niques view the software as a white box and select the Minimization techniques aim to reduce the size of
test cases based on the software’s implementation([[1]. the regression test suite of a software system untill it
Search-based software engineering (SBSE) is used to reaches a state where it may be no longer feasible to
solve optimization problems. When there is a space execute the entire test suite. Prioritization techniques
of solutions, SBSE can be used to find the best solu- generate an ideal test execution order. Regression
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testing requires optimization to solve the case when
there are large data sets [3]. The test suite minimiza-
tion problem is crucial due to test time and resource
constraints [4]. It aims to achieve the smallest subset
of test cases that covers testing all the requirements
and will be discussed in detail later in the paper [4, 3].
Researchers have discussed the classic test suite min-
imization problem in different ways. These ways
can be classified as evolutionary algorithms and
nonevolutionary algorithms. The nonevolutionary
algorithms started in 1998 when Chen and Lau
proposed this problem using the greedy algorithm,
but it involved the random selection of test cases
in small scale test suites and required optimiza-
tion in large scale cases [§]. In 2004, J. Black, E.
Melachrinoudis and D. Kaeli proposed a bicriteria
model for minimizing test cases to reveal the errors,
but it only minimizes the test suite with respect to
their fault detection effect [6]. Sriraman and Neelam
also proposed a concept analysis inspired greedy
algorithm for test suite minimization in 2005, but
their minimized results are not always smaller than
the input suites [7]. In 2006, Khan and Nadeem
used statement-coverage criterion to propose the Test
Filter with the drawback of wasting time and costs
when applying the coverage [8]. In 2007, Jeffrey
and Gupta uses selective redundancy to generate a
representative set for the test suite reduction, but they
need to select tests that expose additional faults in the
software [9]. In 2009, Hwa-You and Alessandro used
MINTS to propose a general test suite minimization
framework and tool, but they introduced fairly similar
results for different versions of a program, which
requires more investigation [[L0]. Saeed Parsa and
Alireza Khalilian also used the greedy algorithm in
their optimization approach of test suite minimization
in 2010, but their algorithm requires the coverage
information for a single criterion, and it needs to be
tested with more than one criterion [[11]]. In 2010,
Yoo and Harman proposed multiobjective test suite
reduction, but it needs more optimization for better
results and they suggest combining various tech-
niques together, such as the efficient approximation
of the greedy approach with a population-based
genetic algorithm [[12].In 2012, Khalilian and Parsa
proposed bicriteria test reduction with cluster anal-
ysis of execution profiles, but it used two coverage
criteria to improve the fault detection’s effectiveness
[13]. In 2013, Ankur Prakash proposed a model
based on the Boolean function simplification, but
it is tested over a maximum of 9 test cases in a test
suite, which is quite small compared to benchmark
applications [[14]. In 2014, Isha used the concepts of
set theory to propose their minimization technique,
but it was not implemented [[15]. In 2017, an integer
linear programming model was proposed for this
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issue, but it was applied to small scale tests [L6].
Additionally, Shilpi and Raj proposed a multi criteria
based test suite optimization framework; however, it
just minimizes the test suite, but it does not produce
the optimal solution [[17].

In [6] researchers used the Linear Formulation with
the Linear Solver (LF_LS) approach to solve the
Multi-Criteria Test Suite Minimization (MCTSM)
problem by modeling the problem using a linear
formulation and solving it with a linear solver.
MCTSM can also use a nonlinear solver, which is
then referred to as the Nonlinear Formulation with
Nonlinear Solver (NF_NS) but it does not guarantee
optimal solutions. Auxiliary variables can be used
to change the nonlinear MCTSM to a linear one,
which can be referred to as the nonlinear formulation
using linear solvers (NF_LS) [[18]. The experimental
results of the proposed technique will be compared to
those techniques, as will be shown later in Section 4.

Genetic algorithms were first proposed by John
Holland in the 1970s. They have various applications
such as software testing, computer-automated design,
code-breaking, optimization, image processing, qual-
ity control, feature selection for machine learning, fil-
tering and signal processing, finding hardware bugs,
the travelling salesman problem and its applications,
and many others [4]. Solving the test suit minimiza-
tion problem using evolutionary algorithms started in
2001 when Lou and Lu proposed a genetic algorithm
for the time-aware regression testing reduction prob-
lem that examines some criteria to confirm their satis-
faction, but their experimental results show that some-
times a vector-based reduction strategy performs bet-
ter than their proposed genetic one [[I]]. In 2005, a
genetic algorithm was proposed that builds the initial
population based on test history, but the problem is
that it needs its fault detection capability and other cri-
teria examined [|19]. In 2015, Sudhir Kumar proposed
an ant colony optimization algorithm for the test case
reduction of object oriented programs, but the result-
ing reduction rates were improved in other research
papers [20]. While a genetic algorithm with vary-
ing chromosome lengths was implemented to solve
the minimization problem by Sudhir and Srinivas in
2015, their algorithm takes quite a lot of time com-
pared to other genetic algorithms [21]]. Another al-
gorithm that was implemented in 2017 combines the
greedy and genetic algorithms, which gives better re-
sults than the greedy algorithm, but the execution time
of the GA exceeds the greedy one [22].

There are other evolutionary algorithms such as Parti-
cle Swarm Optimization (PSO) that describes the be-
havior of separation, alignment, and cohesion. Here,
separation means to avoid the crowded local flock
mates, alignment means moving towards its average

Volume 19, 2020



WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2020.19.20

direction, and cohesion means moving towards its av-
erage position. However, when the PSO is applied
to the test suite minimization problem and finds an
optimal point, then other particles will be close to
that point, resulting in a weak global search and the
inability to find the minimum number of test cases
[23]. Ant Colony Optimization (ACO) can be used
to solve optimization problem, but it does not always
achieve good results. ACO is inspired by the sys-
tem by which ants follow a marked path with high
intensity, which is not the case in our problem be-
cause we have equal priorities for all the requirements
[23]. Differential Evolution (DE) and the GA are
similar except for that DE depends more on muta-
tion, unlike the GA, which depends more on crossover
operations [23]. DE can be used in global opti-
mization problems and quantum computing princi-
ples can be used to enhance its performance [24].
Genetic algorithms can be implemented on quantum
computers since the universal Quantum Turing Ma-
chine (QTM) was proposed in 1985 [25]. A Universal
Quantum Simulator has been proved to be possible,
which makes anything that is computable using a clas-
sical computer to also be computable using a quantum
computer [26]. Deutsch also introduced quantum par-
allelism, which can be considered as a key of most
successful algorithms. In 1994, Shor introduced an al-
gorithm that is composed of a QTM and a TM to solve
the factorization problem in polynomial time [26].
The QIGA uses a hybrid strategy to incorporate
quantum computation concepts into the classical ge-
netic algorithm (GA), which combines some com-
mon operations such as crossover and mutation in
the classical GA with quantum characteristics such
as a quantum rotation gate. This combination im-
proves the performance of some classical techniques,
as shown in Fig. 2 in [27)]. There are many quantum-
inspired genetic algorithms in the literature e.g., [23].
Quantum-inspired Evolutionary Algorithms (QEAs)
have been successfully applied to solve knapsack
problem, the travelling salesman problem, the N-
Queens problem, the job shop scheduling problem
[28], and others. It has been applied also to solve op-
timization problems in networking and communica-
tion. QEAs also explore the search space very well
due to the diverse results from the states’ superposi-
tion.

The aim of this paper is to solve the test suite min-
imization problem using a quantum-inspired genetic
algorithm where the suggested number of tests based
on the chromosome length can be reduced by quan-
tum measurements. The proposed algorithm takes a
novel approach regarding the main components of the
evolutionary algorithm where local and global param-
eters are considered simultaneously. In addition to
the proposed fitness function that considers the local
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Table 1: Example for test suite minimization problem

TestNo | R; | Ry | Rs | R4 | Rs | Rg
T 0 1 0 0 1 1
TS 1 0 1 0 0 0
T3 1 0 0 0 1 0
Ty 1 0 1 1 0 0

and the global parameters, better results are obtained
using the proposed crossover that affects the local pa-
rameters without affecting the global parameters. Us-
ing quantum interference and quantum measurement
in the proposed algorithm leads to faster convergence.

The remainder of this paper is organized as fol-
lows. Section 2 defines the test suite minimization
problem, reviews the background concepts of the
QIGA, and gives a review of the basic concepts of
quantum computing and the operations of the QIGA.
In Section 3, the proposed technique is illustrated by
defining the encoding, the fitness function, the selec-
tion operator, the crossover operator, the mutation op-
erator, and the interference operator. In Section 4, the
proposed algorithm is evaluated and the experimen-
tal results are given. Finally, Section 5 concludes the

paper.

2 Background

2.1 Test Suite Minimization Problem

The test suite minimization problem is a crucial prob-
lem since it affects time and resources constraints.
The problem can be defined as follows.

Take a test suite 7" with a set of n test cases
{t1, ta, ts,...., tn} and a set R of m test require-
ments {R;, Rs, Rs, ..., Rn,}. Each test case
ti, where 1 < i < n covers a subset S; of
the test requirements, such that S; C R, and
0 < |Si] < m. It is required to find the minimal
subset of 7' that covers all the test requirements [4].
For example, Table 1 illustrates a given test suite
showing the requirements that are covered with each
test case. Many solutions can be found that cover
all the requirements, but the target here is to find
the minimum number of tests for these solutions.
For example, all the requirements can be covered
with the test set {17, T, Ty } or {11, 13, T4}, but
the minimum set is {77, 74 }. It becomes more
complicated with large data sets. The TestNo column
represents the test case number while the Rs columns
represent the requirements that are to be satisfied by
each test case.

To solve this instance of the test suit minimiza-
tion problem that is shown in Table 1, the minimal
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number of true assignments that satisfy the following
Boolean formula should be found as follows:

frr= (T VT3V Ty) A(T1) A (Ta vV Ty) A (Ty)
—_— N~

———
Rl R2 R3 R4
A (Ty Vv T3) A (Th), (1)
—_————
R5 Rﬁ

which is a reduction of the test suite minimization
problem to the SAT problem.

2.2 Quantum-Inspired Genetic Algorithm
(QIGA)

2.2.1 Quantum Computing

The unit of information in a quantum computer is the
quantum bit or qubit, which can be in one of two
states, |0), or |1) as well as a linear combination of
both states (superposition principle). This linear com-
bination represents a qubit in its quantum superposi-
tion as follows [29]:

Y1) = al0) + 81), 2
where aandf are complex numbers such that
=0 o =0 1, 3)
and
laP+8P=1. *)

In general, the quantum computation can be repre-
sented as follows:

FIX) =14), (5)
where |X) represents the initial system state and F
is a unitary operator that is applied to the state | X)
resulting in |)) which is the final state that is achieved
[30].

Quantum computers store the data in registers as
quantum states that are the tensor product of two or
more qubits [28]; for example, the tensor product of
two qubits is calculated as follows:

10
aq az| _ |a1fB
[51]@)[52] = | Bia ©)
B152
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The special states that cannot be written as a tensor
product of its components are known as the entangled
states [BQ].

Quantum gates perform unitary transformations
and are represented by matrices. One important
feature of quantum gates is their reversibility. An
n-input Boolean function is called reversible if the
following hold: [31]

1. The number of outputs and inputs are the same,
and

2. Any input pattern maps to a unique output pat-
tern.

One of the quantum gates is the Hadamard or H
gate [28],

=7 h A

which has the following effect on a qubit:

(7

H. |y1)

=l A Bl le )
®)

For example, we have the following:

H.|0)

e R IR R
[_ﬂ . (0)

One of Hadmard’s gate applications is to initialize
a quantum register because applying H®" gates on
a quantum register of n qubits that are initialized to
state |0) gives a superposition of all the 2" possible
states as follows:

w5l -

2" —1

=3 la).
2 x=0

H®n |0>®n _

)

There are many quantum gates such as CNOT,
Toffoli, and Fredkin gates as follows:

CNOT =

0 0
0 0
0 1 (12)
10

10
0 1
0 0
0 0
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The quantum rotation gate, U (#), helps to update
the quantum state, and its function is as follows:

cos(f) — sin(@)]

u0) = [sin(@) (15)

cos(6)
where 6 is the rotation angle.

2.2.2  Operations of the QIGA
The quantum-inspired genetic algorithm uses a repre-
sentation that is based on the concept of qubits. One

qubit is defined using a pair of complex numbers, (c,
B), as follows [32]:

1) = m : (16)

Considering that an m-qubits representation is de-
fined as follows:

) = aq|ag|ag]........ |t
m B1lB2|83]....... |Bm |
where | o; |2 + | Bi |?°=1,i = 1,2,3,.....,m. This
representation can represent a superposition of states.

For instance, assume that there is a three-qubits sys-
tem with three pairs of amplitudes such as follows:

(17)

1,1,
Valva
V22 2

|th3) = (18)
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Then, the system state can be represented as
follows [28]:

1 V3 1 V3
1 V3 1 V3
+ 1 |100) + T |101) — 1 |110) — T 1111).

(19)

The advantage of the quantum-inspired genetic
algorithm is that a quantum population can be ex-
ponentially larger than a classical one of the same
size because a quantum chromosome can exploit
the superposition to represent an exponentially large
number of classical chromosomes simultaneously.

* Rotation (Interference) Gate

The rotation operator or quantum interference is a
gate U(6) similar to that shown in (15), which has
the following effect when applied on a qubit:

v© ) =loein) = [ofd) oy | [5]
= [nl Tl

* Quantum Mutation

The mutation applies a random change to a chromo-
some with a certain mutation rate. Mutation is applied
by randomly selecting a mutation point in the chro-
mosome and replacing that point with another random
value from a given set of values. For example, assum-
ing the following chromosome is given and the muta-
tion is applied on the first qubit, then a randomly cho-
sen value is used to replace that first qubit but without
violating the quantum state rule that is shown in (4),
as follows:

_ a1 G «3 ... qu 21
P [51 P2 By .. ﬁq] ' @1)
The new chromosome will be as follows:
/
r_ Gy Q2 Q@3 ... Qg 77
P [5{ B2 Bs .. 5q] ’ 22)
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where

o 2+ 8] |P=1. (23)

* Quantum Crossover

The quantum-inspired version of the classical
crossover operator is applied in many practical
optimization problems. For the one point crossover,
for example, if the cut point is randomly chosen to
be a point between the first and second positions,
then an exchange of chromosomal segments between
chromosomes p; and ps is as follows:

_ a1l a2 as ay 24
P [51\ B2 B3 /Bq:| ’ @4

ol o of .. oAl
pu— . 25
P2 [5“ A A R

This will result in the following:

, a oy oy ... o
= 26
Py [,81 3 5:/)’ 55 ) (26)

and ,

p— |1 %2 a3 %q 27
P2 [ 1 B2 B3 @J ' @7

3 The Proposed Technique
This section illustrates the detailed structure and steps

to solve the test suite minimization problem using the
QIGA.

3.1 Problem Representation

To solve the test suite minimization problem, a test re-
quirement matrix (TR) should be given to show what
requirements are covered in each test. In this paper,
various matrices are tested in addition to the identity
matrix, as will be seen in the results section. It can be
any binary matrix. Each row represents a test while
each column tells whether or not a specific require-
ment is considered in this test. It is a binary matrix,
the value of 1 means that the requirement is fulfilled
in the test while the value of 0 means that the require-
ment is not covered. Table 1 shows a test case exam-
ple with the requirements that each test case satisfies.
The aim is to find the minimum number of test cases
that satisfies all the requirements. The matrix that is
derived from Table 1 is as follows:

TR = (28)

el )

0 0
10
0 0
11

S OO
O = O =
S OO
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Table 2: Example to illustrate the global o and global

[ values
TestNo | Global Values
Ty ai, By
T ao, o
13 as, 33
Ty vy, 4

An important point to consider here is the chromo-
some data structure. The chromosome is composed
of a set of tests that are chosen from the tests that are
given in the T'R. For example, if the chromosome size
is 3, this can be (11, T3, Ty). There are globally cal-
culated v and 3 values that are associated with each
test in the derived matrix. These global o and global
B values are fixed for this given matrix (T'R). Table
2 shows an example for the various tests existing in
the given matrix along with the o and [ values that
are globally associated with them. Each population
includes a number of tests that are selected from the
TR, and each of these tests has its calculated global «
and 5. When they are selected for the chromosome,
the local o and (5 values will be initialized using the
global a and 5. These local « and 3 are updated from
one generation to another based on applying the inter-
ference operator on the chromosome, as calculated in
(20). Table 3 shows how the local o and ( are at-
tached to the tests. For example, in chromosome 1,
the chromosome contains 7'1, T2, and T'4. The am-
plitudes of 77 have been initialized with the global
« and S and the amplitudes have been updated using
the rotation operator to reach oy,11 and 3,11 (the local
« and (). The indices of the local « and 3 are com-
posed of three parts, including the population number,
the chromosome number, and the test, respectively.

The population size that is used in the QIGA to
solve the given test is popSize. sumO fOnes and
sumO f AllOnes representing the summation of 1°s
with their weights and the summation of the case
when there is a string of all 1’s, respectively. These
values need to be prepared as follows:

testColSize

sumO fOnes =

D

Jj=0

% (7 + 1) * elementValue,

testColSize

sumO fAllOnes =

>

J=0
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Table 3: Example showing the local v and  values in a specific population p of size 4

Chromosome Number | Chromosomes(population, chromosome, test)
| Tl T2 T4
Qpll, Bpll ap12, /6p12 Apl4, Bp14
N T3 T1 T2
ap23, ﬁp23 ap21, 6p21 Qp22, Bp22
3 T3 T1 T4
ap33, Bp33 | ap3t, Bp31 | ap3da, Bp3a
4 T1 T2 T3
Qpat, PBpar | Opa2, Bpaz | pas, Bpaz

where testColSize is the column size of the test re-
quirement matrix, and the elementV alue is the value
of each added element such that elementValue €
{0, 1}, which means that the elementV alue = 0 can
be ignored. The global « and 3 can be initially calcu-
lated as follows:

global B = \/sumOfOnes/sumOfAllOnes,
(31

(32)

global_ov = /1.0 — global_3.

The initial population is then generated. A number
of chromosomes are then randomly generated using
the tests in the test requirement matrix. Interference
is then applied to update the local o and 3 values for
each chromosome ¢, as in (20), where the change in 6§
will be a random number between 0 and 1, which is
represented by 66, as shown in (33). Then, the data
are measured based on the updated local o and
values.

011 = 0y + 06,. (33)
3.2 Fitness Function

To calculate the fitness function, a weight is prepared
for the whole matrix using the sumO f AllOnes and
is calculated as in (30). Then, a weight for each chro-
mosome in the population is prepared and denoted as
w, as follows:

testColSize

D

J=0

w =

((testColSize—(j))*(j+1)). (34)

Then, the w values are used to calculate the fitness
function as follows:

|wl

sum0O fAllones * 100

fitnessValue =

(35)
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3.3 Selection

The fitness function is calculated for each chromo-
some and the Roulette wheel algorithm is used for se-
lecting chromosomes from the random initial popula-
tion.

3.4 Crossover

A single point crossover is then applied with a
crossover probability of 90%. The crossover oper-
ation considers the local « and 5 values but it does
not affect the global « and [ that are associated with
the TR tests. The operation first passes by each
chromosome with a random cross rate between 0 and
1 to mark the chromosomes that will apply crossover.
A random crossover position is then selected and the
operation is applied.

3.5 Mutation

The mutation is applied at a rate of 5% by randomly
choosing a point in a chromosome and replacing it
using a random test from the TR.

3.6 Interference

The interference is applied to all tests in the chromo-
some. Itupdates the 6 value with a random number 66
between 0 and 1, as shown in (33). Then, it updates
the local « and S values according to (20).

4 Experimental Results

The pseudo code that is shown in Algorithm 1
summarizes the proposed method. To evaluate the
proposed method, experiments has been conducted
on random test suite minimization problems with
different sizes. Table 4 summarizes the experiments’
GA parameters. For demonstration purposes, the
results of the case with 200 test cases and 200
test requirements, i.e., a matrix of size 200 x 200,
will be discussed. Three different types of ma-
trices have been randomly generated: the sparse
matrices where the 1s randomly occupy 20% of
the matrices, the balanced matrices where the 1s
randomly occupy 50% of the matrices, and the dense
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Algorithm 1 Pseudocode for the proposed algorithm

Read a test requirement matrix T'R of size m X n.
Calculate sumO fOnes and sumO f AllOnes val-
ues for the whole matrix as illustrated in (29) and
(30).
Generate the initial population of a chosen popula-
tion size and a chosen chromosome length. The el-
ements of the chromosomes in each population are
chosen from the tests in the test requirement matrix.
Initialize the local o and § values from the global
ones.
while a 100% fitness value is reached or a prede-
fined number of iterations is reached do

Apply the interference operation and then the
measurement.

Update the local o and 8 values according to
the interference operation.

Select from the population using Roulette
wheel method.

Apply crossover with a crossover rate of 90%.

Apply mutation with a mutation rate 5%.

Calculate the fitness values for the population
elements using the fitness function in (35).

Check the maximum fitness among the popula-
tion elements.

if a 100% fitness value is found then

Report a solution that covers all the require-

ments that are found.

end if
end while

matrices where the 1s occupy 80% of the matrices.

The same random test suite minimization prob-
lem has been solved using the classical GA and
the proposed QIGA with similar parameters such
as the mutation rate, the population size, and the
crossover rate to be able to compare their perfor-
mances. The chromosome length has been fixed
for 100 generations or until a fitness of 100% is
reached. If no solution was found using the assumed
chromosome length, then the size of the chromosome
will be gradually incremented and then fixed for
another 100 generations and so on, until the maxi-
mum length of the chromosome, which is equal to
the number of tests, is reached. This will help to
demonstrate the ability of the proposed QIGA to
discover the minimum number of test suites despite
the suggested chromosome length, as in the case
of the classical GA, and this will be shown next.

Using the same chromosome length, both the
classical GA and the proposed QIGA evolved to get
a solution. The found solution using the classical
GA can be further reduced by eliminating repeated
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test cases (redundancy). In the case of the QIGA, the
reduced number of the test cases is obtained by the
quantum measurement where only a subset of the test
cases is assumed to be the candidate solutions based
randomly on the amplitudes of the superposition.
Fig. 1 shows a comparison between the size of the
obtained solution using the classical GA and the
proposed QIGA. This shows that even by increasing
the suggested size of the chromosome, the proposed
QIGA can achieve a better reduction in the size of
the solution compared with the classical GA. This
can help to remove the burden of assuming a size
for the chromosome. A large chromosome size can
be used and the quantum measurement can help to
reduce the solution size to the near minimal size.

The proposed algorithm used the minimum chro-
mosome length, i.e., the minimum number of test
cases. The average fitness and the maximum fitness
of the population have been recorded during the evo-
lution for the three cases, i.e., sparse, balanced and
dense. Then, the average performance over 50 trials
is used in the analysis, as shown in Fig. 2, Fig. 3 and
Fig. 4, respectively, which show that the proposed
QIGA achieves faster convergence than the classical
GA. Fig. 2 analyzes the sparse case by calculating the
average fitness values over 50 runs, as shown by the
QIGA avg curve, and similarly the GA avg is cal-
culated. This comparison shows faster convergence
for the QIGA_avg curve; moreover, it reaches higher
fitness values than the GA_avg, even before the con-
vergence. To give more power and consistency to the
results, the maximum fitness values are also consid-
ered, as shown in the QIGA max. Then, it is com-
pared to the maximum fitness values of the GA_max
curve. This comparison confirms the faster conver-
gence of the QIGA algorithm than the GA algorithm
and it shows also higher fitness values than the GA
ones before the convergence. The other case to be
studied is the balanced case, which is analyzed in Fig.
3, where QIGA max represents the maximum fitness
Values that are generated by applying the QIGA al-
gorithm. The QIGA max clearly converges faster
than GA_max, which shows the maximum fitness val-
ues that are generated by applying the GA algorithm.
Then, the average fitness values are considered for
both the QIGA and GA algorithms, as shown in the
QIGA avg and GA avg curves. QIGA avg gives
better results than GA_avg. Fig. 4 shows the max-
imum fitness values that are calculated in the dense
case using the QIGA_max curve and compares them
to the ones that are calculated in the dense case us-
ing the GA algorithm with the GA_max curve. Here,
QIGA max converges faster and has better fitness
values than GA_max. Similarly, the average fitness
values are studied and shown using QIGA_avg and
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GA_avg, which proves the better convergence of the
QIGA algorithm than the GA algorithm.

Table 5 provides the summary of the data set that
is used in the experiment [[18, 33]. It shows the in-
formation such as the version, description, and LOC,
which represents the lines of code in the program.
Then, it also provides columns for the number of
test cases before the reduction, the #Tests for the
reduced suite size, and the #Faults for the number of
detected faults in the program, which measures the
fault detection ability. Table 6 and Table 7 compare
the experimental results using the proposed technique
over the five programs in the data set with the results
that are shown in [[18], which shows a better reduction
in the number of required tests. Table 6 displays
the test suite size before and after the reduction for
the Grep, Flex, and Sed programs. The results of
applying the LF LS technique, NF_LS technique,
NF NS technique, and the proposed technique are
shown for each program and then a comparison
is performed between the proposed technique and
each of the mentioned techniques. This illustrates
the better results of the proposed technique than the
others. Similarly, Table 7 gives the same study for
the Make and Gzip programs and it also illustrates
the better reduction for the proposed technique than
NF LS, LF LS, and NF_NS.

5 Conclusion

In this paper, a quantum-inspired genetic algorithm
(QIGA) has been proposed to solve the test suite min-
imization problem where quantum superposition has
been used in the encoding of the chromosome to in-
crease the size of the search space over approximately
the same physical space. The quantum rotation gate
has been used with the crossover and mutation oper-
ators to enhance the search capabilities of the classi-
cal genetic algorithm. The proposed algorithm used
local and global parameters simultaneously to guide
the search. Here, the crossover operator affects the lo-
cal parameters, while the global parameters have been
kept unchanged to save the algorithm from getting
lost due to the increase in the search space because
of the quantum superposition. The quantum mea-
surement has been be used in the proposed quantum-
inspired evolutionary algorithm to reduce the number
of test cases to avoid any priori assumptions on the
minimal number of test cases. It has been shown that
the adopted quantum techniques accelerates the con-
vergence to the solution compared with the classical
genetic algorithm.

Experimental results have been shown for the
sparse, balanced and dense instances of the test suite
minimization problem and the quantum-inspired ver-
sion performs better than the classical genetic version
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of the algorithm. The proposed algorithm has been
used to solve the instances in the data set that was used
in [[18, 33]; here, the proposed algorithm provides bet-
ter reduction results than those of the approaches that
are shown in the literature.
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Fig. 1: Reduction in the size of the solution using the classical GA and the proposed QIGA. Here, the reduction
in the classical GA is obtained by eliminating the redundancy while the reduction in the QIGA is obtained by the
quantum measurement.
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Fig. 2: The convergence of the average fitness values and the maximum fitness value of the proposed QIGA
compared with the classical GA for the sparse case.
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Fig. 4: The convergence of the average fitness values and the maximum fitness value of the proposed QIGA
compared with the classical GA for the dense case.
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Table 4: GA Parameters for the proposed technique

GA Parameter Value
Population Size 500

Crossover Single-point
Crossover Rate 90%
Mutation Rate 5%

Selection Roulette Wheel

Oinitial 7T
00 A random number between 0 and 1
Operator Probabilities Selected with trials
Termination To find a solution OR Reach the number of trials

Table 5: Programs used in the experimental results [|18].

Program | Version | Description LOC #Tests | #Faults
Grep 2.7 Pattern search and matching utility | 58,344 | 746 54
Flex 254 Lexical analyzer 12,366 | 605 37
Sed 4.2 Command line text editor 26,466 | 324 25
Make 3.80 Executable builder and generator | 23,400 | 158 15
Gzip 1.3 Data compressor 5,682 | 397 56

Table 6: Comparison among the different methods modeling the classic bicriteria problem.

Programs Grep Flex Sed
#T #F #T #F #T #F
Methods
Original 746 54 605 37 324 25
LF LS [18] 59 29 44 28 12 21
NF_LS [[18] 59 36 44 32 12 25
NF NS [18] n/a n/a 44 32 12 25
Proposed Technique 42 30 32 21 10 14
%Proposed technique over NF LS | 40.47% | 20% | 37.5% | 52.38% | 20% | 78.57%
%Proposed_technique over LF LS | 40.47% | 3.45% | 37.5% | 33.33% | 20% | 50%
%Proposed technique over NF_NS n/a nfa | 37.5% | 52.38% | 20% | 78.57%

Table 7: Continuation of Table 6: Comparison among the different methods modeling the classic bicriteria prob-
lem.

Programs Make Gzip
#T | #F #T #F
Methods
Original 158 15 397 56
LF LST1§] 14 12 45 50
NF_LS [[18] 14 13 45 50
NF_NS 18] 14 13 45 49
Proposed Technique 10 10 32 44
%Proposed _technique over NF_LS | 40% | 30% | 40.6% | 12.24%
%Proposed technique over LF LS | 40% | 20% | 40.6% | 12.24%
%Proposed technique over NF_NS | 40% | 30% | 40.6% | 2.04%
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