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Abstract: This paper examines the linear complexity of new generalized cyclotomic binary sequences of period
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1 Introduction
The cyclotomic classes and the generalized cyclo-
tomic classes are often used for design sequences with
high linear complexity, which is an important charac-
teristic of sequence for the cryptography applications
[2]. Recently, new generalized cyclotomic classes
were presented in [8]. The linear complexity of new
generalized cyclotomic binary sequences with period
pn was studied in [9, 4, 7]. A new family of binary
sequences with period 2pn based on the generalized
cyclotomic classes from [8] was presented in [6]. Yi
Ouang et al. examined the linear complexity of these
sequences for f = 2r, where p = 1+ef and r is a pos-
itive integer. They offered new studying method of the
linear complexity of these sequences. Their method
based on ideas from [4].

In this paper we show that for study of the lin-
ear complexity of new sequence family from [6] we
can use only old the method from [4]. Furthermore,
it will be enough for obtaining more generalized re-
sults than in [6] and for the proof and the correction
of the conjecture of the authors of this paper. Here we
keep the notation and the structure of [4], i.e., in Sect.
2 we introduce some basics and recall the definition
of a generalized cyclotomic sequence and the conjec-
ture from [6]. Section 3 is dedicated to the study of
the linear complexity of this family of cyclotomic se-
quences. Section 4 concludes the work in this paper.

We will study the linear complexity of new se-
quence family from [6] when p is not a Wieferich
prime, i.e. 2p−1 6≡ 1 (mod p2). It was shown that
there are only two such primes, 1093 and 3511, up to
6× 1017 [1, 3].

2 Preliminaries
Throughout this paper, we will denote by ZN the ring
of integers modulo N for a positive integer N , and by
Z∗N the multiplicative group of ZN .

First of all we will recall some basics of the linear
complexity of a periodic sequence and introduce the
generalized cyclotomic sequences proposed in [6].

2.1 Linear Complexity
Let s∞ = (s0, s1, s2, . . . ) be a binary sequence of
period N and S(x) = s0 + s1x + · · · + sN−1x

N−1.
It is well known (see, for instance, [2, Page 171]) that
the linear complexity of s∞ is given by

L(s∞) = N − deg
(
gcd

(
xN − 1, S(x)

))
.

So, if N = 2pn then we see that

L(s∞) = 2pn − deg
(
gcd

(
(xp

n − 1)2, S(x)
))
.

Thus, if αn is a primitive root of order pn of unity
in the extension of the field F2 (the finite field of two
elements) then in order to find the linear complexity
of a sequence it is sufficient to find the zeros of S(x)
in the set {αi

n, i = 0, 1, . . . , pn − 1} and determine
their multiplicity.

2.2 New Generalized Cyclotomic Sequences
Length 2pn

Let p be an odd prime and p = ef + 1, where e, f
are positive integers. Let g be a primitive root modulo
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pn. It is well known [5] that an odd number from g
or g + pn is also a primitive root modulo 2pj for each
integer j ≥ 1. Hence, we can assume that g is an odd
number. Further, the order of g modulo 2pj is equal
to ϕ(2pj) = pj−1(p − 1), where ϕ(·) is the Euler’s
totient function. Below we recall the definitions of
generalized cyclotomic classes introduced in [8] and
[6].

Let n be a positive integer. For j = 1, 2, · · · , n,
denote dj = pj−1f and define

D
(pj)
0 =

{
gt·dj (modpj) | 0 ≤ t < e

}
, and

D
(pj)
i = giD

(pj)
0 =

{
gix (modpj) : x ∈ D(pj)

0

}
,

1 ≤ i < dj ,

D
(2pj)
0 =

{
gt·dj (mod2pj) | 0 ≤ t < e

}
, and

D
(2pj)
i = giD

(pj)
0 =

{
gix (mod2pj) : x ∈ D(2pj)

0

}
,

1 ≤ i < dj . (1)

The cosets D
(pj)
i , i = 0, 1, · · · , dj − 1, are

called generalized cyclotomic classes of order dj
with respect to pj . It was shown in [8] that{
D

(pj)
0 , D

(pj)
1 , . . . , D

(pj)
dj−1

}
forms a partition of Z∗

pj

for each integer j ≥ 1 and for an integer m ≥ 1.
Also

{
D

(2pj)
0 , D

(2pj)
1 , . . . , D

(2pj)
dj−1

}
forms a partition

of Z∗
2pj

for each integer j ≥ 1 and for an integer
m ≥ 1.

Let f be a positive even integer and b an integer
with 0 ≤ b < pn−1f . Define four sets

C(2p
n)

0 =

n⋃
j=1

dj−1⋃
i=dj/2

pn−j
(
D

(2pj)
(i+b) (mod dj)

∪ 2D
(2pj)
(i+b) (mod dj)

)
∪ {pn}, and

C(2p
n)

1 =
n⋃

j=1

dj/2−1⋃
i=0

pn−j
(
D

(2pj)
(i+b) (mod dj)

∪ 2D
(2pj)
(i+b) (mod dj)

)
∪ {0},

C̃(2p
n)

0 =

n⋃
j=1

pn−j
(dj/2−1⋃

i=0

2D
(2pj)
(i+b) (mod dj)

∪
dj−1⋃
i=dj/2

D
(2pj)
(i+b) (mod dj)

)
∪ {pn}, and

C̃(2p
n)

1 =

n⋃
j=1

pn−j
(dj/2−1⋃

i=0

D
(2pj)
(i+b) (mod dj)

∪
dj−1⋃
i=dj/2

2D
(2pj)
(i+b) (mod dj)

)
∪ {0}. (2)

It is obvious that Z2pn = C(2p
n)

0 ∪ C(2p
n)

1 = C̃(2p
n)

0 ∪
C̃(2p

n)
1 and |C(2p

n)
i | = |C̃(2p

n)
i | = pn, i =

0, 1. Families of balanced binary sequences s∞ =
(s0, s1, s2, . . . ) and s̃∞ = (s̃0, s̃1, s̃2, . . . ) of period
pn can thus be defined as in [6], i.e.,

si =

{
0, if i (mod pn) ∈ C(2p

n)
0 ,

1, if i (mod pn) ∈ C(2p
n)

1 .
(3)

and

s̃i =

{
0, if i (mod pn) ∈ C̃(2p

n)
0 ,

1, if i (mod pn) ∈ C̃(2p
n)

1 .
(4)

In the case of f = 2r, the linear complexity of s∞, s̃∞
was estimated in [6], where a conjecture about the lin-
ear complexity of these sequences was also made as
follows.

Conjecture. (1) If 2e ≡ −1 (mod p) but 2e 6≡
−1 (mod p2), then the linear complexity L(s∞) =
2pn − (p− 1).

(2) If 2e ≡ 1 (mod p) but 2e 6≡ 1 (mod p2),
then the linear complexity L(s̃∞) = 2pn−(p−1)−e.

2.3 Main Result
This subsection will study the linear complexity of
s∞, s̃∞ in (3) and (4) for some even integers f . The
main result in this paper is given as follows.

Theorem 1 Let p = ef + 1 be an odd prime with
2p−1 6≡ 1 (mod p2) and f is an even positive integer.
Let ordp(2) denote the order of 2 modulo p and v =

gcd
( p−1
ordp(2)

, f
)
.

(i) Let s∞ be a generalized cyclotomic binary se-
quence of period pn defined in (3). Then the linear
complexity of s∞ is given by

L(s∞) = 2pn − r · ordp(2),

where 0 ≤ r ≤ p−1
ordp(2)

.

Furthermore, the linear complexity

L(s∞) =

{
2pn − p+ 1, if v = f/2;

2pn, if v = 1 or 2v|f2 , or f = v.
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(ii) Let s̃∞ be a generalized cyclotomic binary se-
quence of period pn defined in (4). Then for the linear
complexity of s̃∞ we have

2pn − 2r · ordp(2) ≤ L(s̃∞) ≤ 2pn − r · ordp(2),

where 0 ≤ r ≤ p−1
ordp(2)

. Furthermore, the linear com-
plexity

L(s̃∞) =

{
2pn − 3(p− 1)/2 if v = f ;

2pn, if v|f2 , or v = 2, v 6= f.

Corollary 2 Let f = 2r. Then:
(i) The linear complexity of s∞ is given by

L(s∞) =

{
2pn − p+ 1, if v = f/2;

2pn, otherwise .

(ii) The linear complexity of s̃∞ is given by

L(s̃∞) =

{
2pn − 3(p− 1)/2, if v = f ;

2pn, otherwise .

Remark 3 Suppose 2 ≡ gu (mod p) for some in-
teger u. It is easily seen that gcd

( p−1
ordp(2)

, f
)

=

gcd(u, f). Thus the condition 2e ≡ 1 (mod p)
in Conjecture from [6] is equivalent to v =
gcd

( p−1
ordp(2)

, f
)

= f and the condition 2e ≡ −1
(mod p) is equivalent to v = f/2. In the case that
f = 2r for a positive integer r, the integer v is also
a power of 2, which either equals f or f/2 or divides
f/4. Hence Conjecture from [6] is included in Theo-
rem 1 as a special case. Here we make the correction
of Conjecture (ii).

If 2 is a primitive roots modulo p then v = 1.
For the proof of Theorem 1 we will use the same

definitions and same method that as [4].
Let S(x) = s0 + s1x + · · · + s2pn−1x

2pn−1 and
S̃(x) = s̃0 + s̃1x + · · · + s̃2pn−1x

2pn−1 for the gen-
eralized cyclotomic sequences s∞, s̃∞ defined in (3)
and (4), respectivly. Then,

S(x) =
∑

t∈C(p
n)

1

xt and S̃(x) =
∑

t∈C̃(p
n)

1

xt (5)

For simplicity of presentation, we define polyno-
mials as in [4]

E
(pj)
i (x) =

∑
t∈D(pj)

i

xt, 1 ≤ j ≤ n, 0 ≤ i < dj ,

(6)

and

H
(pj)
k (x) =

dj/2−1∑
i=0

E
(pj)
i+k (mod dj)

(x), 0 ≤ k < dj ,

T
(pm)
k (x) =

m∑
j=1

H
(pj)
k (xp

m−j
), m = 1, 2, · · · , n.

(7)

Notice that the subscripts i in D
(pj)
i , H(pj)

i (x) and

T
(pj)
i (x) are all taken modulo the order dj . In the

rest of this paper the modulo operation will be omitted
when no confusion can arise.

Let F2 be an algebraic closure of F2 and αn ∈
F2 be a primitive pn-th root of unity. Denote αj =

αpn−j

n , j = 1, 2 . . . , n− 1.
The properties of considered polynomials were

studied in [4]. We have here the following statement.

Lemma 4 [4] For any a ∈ D(pj)
k , we have

(i) T
(pm)
i (αpla

m ) = T
(pm−l)
i+k (αm−l) + (pl − 1)/2

(mod 2) for 0 ≤ l < m; and
(ii) T (pm)

i (αa
m) + T

(pm)
i+dm/2(α

a
m) = 1.

(iii) Let p be a non-Wieferich prime. Then
T
(pm)
i (αm) 6∈ {0, 1} for m > 1.

(iv) Let p be a non-Wieferich prime. Then
T
(pm)
i (αm) + T

(pm)
i+f/2(αm) 6= 1 for m > 1.

Throughout this paper an integer u will be such that
2 ≡ gu (mod pn). Now we will show that the study-
ing of linear complexity of above sequences is equiv-
alent to the investigation of properties of T (pm)

i (x)

Proposition 5 Let αn be a pn-th primitive root of
unity and let 2 ≡ gu (mod pn). Given any element
a ∈ Zpn , we have
(i) S(αa

n) = 1 + T
(pn)
b (αa

n) + T
(pn)
b+u (α

a
n); and

(ii) S(αa
n) = T

(pn)
b (αa

n) + T
(pn)
b+u (α

a
n).

Proof: (i) Since
∑

t∈pn−jD
(2pj)
(i+b)

αat =∑
t∈pn−jD

(pj)
(i+b)

αat by (1), it follows from our

definitions and Lemma 4 that

S(αa
n) = 1 + T

(pn)
b (αa

n) + T
(pn)
b+u (α

a
n).

(ii) Similarly we have

S̃(αa
n) = T

(pn)
b (αa

n) + T
(pn)
b+u (α

a
n).

ut
We now examine the value of T

(pn)
b (αi

n) +

T
(pn)
b+u (α

i
n) for some integers i ∈ Zpn .
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Proposition 6 Let p be a non-Wieferich prime. Then
S(αi

n) 6= 0 and S̃(αa
n) 6= 0 for i ∈ Zpn \ pn−1Zp.

Proof: This is sufficient to prove that T (pn)
b (αi

n) +

T
(pn)
b+u (α

i
n) 6∈ {0, 1} for i ∈ Zpn \ pn−1Zp and b =

0, 1, · · · , dn − 1. As it was shown in [4] that without
loss of generality it is enough proof, T (pm)

0 (αm) +

T
(pm)
u (αm) 6∈ {0, 1} for m > 1.

We consider two cases.
1. Let T (pm)

0 (αm) + T
(pm)
u (αm) = 0. Since

(T
(pm)
0 (αm))2 = T

(pm)
u (αm) = 0, we see that in this

case T (pm)
0 (αm) ∈ {0, 1}. We obtain a contradiction

with Lemma 4 (iii).
2. Let T (pm)

0 (αm) + T
(pm)
u (αm) = 1.

It then follows from Lemma 4 (i) that
T
(pm)
iu (αm) + T

(pm)
(i+1)u(αm) = 1 for any integer

i ≥ 1. Hence T (pm)
0 (αm) = T

(pm)
2iu (αm).

Denote w = gcd(2u, dm). Since p is a non-
Wieferich prime, it follows by [4] that w divides f .
Since the subscript of T (pm)

i (x) is taken modulo dm,
it is easily seen that

T
(pm)
0 (αm) = T

(pm)
iw (αm), for any integer i ≥ 1.

(8)
By Lemma 4 (ii) from the last formula we have
T
(pm)
dm/2(αm) = T

(pm)
dm/2+iw(αm) or T

(pm)
dm

(αm) =

T
(pm)
dm/2+jf (αm). Then we get that T (pm)

dm/2(αm) =

T
(pm)
f/2 (αm). Thus, by Lemma 4 (ii) we obtain that

T
(pm)
0 (αm) + 1 = T

(pm)
f/2 (αm). But the latest equality

is not possible for m > 1 by Lemma 4 (iv). ut
By Proposition 6, we only need to study the value

of T (pn)
b (αi

n) + T
(pn)
b+u (α

i
n) for integers i in the set

pn−1Zp. Suppose i = pn−1a, a ∈ D
(p)
i . Then, it

follows from Proposition 5 and Lemma 4 that

S(αi
n) = 1 +H

(p)
k (α1) +H

(p)
k+u(α1),

where k ≡ b+ i (mod f). The following proposition
examines the value of H(p)

k (α1) +H
(p)
k+u(α1) accord-

ing to the relation between f and ordp(2).

Proposition 7 Let p = ef + 1 be an odd prime
with f being an even positive integer and v =
gcd( p−1

ordp(2)
, f). Then,

(i)
∣∣∣{k ∈ Zf |H

(p)
k (α1) +H

(p)
k+u(α1) = 0

}∣∣∣ ={
f, if v = f,

0, if v|f/2 or v = 2, v 6= f.

(ii)
∣∣∣{k ∈ Zf |H

(p)
k (α1) +H

(p)
k+u(α1) = 1

}∣∣∣ ={
f, if v = f/2,

0, if v = 1, or v = f or 2v|f/2.

Proof: Since ordp(2) = p−1
gcd(p−1, u) , it follows that

gcd(u, f) = gcd( (p−1)
ordp(2)

, f) = v [4].
(i) For v = f this statement is clear.
Let v|f/2 or v = 2, v 6= f . We

shall prove this case by contradiction. Suppose
H

(p)
k (α1) + H

(p)
k+u(α1) = 0 for some integer k.

Since (H
(p)
k (α1))

2 = H
(p)
k+u(α1), it follows that

H
(p)
k (α1)) ∈ {0, 1}. By [4] this is not possible for

v|f/2 or v = 2, v 6= f .
(ii) For v = f/2 this statement is clear. If v = f

then 2 ∈ D(p)
0 and we haveH(p)

k (α1)+H
(p)
k (α1) = 1.

This is impossible
Suppose H(p)

k (α1) +H
(p)
k+u(α1) = 1 for some in-

teger k. Without loss of generality, we assume k = 0

and H(p)
0 (α1) = H

(p)
u (α1) + 1.

In the case when v 6= f . Since gcd(u, f) =

gcd( (p−1)
ordp(2)

, f) = v, by a similar argument as in the
proof of Proposition 6 we get

H
(p)
0 (α1) = H

(p)
2v (α1) = · · · = H

(p)
2vi(α1).

So, if 2v divides f/2, then H
(p)
f/2(α1) =

H
(p)
2v·f/4v(α1) = H

(p)
0 (α1), which is a contradiction.

Let v = 1. Then we get H(p)
i (α1) +H

(p)
i+1(α1) +

1 = 0, i = 0, 1, . . . , f − 1 and then E
(p)
i (α1) +

E
(p)
i+f/2(α1) + 1 = 0, i = 0, 1, . . . , f − 1. In [4]

it was shown that this is impossible. ut
Proof of Theorem 1. Recall that the linear complex-
ity of s∞ is given by

L(s∞) = N − deg
(
gcd

(
(xp

n − 1)2, S(x)
))
.

(i) From Proposition 6 we know S(αi
n) 6= 0 for i ∈

Zpn \pn−1Zp. For the remaining set pn−1Zp, if i = 0,
then S(1) = 1; if i ∈ pn−1Z∗p, we have

S(αi
n) = 1 +H

(p)
b (αa

1) +H
(p)
b+u(α

a
1)

for some integer a ∈ Z∗p.

Suppose H(p)
k (αa

1) + H
(p)
k+u(α

a
1) = 1 for some

integer k. Then

1 = (H
(p)
k (α1))

2+H
(p)
k+u(α

2
1) = H

(p)
k+u(α1)+H

(p)
k+2u(α1),
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and so on (here u 6≡ 0 (mod f))). So, we have

|{i : S(αi
n) = 0, i = 1, 2, . . . , pn−1}| = r ordp(2).

where r is an integer with 0 ≤ r ≤ p−1
ordp(2)

.
Further, by (5) we see that

xS′(x) =

n∑
j=1

dj/2−1∑
i=0

∑
t∈D(2pj)

i+b (mod dj)

xp
n−jt.

Hence, αi
nS(α

i
n) = T

(pn)
b (αi

n). So, if αi
n is

a root of S(x) and S′(x) then 1 + T
(pn)
b (αi

n) +

(T
(pn)
b (αi

n))
2 = 0 and T (pn)

b (αi
n) = 0. It is not possi-

ble and any root of S(x) is simple.
Then the statement of this theorem follows from

Proposition 6.
(ii) In this case

S(αi
n) = H

(p)
b (αa

1) +H
(p)
b+u(α

a
1)

for some integer a ∈ Z∗p.
Then as earlier we again get

|{i : S(αi
n) = 0, i = 1, 2, . . . , pn−1}| = r ordp(2).

where r is an integer such that 0 ≤ r ≤ p−1
ordp(2)

.
Here, by (5) we see that

xS̃′(x) =
n∑

j=1

dj/2−1∑
i=0

∑
t∈D(2pj)

i+b (mod dj)

xp
n−jt.

and also αi
nS̃(α

i
n) = T

(pn)
b (αi

n). If v = f then it
follows from [4] that

|{i : T
(pn)
b (αi

n) = 0, i = 1, 2, . . . , pn−1}| = (p−1)/2.

Then the statement of this theorem follows from
Proposition 6.
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