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Abstract: - Stochastic optimization problems are often overwhelmed with inconsistent performance 
requirements and incompatible performance specifications that can be difficult to detect during problem 
formulation. Therefore, it can prove beneficial to create a set of dissimilar options that provide divergent 
perspectives to the problem. These alternatives should be near-optimal with respect to the specified 
objective(s), but be maximally different from each other in the decision region. The approach for creating 
maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-
optimization approaches are commonly employed to solve computationally difficult problems containing 
significant stochastic uncertainties. This paper provides a new, stochastic, multicriteria MGA approach that can 
generate sets of maximally different alternatives for any simulation-optimization method that employs a 
population-based algorithm. 
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1 Introduction 

Stochastic decision-making problems frequently 
include inconsistent and incompatible design 
specifications that can be difficult to formulate into 
mathematical decision-models [1], [2], [3], [4], [5]. 
Although “optimal” solutions can be determined for 
the mathematical models, they generally do not 
provide the best solution to the “real” problem as 
there are usually unmodeled components not 
apparent when the mathematical models are 
formulated [1], [2], [6]. Generally, it is better to 
construct a small number of distinct alternatives that 
provide complementary perspectives to the 
particular problem [3], [7]. These dissimilar 
solutions should be near-optimal with respect to the 
specified objective(s), but be maximally different 
from each other within the solution domain. The 
approach for creating maximally different sets of 
solutions is referred to as modelling-to-generate-
alternatives (MGA) [6], [7], [8]. The primary 
impetus behind MGA is to create a set of 
alternatives that are “good” when measured within 
the modelled objective space but as different as 
possible from each other in the decision space. 
Decision-makers must undertake a subsequent 
evaluation of this set to determine which specific 
alternative(s) most closely satisfy their specific 
goals. Consequently, unlike the more 
straightforward style of explicit solution 

determination inherent in most “hard” optimization 
approaches, MGA approaches are necessarily 
classified into the decision support realm. 

Early MGA algorithms employed direct, 
incremental approaches for constructing their 
alternatives by re-running their algorithms 
incrementally whenever a new solution had to be 
created [6], [7], [8], [9], [10]. These iterative 
approaches imitated the seminal MGA method of 
Brill et al. [8] where, after the initial mathematical 
model had been optimized, all supplementary 
alternatives were produced one-at-a-time. These 
incremental approaches all required n+1 iterations 
of their respective algorithms – initially to optimize 
the original problem, then to produce each of the 
subsequent n alternatives [7], [11], [12], [13], [14], 
[15], [16], [17], [18]). Subsequently, it was 
demonstrated how a set of maximally different 
alternatives could be efficiently generated using any 
population-based algorithm by permitting the 
generation of the overall optimal solution together 
with n distinct alternatives in a single computational 
run irrespective of the value of n [19], [20], [21], 
[22], [23]. In [24] a new data structure was created 
that permits simultaneous alternatives to be 
constructed by population-based solution methods 
and this was incorporated into a bicriterion 
procedure in [25]. In [26] it was shown how a set of 
maximally different solution alternatives could be 
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generated by extending several earlier MGA 
techniques into stochastic optimization. 

In this study, a new multicriteria, objective is 
created that combines the data structure into the 
simultaneous solution approach to create a new 
stochastic MGA algorithm. The max-sum 
components of the objective produce a maximum 
distance between alternatives by ensuring that the 
total deviation between all of the variables in all of 
the alternatives is collectively large. This does not, 
however, preclude the occurrence of relatively small 
(or zero) deviations between certain individual 
variables within certain solutions. In contrast, max-
min objectives force a maximum distance between 
every variable over all solutions. By considering the 
multiple objectives simultaneously, the alternatives 
created can be forced as far apart as possible for all 
variables in general and the closest distance in the 
worst case between any solutions will never be less 
than the value obtained for the max-min objective. 
This stochastic MGA algorithmic approach proves 
to be extremely computationally efficient. 
 
 
2 Modelling to Generate Alternatives 

Mathematical optimization has focused almost 
entirely on generating single optimal solutions to 
single-objective problems or producing sets of 
noninferior solutions to multi-objective 
constructions [2], [5], [8]. While such conventions 
may create solutions to the derived mathematical 
formulations, whether these outputs are the best 
solutions to the “real” problems remains debatable 
[1], [2], [6], [8]. With many complex, “real world” 
decision situations, there are numerous system 
specifications that can never be incorporated into 
the problem formulation [1], [5]. Moreover, it may 
not be possible to explicitly account for all of the 
subjective requirements as there are frequently 
numerous adversarial stakeholders and incompatible 
design components to address. Thus, most 
subjective features unavoidably remain unquantified 
and unmodelled in the mathematical decision 
models. This regularly occurs when conclusions are 
made based not only upon modelled objectives, but 
also upon more incongruent stakeholder preferences 
and socio-political-economic goals [7]. Several 
incongruent modelling dualities are illustrated in 
[6], [8], [9], and [10]. 

When unmodelled objectives and unquantified 
issues exist, non-conventional methods are needed 
to not only search the decision region for 
noninferior sets of solutions, but to also explore the 
decision region for alternatives that are clearly sub-
optimal to the modelled problem. Namely, any 

search for alternatives to problems known or 
suspected to contain unmodelled components must 
concentrate not only on a non-inferior set of 
solutions, but also necessarily on an explicit 
exploration of the problem’s inferior solution space. 

To demonstrate the implications of unmodelled 
objectives in a decision search, assume that an 
optimal solution for a maximization problem is X* 
with objective value Z1* [24]. Suppose a second, 
unquantified, maximization objective Z2 exists that 
represents some “politically acceptable” factor. 
Assume that the solution, Xa, belonging to the 2-
objective noninferior set, exists that corresponds to a 
best compromise solution if both objectives could 
have been simultaneously considered. Although Xa 
would be considered as the best solution to the real 
problem, in the actual mathematical model it would 
appear inferior to solution X*, since Z1a ≤  Z1*. 
Therefore, when unquantified components are 
included in the decision-making process, inferior 
decisions to the mathematically modelled problem 
could be optimal to the underlying “real” problem. 
Thus, when unquantified issues and unmodelled 
objectives could exist, alternative solution 
procedures are required to not only explore the 
decision domain for noninferior solutions to the 
modelled problem, but also to concurrently search 
the decision domain for inferior solutions. 
Population-based algorithms permit concurrent 
searches throughout a decision space and prove to 
be particularly proficient solution methods. 

The primary task of MGA is to create a workable 
set of options that are quantifiably good with respect 
to all modelled objectives, yet are as different as 
possible from each other within the solution space. 
By accomplishing this requirement, the resulting set 
of alternatives is able to provide truly different 
perspectives that perform similarly with respect to 
the known modelled objective(s) yet very differently 
with respect to various potentially unmodelled 
aspects. By creating these good-but-different 
solutions, the decision-makers are able to explore 
potentially desirable qualities within the alternatives 
that might be able to satisfy the unmodelled 
objectives to varying degrees of stakeholder 
acceptability. 

To motivate the MGA process, it is necessary to 
more formally characterize the mathematical 
definition of its goals [6], [7]. Assume that the 
optimal solution to an original mathematical model 
is X* with corresponding objective value Z* = 
F(X*). The resultant difference model can then be 
solved to produce an alternative solution, X, that is 
maximally different from X*: 
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Maximize  ∆ (X, X*) = Min
i

 | Xi - Xi* | (1) 

Subject to:  X ∈ D   (2) 
   | F(X) - Z* | ≤  T (3) 

where ∆  represents an appropriate difference 
function (shown in (1) as an absolute difference) 
and T is a tolerance target relative to the original 
optimal objective value Z*. T is a user-specified 
limit that determines what proportion of the inferior 
region needs to be explored for acceptable 
alternatives. This difference function concept can be 
extended into a difference measure between any set 
of alternatives by replacing X* in the objective of 
the maximal difference model and calculating the 
overall minimum absolute difference (or some other 
function) of the pairwise comparisons between 
corresponding variables in each pair of alternatives 
– subject to the condition that each alternative is 
feasible and falls within the specified tolerance 
constraint. 

The population-based MGA procedure to be 
introduced is designed to generate a pre-determined 
small number of close-to-optimal, but maximally 
different alternatives, by adjusting the value of T 
and solving the corresponding maximal difference 
problem instance by exploiting the population 
structure of the algorithm. The survival of solutions 
depends upon how well the solutions perform with 
respect to the problem’s originally modelled 
objective(s) and simultaneously by how far away 
they are from all of the other alternatives generated 
in the decision space. 
 
 
3 Simulation-Optimization for 
Stochastic Optimization 

Finding optimal solutions to large stochastic 
problems proves complicated when numerous 
system uncertainties must be directly incorporated 
into the solution procedures ([27], [28], [29], [30]). 
Simulation-Optimization (SO) is a broadly defined 
family of stochastic solution approaches that 
combines simulation with an underlying 
optimization component for optimization ([27]). In 
SO, all unknown objective functions, constraints, 
and parameters are replaced by simulation models in 
which the decision variables provide the settings 
under which simulation is performed. 

The general steps of SO can be summarized in 
the following fashion ([28], [31]). Suppose the 
mathematical model of the optimization problem 
contains n decision variables, iX , represented in the 
vector X = [ 1X , 2X ,…, nX ]. If the objective 

function is expressed by F and the feasible region is 
designated by D, then the mathematical 
programming problem is to optimize F(X) subject to 
X ∈  D. When stochastic conditions exist, values for 
the objective and constraints can be determined by 
simulation. Any solution comparison between two 
different solutions X1 and X2 requires the 
evaluation of some statistic of F modelled with X1 
compared to the same statistic modelled with X2 
([27], [32]). These statistics are calculated by 
simulation, in which each X provides the decision 
variable settings employed in the simulation. While 
simulation provides a means for comparing results, 
it does not provide the mechanism for determining 
optimal solutions to problems. Hence, simulation 
cannot be used independently for stochastic 
optimization. 

Since all measures of system performance in SO 
are stochastic, every potential solution, X, must be 
calculated through simulation. Because simulation is 
computationally intensive, an optimization 
algorithm is employed to guide the search for 
solutions through the problem’s feasible domain in 
as few simulation runs as possible ([29], [32]). As 
stochastic system problems frequently contain 
numerous potential solutions, the quality of the final 
solution could be highly variable unless an 
extensive search has been performed throughout the 
entire feasible region. A stochastic SO approach 
contains two alternating computational phases; (i) 
an “evolutionary” module directed by some 
optimization (frequently a metaheuristic) method 
and (ii) a simulation module ([33]). Because of the 
stochastic components, all performance measures 
are necessarily statistics calculated from the 
responses generated in the simulation module. The 
quality of each solution is found by having its 
performance criterion, F, evaluated in the simulation 
module. After simulating each candidate solution, 
their respective objective values are returned to the 
evolutionary module to be utilized in the creation of 
ensuing candidate solutions. Thus, the evolutionary 
module aims to advance the system toward 
improved solutions in subsequent generations and 
ensures that the solution search does not become 
trapped in some local optima. After generating new 
candidate solutions in the evolutionary module, the 
new solution set is returned to the simulation 
module for comparative evaluation. This alternating, 
two-phase search process terminates when an 
appropriately stable system state (i.e. an optimal 
solution) has been attained. The optimal solution 
produced by the procedure is the single best solution 
found throughout the course of the entire search 
process ([33]). 
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Population-based algorithms are conducive to 
SO searches because the complete set of candidate 
solutions maintained in their populations permit 
searches to be undertaken throughout multiple 
sections of the feasible region, concurrently. For 
population-based optimization methods, the 
evolutionary phase evaluates the entire current 
population of solutions during each generation of 
the search and evolves from a current population to 
a subsequent one. A primary characteristic of 
population-based procedures is that better solutions 
in a current population possess a greater likelihood 
for survival and progression into the subsequent 
population. 

It has been shown that SO can be used as a very 
computationally intensive, stochastic MGA 
technique ([32], [34]). However, because of the very 
long computational runs, several approaches to 
accelerate the search times and solution quality of 
SO have been examined subsequently [31]. The next 
section provides an MGA algorithm that 
incorporates stochastic uncertainty using SO to 
much more efficiently generate sets of maximally 
different solution alternatives. 
 
4 Population-based, Multicriteria 
MGA Algorithm 

In this section, a data structure is introduced that 
permits a multicriteria MGA solution approach via 
any population-based algorithm [24]. Suppose that it 
is desired to be able to produce P alternatives that 
each possess n decision variables and that the 
population algorithm is to possess K solutions in 
total. That is, each solution is to contain one set of P 
maximally different alternatives. In this 
representation, let Yk, k = 1,…, K, represent the kth 
solution which is made up of one complete set of P 
different alternatives. Namely, if Xkp is the pth 
alternative, p = 1,…, P, of solution k, k = 1,…, K, 
then Yk can be represented as 

  Yk = [Xk1, Xk2,…, XkP] .   (4) 
If Xkjq, q = 1,…, n, is the qth variable in the jth 

alternative of solution k, then 
  Xkj = (Xkj1, Xkj2,…, Xkjn) .  (5) 
Consequently, an entire population, Y, comprised 

of K different sets of P alternatives can be written in 
vector form as, 

  Y’ = [Y1, Y2,…, YK] .   (6) 
The following population-based MGA method 

produces a pre-determined number of close-to-
optimal, but maximally different alternatives, by 
modifying the value of the bound T in the maximal 
difference model and using any population-based 
metaheuristic to solve the corresponding, maximal 

difference problem. The multicriteria MGA 
algorithm that follows constructs a pre-determined 
number of maximally different, near-optimal 
alternatives, by modifying the bound value T in the 
maximal difference model and using any 
population-based technique to solve the 
corresponding maximal difference problem. Each 
solution in the population comprises one set of p 
different alternatives. By exploiting the co-
evolutionary aspects within the metaheuristic, the 
algorithm collectively evolves each solution toward 
sets of different local optima within the solution 
space. In this process, each desired solution 
alternative undergoes the common search procedure 
of the metaheuristic. However, the survival of 
solutions depends upon both how well the solutions 
perform with respect to the modelled objective(s) 
and by how far away they are from all of the other 
alternatives generated in the decision space. 

A straightforward process for generating 
alternatives solves the maximum difference model 
iteratively by incrementally updating the target T 
whenever a new alternative needs to be produced 
and then re-solving the resulting model [24]. This 
iterative approach parallels the original Hop, Skip, 
and Jump (HSJ) MGA algorithm of Brill et al. [8] in 
which the alternatives are created one-by-one 
through an incremental adjustment of the target 
constraint. While this approach is straightforward, it 
entails a repetitive execution of the optimization 
algorithm [7], [12], [13]. To improve upon the 
stepwise HSJ approach, a concurrent MGA 
technique was subsequently designed based upon 
co-evolution ([13], [15], [17]). In a co-evolutionary 
approach, pre-specified stratified subpopulation 
ranges within an algorithm’s overall population are 
established that collectively evolve the search 
toward the specified number of maximally different 
alternatives. Each desired solution alternative is 
represented by each respective subpopulation and 
each subpopulation undergoes the common 
processing operations of the procedure. The survival 
of solutions in each subpopulation depends 
simultaneously upon how well the solutions perform 
with respect to the modelled objective(s) and by 
how far away they are from all of the other 
alternatives. Consequently, the evolution of 
solutions in each subpopulation toward local optima 
is directly influenced by those solutions contained in 
all of the other subpopulations, which forces the 
concurrent co-evolution of each subpopulation 
towards good but maximally distant regions within 
the decision space according to the maximal 
difference model [7]. Co-evolution is also much 
more efficient than a sequential HSJ-style approach 
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in that it exploits the inherent population-based 
searches to concurrently generate the entire set of 
maximally different solutions using only a single 
population [12], [17]. 

While concurrent approaches can exploit 
population-based algorithms, co-evolution can only 
occur within each of the stratified subpopulations. 
Consequently, the maximal differences between 
solutions in different subpopulations can only be 
based upon aggregate subpopulation measures. 
Conversely, in the following simultaneous MGA 
algorithm, each solution in the population contains 
exactly one entire set of alternatives and the 
maximal difference is calculated only for that 
particular solution (i.e. the specific alternative set 
contained within that solution in the population). 
Hence, by the evolutionary nature of the population-
based search procedure, in the subsequent approach, 
the maximal difference is simultaneously calculated 
for the specific set of alternatives considered within 
each specific solution – and the need for concurrent 
subpopulation aggregation measures is avoided. 

Using the data structure terminology, the steps 
for the stochastic multicriteria MGA algorithm are 
as follows ([14], [19], [20], [21], [22], [23], [24]). It 
should be readily apparent that the stratification 
approach employed by this method can be easily 
modified for any population-based algorithm. 

Preliminary Step. In this initialization step, solve 
the original optimization problem to determine the 
optimal solution, X*. Based upon the objective 
value F(X*), establish P target values. P represents 
the desired number of maximally different 
alternatives to be generated within prescribed target 
deviations from the X*. Note: The value for P has to 
have been set a priori by the decision-maker. 

Without loss of generality, it is possible to forego 
this step and to use the algorithm to find X* as part 
of its solution processing in the subsequent steps. 
However, this significantly increases the number of 
iterations of the computational procedure and the 
initial stages of the processing become devoted to 
finding X* while the other elements of each 
population solution are retained as essentially 
“computational overhead”. 

Step 1. Create the initial population of size K in 
which each solution is divided into P equally-sized 
partitions. The size of each partition corresponds to 
the number of variables for the original optimization 
problem. Xkp represents the pth alternative, p = 
1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each 
Xkp, p = 1,…,P, using the simulation module with 
respect to the modelled objective. Alternatives 
meeting their target constraint and all other problem 

constraints are designated as feasible, while all other 
alternatives are designated as infeasible. A solution 
can only be designated as feasible if all of the 
alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to 
each solution to rank order the best individuals in 
the population. The best solution is the feasible 
solution containing the most distant set of 
alternatives in the decision space (the distance 
measures are defined in Step 5). 

Note: Because the best-solution-to-date is always 
retained in the population throughout each iteration, 
at least one solution will always be feasible. 
Furthermore, a feasible solution based on the 
initialization step can be constructed using P 
repetitions of X*. 

Step 4. Stop the algorithm if the termination 
criteria (such as maximum number of iterations or 
some measure of solution convergence) are met. 
Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, 
calculate R Max-Min and/or Max-Sum distance 
measures, Dr

k, r = 1,…, R, between all of the 
alternatives contained within the solution. 

As an illustrative example for calculating the 
multicriteria distance measures, compute : 
D1

k = 1∆ ( Xka, Xkb) = 
, ,

Min
a b q

 | Xkaq – Xkbq | ,  

          a = 1,…,P, b = 1,…,P, q = 1,…,n, (7) 
D2

k  = 2∆ ( Xka, Xkb)  
  = 

1a toP=∑ 1b toP=∑ 1...q n=∑ | Xkaq – Xkbq |.  (8) 

and 
D3

k  = 3∆ ( Xka, Xkb)  
  = 

1a toP=∑ 1b toP=∑ 1...q n=∑ ( Xkaq – Xkbq )2.  (9) 

D1
k denotes the minimum absolute distance, D2

k 
represents the overall absolute deviation, and D3

k 
determines the overall quadratic deviation between 
all of the alternatives contained within solution k. 

Alternatively, the distance functions could be 
calculated using some other appropriately defined 
measures. 

Step 6. Let Dk = G(D1
k, D2

k, D3
k,…, DR

k) 
represent the multicriteria objective for solution k. 
Rank the solutions according to the distance 
measure Dk objective – appropriately adjusted to 
incorporate any constraint violation penalties for 
infeasible solutions. The goal of maximal difference 
is to force alternatives to be as far apart as possible 
in the decision space from the alternatives of each of 
the partitions within each solution This step orders 
the specific solutions by those solutions which 
contain the set of alternatives which are most distant 
from each other. 
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Step 7. Apply appropriate metaheuristic “change 
operations” to each solution within the population 
and return to Step 2. 
 
 
5 Conclusion 

Complex problem solving inherently involves 
complicated performance components that are 
confounded by unquantifiable requirements and 
incongruent performance objectives. These decision 
environments frequently contain incompatible 
design specifications that are problematic – if not 
impossible – to incorporate when ancillary decision 
support models are constructed. Invariably, there are 
unmodelled elements, not apparent during model 
formulation, that can significantly affect the 
adequacy of its solutions. These confounding 
features require the decision-makers to integrate 
numerous uncertainties into their solution process 
before an ultimate solution can be determined. 
Faced with such inconsistencies, it is unlikely that 
any single solution can simultaneously satisfy all 
ambiguous system requirements without significant 
compromises. Therefore, any decision support 
approach must somehow address these complicating 
facets in some way, while simultaneously being 
flexible enough to condense the potential effects 
within the intrinsic planning incongruities.  

This paper has provided a new stochastic 
multicriteria approach and an updated MGA 
procedure that directs stochastic SO search 
processes. This new computationally efficient MGA 
method establishes how population-based 
algorithms can simultaneously construct entire sets 
of close-to-optimal, maximally different alternatives 
by exploiting the evolutionary characteristics of any 
population-based solution approach. In this MGA 
role, the multicriteria objective can efficiently 
generate the requisite set of dissimilar alternatives, 
with each generated solution providing an entirely 
different outlook to the problem. The max-sum 
criteria ensure that the distances between the 
alternatives created by this algorithm are good in 
general, while the max-min criteria ensure that the 
distances between the alternatives are good in the 
worst case. Since population-based procedures can 
be applied to a wide range of problem types, the 
practicality of this stochastic multicriteria MGA 
approach can be extended to wide range of “real 
world” planning situations. Such extensions will be 
examined in future research. 
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