

A Multicriteria Simulation-Optimization Algorithm for Generating Sets
of Alternatives Using Population-Based Metaheuristics

JULIAN SCOTT YEOMANS

OMIS Area, Schulich School of Business
York University

4700 Keele Street, Toronto, ON, M3J 1P3
CANADA

syeomans@schulich.yorku.ca

Abstract: - Stochastic optimization problems are often overwhelmed with inconsistent performance
requirements and incompatible performance specifications that can be difficult to detect during problem
formulation. Therefore, it can prove beneficial to create a set of dissimilar options that provide divergent
perspectives to the problem. These alternatives should be near-optimal with respect to the specified
objective(s), but be maximally different from each other in the decision region. The approach for creating
maximally different sets of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-
optimization approaches are commonly employed to solve computationally difficult problems containing
significant stochastic uncertainties. This paper provides a new, stochastic, multicriteria MGA approach that can
generate sets of maximally different alternatives for any simulation-optimization method that employs a
population-based algorithm.

Key-Words: - Multicriteria Objectives, Population-based algorithms, Modelling-to-generate-alternatives

1 Introduction

Stochastic decision-making problems frequently
include inconsistent and incompatible design
specifications that can be difficult to formulate into
mathematical decision-models [1], [2], [3], [4], [5].
Although “optimal” solutions can be determined for
the mathematical models, they generally do not
provide the best solution to the “real” problem as
there are usually unmodeled components not
apparent when the mathematical models are
formulated [1], [2], [6]. Generally, it is better to
construct a small number of distinct alternatives that
provide complementary perspectives to the
particular problem [3], [7]. These dissimilar
solutions should be near-optimal with respect to the
specified objective(s), but be maximally different
from each other within the solution domain. The
approach for creating maximally different sets of
solutions is referred to as modelling-to-generate-
alternatives (MGA) [6], [7], [8]. The primary
impetus behind MGA is to create a set of
alternatives that are “good” when measured within
the modelled objective space but as different as
possible from each other in the decision space.
Decision-makers must undertake a subsequent
evaluation of this set to determine which specific
alternative(s) most closely satisfy their specific
goals. Consequently, unlike the more
straightforward style of explicit solution

determination inherent in most “hard” optimization
approaches, MGA approaches are necessarily
classified into the decision support realm.

Early MGA algorithms employed direct,
incremental approaches for constructing their
alternatives by re-running their algorithms
incrementally whenever a new solution had to be
created [6], [7], [8], [9], [10]. These iterative
approaches imitated the seminal MGA method of
Brill et al. [8] where, after the initial mathematical
model had been optimized, all supplementary
alternatives were produced one-at-a-time. These
incremental approaches all required n+1 iterations
of their respective algorithms – initially to optimize
the original problem, then to produce each of the
subsequent n alternatives [7], [11], [12], [13], [14],
[15], [16], [17], [18]). Subsequently, it was
demonstrated how a set of maximally different
alternatives could be efficiently generated using any
population-based algorithm by permitting the
generation of the overall optimal solution together
with n distinct alternatives in a single computational
run irrespective of the value of n [19], [20], [21],
[22], [23]. In [24] a new data structure was created
that permits simultaneous alternatives to be
constructed by population-based solution methods
and this was incorporated into a bicriterion
procedure in [25]. In [26] it was shown how a set of
maximally different solution alternatives could be

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 74 Volume 18, 2019

mailto:Syeomans@ssb.yorku.ca

generated by extending several earlier MGA
techniques into stochastic optimization.

In this study, a new multicriteria, objective is
created that combines the data structure into the
simultaneous solution approach to create a new
stochastic MGA algorithm. The max-sum
components of the objective produce a maximum
distance between alternatives by ensuring that the
total deviation between all of the variables in all of
the alternatives is collectively large. This does not,
however, preclude the occurrence of relatively small
(or zero) deviations between certain individual
variables within certain solutions. In contrast, max-
min objectives force a maximum distance between
every variable over all solutions. By considering the
multiple objectives simultaneously, the alternatives
created can be forced as far apart as possible for all
variables in general and the closest distance in the
worst case between any solutions will never be less
than the value obtained for the max-min objective.
This stochastic MGA algorithmic approach proves
to be extremely computationally efficient.

2 Modelling to Generate Alternatives

Mathematical optimization has focused almost
entirely on generating single optimal solutions to
single-objective problems or producing sets of
noninferior solutions to multi-objective
constructions [2], [5], [8]. While such conventions
may create solutions to the derived mathematical
formulations, whether these outputs are the best
solutions to the “real” problems remains debatable
[1], [2], [6], [8]. With many complex, “real world”
decision situations, there are numerous system
specifications that can never be incorporated into
the problem formulation [1], [5]. Moreover, it may
not be possible to explicitly account for all of the
subjective requirements as there are frequently
numerous adversarial stakeholders and incompatible
design components to address. Thus, most
subjective features unavoidably remain unquantified
and unmodelled in the mathematical decision
models. This regularly occurs when conclusions are
made based not only upon modelled objectives, but
also upon more incongruent stakeholder preferences
and socio-political-economic goals [7]. Several
incongruent modelling dualities are illustrated in
[6], [8], [9], and [10].

When unmodelled objectives and unquantified
issues exist, non-conventional methods are needed
to not only search the decision region for
noninferior sets of solutions, but to also explore the
decision region for alternatives that are clearly sub-
optimal to the modelled problem. Namely, any

search for alternatives to problems known or
suspected to contain unmodelled components must
concentrate not only on a non-inferior set of
solutions, but also necessarily on an explicit
exploration of the problem’s inferior solution space.

To demonstrate the implications of unmodelled
objectives in a decision search, assume that an
optimal solution for a maximization problem is X*
with objective value Z1* [24]. Suppose a second,
unquantified, maximization objective Z2 exists that
represents some “politically acceptable” factor.
Assume that the solution, Xa, belonging to the 2-
objective noninferior set, exists that corresponds to a
best compromise solution if both objectives could
have been simultaneously considered. Although Xa
would be considered as the best solution to the real
problem, in the actual mathematical model it would
appear inferior to solution X*, since Z1a ≤ Z1*.
Therefore, when unquantified components are
included in the decision-making process, inferior
decisions to the mathematically modelled problem
could be optimal to the underlying “real” problem.
Thus, when unquantified issues and unmodelled
objectives could exist, alternative solution
procedures are required to not only explore the
decision domain for noninferior solutions to the
modelled problem, but also to concurrently search
the decision domain for inferior solutions.
Population-based algorithms permit concurrent
searches throughout a decision space and prove to
be particularly proficient solution methods.

The primary task of MGA is to create a workable
set of options that are quantifiably good with respect
to all modelled objectives, yet are as different as
possible from each other within the solution space.
By accomplishing this requirement, the resulting set
of alternatives is able to provide truly different
perspectives that perform similarly with respect to
the known modelled objective(s) yet very differently
with respect to various potentially unmodelled
aspects. By creating these good-but-different
solutions, the decision-makers are able to explore
potentially desirable qualities within the alternatives
that might be able to satisfy the unmodelled
objectives to varying degrees of stakeholder
acceptability.

To motivate the MGA process, it is necessary to
more formally characterize the mathematical
definition of its goals [6], [7]. Assume that the
optimal solution to an original mathematical model
is X* with corresponding objective value Z* =
F(X*). The resultant difference model can then be
solved to produce an alternative solution, X, that is
maximally different from X*:

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 75 Volume 18, 2019

Maximize ∆ (X, X*) = Min
i

 | Xi - Xi* | (1)

Subject to: X ∈ D (2)
 | F(X) - Z* | ≤ T (3)

where ∆ represents an appropriate difference
function (shown in (1) as an absolute difference)
and T is a tolerance target relative to the original
optimal objective value Z*. T is a user-specified
limit that determines what proportion of the inferior
region needs to be explored for acceptable
alternatives. This difference function concept can be
extended into a difference measure between any set
of alternatives by replacing X* in the objective of
the maximal difference model and calculating the
overall minimum absolute difference (or some other
function) of the pairwise comparisons between
corresponding variables in each pair of alternatives
– subject to the condition that each alternative is
feasible and falls within the specified tolerance
constraint.

The population-based MGA procedure to be
introduced is designed to generate a pre-determined
small number of close-to-optimal, but maximally
different alternatives, by adjusting the value of T
and solving the corresponding maximal difference
problem instance by exploiting the population
structure of the algorithm. The survival of solutions
depends upon how well the solutions perform with
respect to the problem’s originally modelled
objective(s) and simultaneously by how far away
they are from all of the other alternatives generated
in the decision space.

3 Simulation-Optimization for
Stochastic Optimization

Finding optimal solutions to large stochastic
problems proves complicated when numerous
system uncertainties must be directly incorporated
into the solution procedures ([27], [28], [29], [30]).
Simulation-Optimization (SO) is a broadly defined
family of stochastic solution approaches that
combines simulation with an underlying
optimization component for optimization ([27]). In
SO, all unknown objective functions, constraints,
and parameters are replaced by simulation models in
which the decision variables provide the settings
under which simulation is performed.

The general steps of SO can be summarized in
the following fashion ([28], [31]). Suppose the
mathematical model of the optimization problem
contains n decision variables, iX , represented in the
vector X = [1X , 2X ,…, nX]. If the objective

function is expressed by F and the feasible region is
designated by D, then the mathematical
programming problem is to optimize F(X) subject to
X ∈ D. When stochastic conditions exist, values for
the objective and constraints can be determined by
simulation. Any solution comparison between two
different solutions X1 and X2 requires the
evaluation of some statistic of F modelled with X1
compared to the same statistic modelled with X2
([27], [32]). These statistics are calculated by
simulation, in which each X provides the decision
variable settings employed in the simulation. While
simulation provides a means for comparing results,
it does not provide the mechanism for determining
optimal solutions to problems. Hence, simulation
cannot be used independently for stochastic
optimization.

Since all measures of system performance in SO
are stochastic, every potential solution, X, must be
calculated through simulation. Because simulation is
computationally intensive, an optimization
algorithm is employed to guide the search for
solutions through the problem’s feasible domain in
as few simulation runs as possible ([29], [32]). As
stochastic system problems frequently contain
numerous potential solutions, the quality of the final
solution could be highly variable unless an
extensive search has been performed throughout the
entire feasible region. A stochastic SO approach
contains two alternating computational phases; (i)
an “evolutionary” module directed by some
optimization (frequently a metaheuristic) method
and (ii) a simulation module ([33]). Because of the
stochastic components, all performance measures
are necessarily statistics calculated from the
responses generated in the simulation module. The
quality of each solution is found by having its
performance criterion, F, evaluated in the simulation
module. After simulating each candidate solution,
their respective objective values are returned to the
evolutionary module to be utilized in the creation of
ensuing candidate solutions. Thus, the evolutionary
module aims to advance the system toward
improved solutions in subsequent generations and
ensures that the solution search does not become
trapped in some local optima. After generating new
candidate solutions in the evolutionary module, the
new solution set is returned to the simulation
module for comparative evaluation. This alternating,
two-phase search process terminates when an
appropriately stable system state (i.e. an optimal
solution) has been attained. The optimal solution
produced by the procedure is the single best solution
found throughout the course of the entire search
process ([33]).

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 76 Volume 18, 2019

Population-based algorithms are conducive to
SO searches because the complete set of candidate
solutions maintained in their populations permit
searches to be undertaken throughout multiple
sections of the feasible region, concurrently. For
population-based optimization methods, the
evolutionary phase evaluates the entire current
population of solutions during each generation of
the search and evolves from a current population to
a subsequent one. A primary characteristic of
population-based procedures is that better solutions
in a current population possess a greater likelihood
for survival and progression into the subsequent
population.

It has been shown that SO can be used as a very
computationally intensive, stochastic MGA
technique ([32], [34]). However, because of the very
long computational runs, several approaches to
accelerate the search times and solution quality of
SO have been examined subsequently [31]. The next
section provides an MGA algorithm that
incorporates stochastic uncertainty using SO to
much more efficiently generate sets of maximally
different solution alternatives.

4 Population-based, Multicriteria
MGA Algorithm

In this section, a data structure is introduced that
permits a multicriteria MGA solution approach via
any population-based algorithm [24]. Suppose that it
is desired to be able to produce P alternatives that
each possess n decision variables and that the
population algorithm is to possess K solutions in
total. That is, each solution is to contain one set of P
maximally different alternatives. In this
representation, let Yk, k = 1,…, K, represent the kth
solution which is made up of one complete set of P
different alternatives. Namely, if Xkp is the pth
alternative, p = 1,…, P, of solution k, k = 1,…, K,
then Yk can be represented as

 Yk = [Xk1, Xk2,…, XkP] . (4)
If Xkjq, q = 1,…, n, is the qth variable in the jth

alternative of solution k, then
 Xkj = (Xkj1, Xkj2,…, Xkjn) . (5)
Consequently, an entire population, Y, comprised

of K different sets of P alternatives can be written in
vector form as,

 Y’ = [Y1, Y2,…, YK] . (6)
The following population-based MGA method

produces a pre-determined number of close-to-
optimal, but maximally different alternatives, by
modifying the value of the bound T in the maximal
difference model and using any population-based
metaheuristic to solve the corresponding, maximal

difference problem. The multicriteria MGA
algorithm that follows constructs a pre-determined
number of maximally different, near-optimal
alternatives, by modifying the bound value T in the
maximal difference model and using any
population-based technique to solve the
corresponding maximal difference problem. Each
solution in the population comprises one set of p
different alternatives. By exploiting the co-
evolutionary aspects within the metaheuristic, the
algorithm collectively evolves each solution toward
sets of different local optima within the solution
space. In this process, each desired solution
alternative undergoes the common search procedure
of the metaheuristic. However, the survival of
solutions depends upon both how well the solutions
perform with respect to the modelled objective(s)
and by how far away they are from all of the other
alternatives generated in the decision space.

A straightforward process for generating
alternatives solves the maximum difference model
iteratively by incrementally updating the target T
whenever a new alternative needs to be produced
and then re-solving the resulting model [24]. This
iterative approach parallels the original Hop, Skip,
and Jump (HSJ) MGA algorithm of Brill et al. [8] in
which the alternatives are created one-by-one
through an incremental adjustment of the target
constraint. While this approach is straightforward, it
entails a repetitive execution of the optimization
algorithm [7], [12], [13]. To improve upon the
stepwise HSJ approach, a concurrent MGA
technique was subsequently designed based upon
co-evolution ([13], [15], [17]). In a co-evolutionary
approach, pre-specified stratified subpopulation
ranges within an algorithm’s overall population are
established that collectively evolve the search
toward the specified number of maximally different
alternatives. Each desired solution alternative is
represented by each respective subpopulation and
each subpopulation undergoes the common
processing operations of the procedure. The survival
of solutions in each subpopulation depends
simultaneously upon how well the solutions perform
with respect to the modelled objective(s) and by
how far away they are from all of the other
alternatives. Consequently, the evolution of
solutions in each subpopulation toward local optima
is directly influenced by those solutions contained in
all of the other subpopulations, which forces the
concurrent co-evolution of each subpopulation
towards good but maximally distant regions within
the decision space according to the maximal
difference model [7]. Co-evolution is also much
more efficient than a sequential HSJ-style approach

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 77 Volume 18, 2019

in that it exploits the inherent population-based
searches to concurrently generate the entire set of
maximally different solutions using only a single
population [12], [17].

While concurrent approaches can exploit
population-based algorithms, co-evolution can only
occur within each of the stratified subpopulations.
Consequently, the maximal differences between
solutions in different subpopulations can only be
based upon aggregate subpopulation measures.
Conversely, in the following simultaneous MGA
algorithm, each solution in the population contains
exactly one entire set of alternatives and the
maximal difference is calculated only for that
particular solution (i.e. the specific alternative set
contained within that solution in the population).
Hence, by the evolutionary nature of the population-
based search procedure, in the subsequent approach,
the maximal difference is simultaneously calculated
for the specific set of alternatives considered within
each specific solution – and the need for concurrent
subpopulation aggregation measures is avoided.

Using the data structure terminology, the steps
for the stochastic multicriteria MGA algorithm are
as follows ([14], [19], [20], [21], [22], [23], [24]). It
should be readily apparent that the stratification
approach employed by this method can be easily
modified for any population-based algorithm.

Preliminary Step. In this initialization step, solve
the original optimization problem to determine the
optimal solution, X*. Based upon the objective
value F(X*), establish P target values. P represents
the desired number of maximally different
alternatives to be generated within prescribed target
deviations from the X*. Note: The value for P has to
have been set a priori by the decision-maker.

Without loss of generality, it is possible to forego
this step and to use the algorithm to find X* as part
of its solution processing in the subsequent steps.
However, this significantly increases the number of
iterations of the computational procedure and the
initial stages of the processing become devoted to
finding X* while the other elements of each
population solution are retained as essentially
“computational overhead”.

Step 1. Create the initial population of size K in
which each solution is divided into P equally-sized
partitions. The size of each partition corresponds to
the number of variables for the original optimization
problem. Xkp represents the pth alternative, p =
1,…,P, in solution Yk, k = 1,…,K.

Step 2. In each of the K solutions, evaluate each
Xkp, p = 1,…,P, using the simulation module with
respect to the modelled objective. Alternatives
meeting their target constraint and all other problem

constraints are designated as feasible, while all other
alternatives are designated as infeasible. A solution
can only be designated as feasible if all of the
alternatives contained within it are feasible.

Step 3. Apply an appropriate elitism operator to
each solution to rank order the best individuals in
the population. The best solution is the feasible
solution containing the most distant set of
alternatives in the decision space (the distance
measures are defined in Step 5).

Note: Because the best-solution-to-date is always
retained in the population throughout each iteration,
at least one solution will always be feasible.
Furthermore, a feasible solution based on the
initialization step can be constructed using P
repetitions of X*.

Step 4. Stop the algorithm if the termination
criteria (such as maximum number of iterations or
some measure of solution convergence) are met.
Otherwise, proceed to Step 5.

Step 5. For each solution Yk, k = 1,…, K,
calculate R Max-Min and/or Max-Sum distance
measures, Dr

k, r = 1,…, R, between all of the
alternatives contained within the solution.

As an illustrative example for calculating the
multicriteria distance measures, compute :
D1

k = 1∆ (Xka, Xkb) =
, ,

Min
a b q

 | Xkaq – Xkbq | ,

 a = 1,…,P, b = 1,…,P, q = 1,…,n, (7)
D2

k = 2∆ (Xka, Xkb)
 =

1a toP=∑ 1b toP=∑ 1...q n=∑ | Xkaq – Xkbq |. (8)

and
D3

k = 3∆ (Xka, Xkb)
 =

1a toP=∑ 1b toP=∑ 1...q n=∑ (Xkaq – Xkbq)2. (9)

D1
k denotes the minimum absolute distance, D2

k
represents the overall absolute deviation, and D3

k
determines the overall quadratic deviation between
all of the alternatives contained within solution k.

Alternatively, the distance functions could be
calculated using some other appropriately defined
measures.

Step 6. Let Dk = G(D1
k, D2

k, D3
k,…, DR

k)
represent the multicriteria objective for solution k.
Rank the solutions according to the distance
measure Dk objective – appropriately adjusted to
incorporate any constraint violation penalties for
infeasible solutions. The goal of maximal difference
is to force alternatives to be as far apart as possible
in the decision space from the alternatives of each of
the partitions within each solution This step orders
the specific solutions by those solutions which
contain the set of alternatives which are most distant
from each other.

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 78 Volume 18, 2019

Step 7. Apply appropriate metaheuristic “change
operations” to each solution within the population
and return to Step 2.

5 Conclusion

Complex problem solving inherently involves
complicated performance components that are
confounded by unquantifiable requirements and
incongruent performance objectives. These decision
environments frequently contain incompatible
design specifications that are problematic – if not
impossible – to incorporate when ancillary decision
support models are constructed. Invariably, there are
unmodelled elements, not apparent during model
formulation, that can significantly affect the
adequacy of its solutions. These confounding
features require the decision-makers to integrate
numerous uncertainties into their solution process
before an ultimate solution can be determined.
Faced with such inconsistencies, it is unlikely that
any single solution can simultaneously satisfy all
ambiguous system requirements without significant
compromises. Therefore, any decision support
approach must somehow address these complicating
facets in some way, while simultaneously being
flexible enough to condense the potential effects
within the intrinsic planning incongruities.

This paper has provided a new stochastic
multicriteria approach and an updated MGA
procedure that directs stochastic SO search
processes. This new computationally efficient MGA
method establishes how population-based
algorithms can simultaneously construct entire sets
of close-to-optimal, maximally different alternatives
by exploiting the evolutionary characteristics of any
population-based solution approach. In this MGA
role, the multicriteria objective can efficiently
generate the requisite set of dissimilar alternatives,
with each generated solution providing an entirely
different outlook to the problem. The max-sum
criteria ensure that the distances between the
alternatives created by this algorithm are good in
general, while the max-min criteria ensure that the
distances between the alternatives are good in the
worst case. Since population-based procedures can
be applied to a wide range of problem types, the
practicality of this stochastic multicriteria MGA
approach can be extended to wide range of “real
world” planning situations. Such extensions will be
examined in future research.

References:
[1] M. Brugnach, A. Tagg, F. Keil, and W.J. De

Lange, Uncertainty matters: computer models
at the science-policy interface, Water
Resources Management, Vol. 21, 2007, pp.
1075-1090.

[2] J.A.E.B. Janssen, M.S. Krol, R.M.J. Schielen,
and A.Y. Hoekstra, The effect of modelling
quantified expert knowledge and uncertainty
information on model-based decision making,
Environmental Science and Policy, Vol. 13,
No. 3, 2010, pp. 229-238.

[3] M. Matthies, C. Giupponi, and B. Ostendorf,
Environmental decision support systems:
Current issues, methods and tools,
Environmental Modelling and Software, Vol.
22, No. 2, 2007, pp. 123-127.

[4] H.T. Mowrer, Uncertainty in natural resource
decision support systems: Sources,
interpretation, and importance, Computers and
Electronics in Agriculture, Vol. 27, No. 1-3,
2000, pp. 139-154.

[5] W.E. Walker, P. Harremoes, J. Rotmans, J.P.
Van der Sluis, M.B.A.P. Van Asselt, Janssen,
and M.P. Krayer von Krauss, Defining
uncertainty – a conceptual basis for uncertainty
management in model-based decision support,
Integrated Assessment, Vol. 4, No. 1, 2003, pp.
5-17.

[6] D.H. Loughlin, S.R. Ranjithan, E.D. Brill, and
J.W. Baugh, Genetic algorithm approaches for
addressing unmodelled objectives in
optimization problems, Engineering
Optimization, Vol. 33, No. 5, 2001, pp. 549-
569.

[7] J.S. Yeomans, and Y. Gunalay, Simulation-
optimization techniques for modelling to
generate alternatives in waste management
planning, Journal of Applied Operational
Research, Vol. 3, No. 1, 2011, pp. 23-35.

[8] E.D. Brill, S.Y. Chang, and L.D. Hopkins,
Modelling to generate alternatives: the HSJ
approach and an illustration using a problem in
land use planning, Management Science, Vol.
28, No. 3, 1982, pp. 221-235.

[9] J.W. Baugh, S.C. Caldwell, and E.D. Brill, A
mathematical programming approach for
generating alternatives in discrete structural
optimization, Engineering Optimization, Vol.
28, No. 1, 1997, pp. 1-31.

[10] E.M. Zechman, and S.R. Ranjithan, Generating
alternatives using evolutionary algorithms for
water resources and environmental
management problems, Journal of Water

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 79 Volume 18, 2019

Resources Planning and Management, Vol.
133, No. 2, 2007, pp. 156-165.

[11] Y. Gunalay, J.S. Yeomans, and G.H. Huang,
Modelling to generate alternative policies in
highly uncertain environments: An application
to municipal solid waste management planning,
Journal of Environmental Informatics, Vol. 19,
No. 2, 2012, pp. 58-69.

[12] R. Imanirad, and J.S. Yeomans, Modelling to
Generate Alternatives Using Biologically
Inspired Algorithms, in X.S. Yang (Ed.),
Swarm Intelligence and Bio-Inspired
Computation: Theory and Applications,
Elsevier, Amsterdam, 2013, pp. 313-333.

[13] R. Imanirad, X.S. Yang, and J.S. Yeomans, A
computationally efficient, biologically-inspired
modelling-to-generate-alternatives method,
Journal on Computing, Vol. 2, No. 2, 2012, pp.
43-47.

[14] J.S. Yeomans, An Efficient Computational
Procedure for Simultaneously Generating
Alternatives to an Optimal Solution Using the
Firefly Algorithm, in X.S. Yang (Ed.), Nature-
Inspired Algorithms and Applied Optimization,
Springer, New York, 2018, pp. 261-273.

[15] R. Imanirad, X.S. Yang, and J.S. Yeomans, A
co-evolutionary, nature-inspired algorithm for
the concurrent generation of alternatives,
Journal on Computing, Vol. 2, No. 3, 2012, pp.
101-106.

[16] R. Imanirad, X.S. Yang, and J.S. Yeomans,
Modelling-to-generate-alternatives via the
firefly algorithm, Journal of Applied
Operational Research, Vol. 5, No. 1, 2013, pp.
14-21.

[17] R. Imanirad, X.S. Yang, and J.S. Yeomans, A
Concurrent Modelling to Generate Alternatives
Approach Using the Firefly Algorithm,
International Journal of Decision Support
System Technology, Vol. 5, No. 2, 2013, pp.
33-45.

[18] R. Imanirad, X.S. Yang, and J.S. Yeomans, A
biologically-inspired metaheuristic procedure
for modelling-to-generate-alternatives,
International Journal of Engineering Research
and Applications, Vol. 3, No. 2, 2013, pp.
1677-1686.

[19] J.S. Yeomans, Simultaneous Computing of Sets
of Maximally Different Alternatives to Optimal
Solutions, International Journal of Engineering
Research and Applications, Vol. 7, No. 9,
2017, pp. 21-28.

[20] J.S. Yeomans, An Optimization Algorithm that
Simultaneously Calculates Maximally Different
Alternatives, International Journal of

Computational Engineering Research, Vol. 7,
No. 10, 2017, pp. 45-50.

[21] J.S. Yeomans, Computationally Testing the
Efficacy of a Modelling-to-Generate-
Alternatives Procedure for Simultaneously
Creating Solutions, Journal of Computer
Engineering, Vol. 20, No. 1, 2018, pp. 38-45.

[22] J.S. Yeomans, A Computational Algorithm for
Creating Alternatives to Optimal Solutions,
Transactions on Machine Learning and
Artificial Intelligence, Vol. 5, No. 5, 2017, pp.
58-68.

[23] J.S. Yeomans, A Simultaneous Modelling-to-
Generate-Alternatives Procedure Employing
the Firefly Algorithm, in N. Dey (Ed.),
Technological Innovations in Knowledge
Management and Decision Support, IGI
Global, Hershey, Pennsylvania, 2019, pp. 19-
33.

[24] J.S. Yeomans, An Algorithm for Generating
Sets of Maximally Different Alternatives Using
Population-Based Metaheuristic Procedures,
Transactions on Machine Learning and
Artificial Intelligence, Vol. 6, No. 5, 2018, pp.
1-9.

[25] J.S. Yeomans, A Bicriterion Approach for
Generating Alternatives Using Population-
Based Algorithms, WSEAS Transactions on
Systems, Vol. 18, No. 4, 2019, pp. 29-34.

[26] J.S. Yeomans, A Simulation-Optimization
Algorithm for Generating Sets of Alternatives
Using Population-Based Metaheuristic
Procedures, Journal of Software Engineering
and Simulation, forthcoming.

[27] M.C. Fu, Optimization for Simulation: Theory
vs. Practice, INFORMS Journal on Computing,
Vol. 14, No. 3, 2002, pp. 192-215.

[28] P. Kelly, Simulation Optimization is Evolving,
INFORMS Journal on Computing, Vol. 14, No.
3, 2002, pp. 223-225.

[29] R. Zou, Y. Liu, J. Riverson, A. Parker, and S.
Carter, A Nonlinearity Interval Mapping
Scheme for Efficient Waste Allocation
Simulation-Optimization Analysis, Water
Resources Research, Vol. 46, No. 8, 2010, pp.
1-14.

[30] R. Imanirad, X.S. Yang, and J.S. Yeomans,
Stochastic Decision-Making in Waste
Management Using a Firefly Algorithm-Driven
Simulation-Optimization Approach for
Generating Alternatives, in S. Koziel, L.
Leifsson, and X.S. Yang (Eds.), Recent
Advances in Simulation-Driven Modeling and
Optimization, Springer, Heidelberg, Germany,
2016, pp. 299-323.

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 80 Volume 18, 2019

[31] J.S. Yeomans, Waste Management Facility
Expansion Planning Using Simulation-
Optimization with Grey Programming and
Penalty Functions, International Journal of
Environmental and Waste Management, Vol.
10, No. 2/3, 2012, pp. 269-283.

[32] J.S. Yeomans, Applications of Simulation-
Optimization Methods in Environmental Policy
Planning Under Uncertainty, Journal of
Environmental Informatics, Vol. 12, No. 2,
2008, pp. 174-186.

[33] J.S. Yeomans, and X.S. Yang, Municipal
Waste Management Optimization Using a
Firefly Algorithm-Driven Simulation-
Optimization Approach, International Journal
of Process Management and Benchmarking,
Vol. 4, No. 4, 2014, pp. 363-375.

[34] J.D. Linton, J.S. Yeomans, and R.
Yoogalingam, Policy Planning Using Genetic
Algorithms Combined with Simulation: The
Case of Municipal Solid Waste, Environment
and Planning B: Planning and Design, Vol. 29,
No. 5, 2002, pp. 757-778.

WSEAS TRANSACTIONS on COMPUTERS Julian Scott Yeomans

E-ISSN: 2224-2872 81 Volume 18, 2019

