

Aggregation of results in Crowdsourcing by means of an Evolutionary
Algorithm that calculates the Approximate Median String

LUIS GOMEZ

Electronic Engineering, Faculty of Engineering,
Central Unit of the Valley of Cauca.

Tuluá, COLOMBIA
Email: lgomez@uceva.edu.co

ANDRES REY

Electronic Engineering, Faculty of Engineering,
Central Unit of the Valley of Cauca.

Tuluá, COLOMBIA
Email: arey@uceva.edu.co

ANGEL LOZADA

Electronic Engineering, Faculty of Engineering,
Central Unit of the Valley of Cauca.

 Tuluá, COLOMBIA
Email: alozada@uceva.edu.co

Abstract: - In Crowdsourcing, the aggregation of results consists of introducing redundancy by asking several
workers to perform the same task, and then adding the answers given by the workers seeking to obtain results
that are more reliable. The aggregation of results is a very promising approach that can be easily implemented
when having numerical entries, but it is quite complex when the entries correspond to strings. This article
details how the concept of Median String was applied to perform the aggregation of Crowdsourcing strings,
developing an evolutionary algorithm for this purpose. The results obtained show that our algorithm can
calculate the Median String, which is a NP-Hard problem, of correct way but when applied to correct errors in
Crowdsourcing calculating the correct answer (hidden truth) depends on the quality of the inputs that must
present low dissimilarity

Key-Words: - aggregation of results, evolutionary algorithms, median String, error correction, crowdsourcing.

1 Introduction
The concept of Crowdsourcing is widely
disseminated nowadays, which refers, according to
its creator Jeff Howe, to the "act of a company or
institution taking a function once performed by
employees and outsourcing it to an undefined (and
generally large) network of people in the form of an
open call" [1]. This definition proposed by Howe,
although it is quite concrete, provides elements to
suggest that Crowdsourcing can be seen as a new
business model that is considered particularly useful
in tasks that require a large number of points of
view or different solutions to problems [2].

Crowdsourcing is generally carried out through
the Web and over the years has proven to be an
effective and scalable approach to solve different
problems in various fields [2], even to be used to
solve problems that are computationally expensive

or impossible to solve for machines, but which are
rather simple for human beings; hence, sometimes
the tasks proposed to the multitude are called
Human Intelligence Task (HITs).

Among the technical challenges faced by
crowdsourcing, one of the most important is to
control the quality of the results obtained, because
given the open nature of crowdsourcing, the data
collected through a process of this type are
potentially noisy [3]. To overcome this challenge,
several approaches or mechanisms have been
proposed, such as: (i) aggregation of results, (ii)
gold data, (iii) multilevel reviews, (iv) expert
review, (v) pre-selection and (vii) reputation.

With regard to this study, the aggregation of
results approach is of interest, which consists of
introducing redundancy by asking several workers
to perform the same task, and then adding the

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 1 Volume 18, 2019

mailto:lgomez@uceva.edu.co
mailto:arey@uceva.edu.co
mailto:alozada@uceva.edu.co

answers or results delivered by the workers seeking
a more reliable result. The aggregation of results is a
very promising approach that can be easily
implemented when having numerical entries, but it
is quite complex when the entries correspond to
strings [4].

Bearing in mind that in the last decades several
problems derived from the treatment of strings have
been the subject of research in fields such as
artificial vision, speech recognition, spell checking,
detection of plagiarism, extensive searches in
databases, Internet searches, pattern recognition, and
bioinformatics, [5], [6]. In this study, it is proposed
that by performing an adequate processing of the
strings, it may be possible to strengthen the
Crowdsourcing mechanisms of aggregation of
results, which seek to find the hidden truth in the set
of responses given by the multitude for the proposed
task. What is specifically proposed is to perform the
aggregation of strings in Crowdsourcing applying
the concept of Median String to perform correction
of errors presented in the input strings. The concept
of Median String in mention is equivalent to the
concept of average vector, but having in this case a
set of data conformed by character strings what
causes that its calculation is not simple and takes to
face a NP-Hard problem [7].

This article details how the concept of Median
String was applied to aggregate a set of strings
generated in Crowdsourcing tasks, developing an
evolutionary algorithm that provides good results
with a reasonable computational cost. The structure
of the document is as follows: section 2, deals with
the fundamentals; in section 3, the proposed
evolutionary algorithm for calculating the median
string of Crowdsourcing entries is presented;
Section 4 shows the experimental results; Section 5
contains the discussion of results; and section 6,
presents the conclusions.

2 Background
In this section, the main concept for the work that
corresponds to the Median String is described and
the problem that is addressed when trying to find
just the median string of a set of given strings. In
addition, a brief description of the evolutionary
algorithms proposed as a heuristic for the solution of
the mentioned problem and some related works are
presented

2.1 Median String
The initial definition of median string was presented
by Kohonen [8] who defines the concept for the first
time, as follows: given a set of strings, the median
string is defined as the string that minimizes ther
sum of distances to the strings of the set [8]. The
above definition is represented by the following
mathematical expression (1):

mS= mins∈∑ * ∑ d (s, sin
i=1)

(1)

In the above equation mS denotes the median
string to find given a set of strings S1= {S1, S2, … ,
Sn} formed by elements of an alphabet Σ, where Σ
* indicates that the strings have finite length and d is
the measure of dissimilarity or distance defined
according to the application.

The concept of median string is equivalent to the
average vector but in this case, the data set is made
up of strings of characters, so its calculation is not
simple. To find the median string of a set of given
strings, it is necessary to fulfill the condition that the
sum of the distances of this with all the given strings
must be minimal.

The distances can be measured in several ways
but the best known is with the Levenshtein metric,
which allows to find the distance between two
strings, that is, it is a measure that represents how
different the strings are. Table 1 shows examples
where the Levestein distance is calculated, which
basically corresponds to the minimum number of
operations required to transform one character string
into another; it is understood by operation, either an
insertion, elimination or the substitution of a
character.

Table 1. Example of distance between strings
String 1 String 2 Distance

casa casa 0

casa caza 1

cesa caza 2

casa perro 5

abcd dcba 4

When trying to find the Median String, a search

space must be generated and explored, consisting of
all the strings that can be created with all possible
combinations of the elements of the alphabet Σ. The
problem then is to look in this space until finding a
string whose sum of distances with respect to the
entry set of string is the minimum.

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 2 Volume 18, 2019

In spite of the definition of Median String is
apparently simple, it was shown that the calculation
of the exact median string is a NP-Hard problem [7],
which in practice leads to the need for approaches
that calculate an approximate solution through
algorithms that have a computational cost
polynomial and not exponential as when the exact
median string is found.

To address the solution of problems such as
finding the median string, evolutionary algorithms
can be used, which is precisely what is discussed
next.

2.1 Evolutionary algorithms
Historically, evolutionary algorithms are considered
a branch of artificial intelligence, since they were
used in the 1960s to add intelligence to finite-state
machines, but today they are used to solve a wide
variety of problems that are computationally
difficult to solve. That is to say, those that do not
have a solution in polynomial time, such as: the
problem of the traveling agent, the problem of the
backpack, the problem of finding a Hamiltonian
cycle, etc. All these problems for relatively small
entries, the response time executed on the best
computer in the world would take the time when the
universe was created until today. That is why it is
necessary to attack these problems with alternative
strategies where the response time is reasonable.

There are several different ways or approaches to
implement evolutionary algorithms. Among the best
known are the genetic algorithms created by John
Henry Holland in the 70s, which gave rise to
evolutionary computation; these algorithms are
characterized because the chromosome is encoded
in zeros and ones, and all the functions are applied
to expressions of zeros and ones, besides having a
function of decoding.

In this work, another existing approach was used,
genetic programming, which is very similar to the
genetic algorithm but the chromosome is not coded,
the phenotypic part is the same as the genotypic one
and the operators are defined according to the case
and application. The general operation of an
evolutionary algorithm consists of the following
steps:

Initialization: a set of chromosomes are created
with random values, where each chromosome is a
possible solution to the problem that is to be solved
or optimized. The set of chromosomes generated in
the initialization are stored in a memory space called
search space.

Evaluation: in this phase, a fitness value or a
classification is given to the chromosome in order to
know how close the solving the problem is.

Selection for reproduction: a subset of the
population of existing chromosomes in the search
space is selected to apply subsequently a series of
functions generally known as reproduction (crossing
or mutation) or survival functions. There are several
strategies to select the chromosomes after
establishing how many or in what percentage they
will pass for reproduction, for example: choosing
the ten best chromosomes, that is to say the ten ones
with the best fitness function; randomly choosing 10
chromosomes from the search space; make a
sampling by lottery, where the chromosomes with
the best fitness function are more likely to be
chosen; using the roulette method, a random value is
generated and from this value are formed (through a
simple recurrence relation) other missing random
values; and by tournament, selecting three
chromosomes randomly and from these ones, the
one with the best fitness value is chosen and the
procedure is repeated until the number of fixed
chromosomes is chosen.

Recombination: different reproductive functions
are applied to the selected chromosomes with the
purpose of generating new descendants. Among the
functions to be applied are those of crossing and
mutation. Not all descendant chromosomes are
going to be good, but the recombination process
allows some better chromosomes to be generated.
This procedure is done until reaching a point where
the new chromosomes do not improve those found
in the search space, a signal that serves to stop the
evolutionary algorithm.

Replacement: there are many ways to replace old
chromosomes in the search space with the new
descendant chromosomes, among the most used are:
(a) the ten chromosomes generated will replace the
ten worst chromosomes in the search space; (b) if
many chromosomes are generated then the entire
search space is replaced with all the descendant
chromosomes; (c) only the chromosomes that
overcome or gain the worst chromosomes are
replaced (many of the chromosomes generated are
worse than the worst chromosomes in the search
space.

When an evolutionary algorithm is implemented,
the elements shown in Figure 1 must be generated.
These elements appear during the execution of the
evolutionary algorithm as described below.

The search space is created in the initialization
containing the chromosomes to which the fitness
function in the evaluation is applied. Subsequently,
during the selection, chromosomes that are selected

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 3 Volume 18, 2019

to proceed with reproduction are copied into the
mating pool where new chromosomes are created,
which during the replacement can take the place of
the worst chromosomes in the search space by
completing the process that can be repeated until the
new chromosomes do not improve those in the
search space or a defined number of iterations is
completed. As in the search space, there are n
possible solutions; all the algorithms that are
implemented following this scheme must be of low
computational cost.

Fig. 1. Main elements to be implemented in evolutionary
computation

3 Evolutionary algorithm developed
to calculate the median string
Evolutionary algorithms using the genetic
programming approach carried out the solution to
the problem of finding the median string.

Fig. 2. Class diagram of the implemented solution

The evolutionary algorithm developed was
implemented in the C ++ programming language,
which is a language recognized for its speed of
execution.

To start the description of the evolutionary
algorithm developed, Figure 2 is provided, which
corresponds to the class diagram of the implemented
solution.

As it is observed in the previous figure there are
four classes: (1) Main class, in charge of starting the
execution of the evolutionary algorithm; (2) a class
called AdmAG that implements the steps defined in
evolutionary programming such as initialization,
evaluation, selection, reproduction and replacement;
(3) Chromosome class, used to model the
chromosomes; (4) Statistics class, which contains
methods to support various statistical operations that
are commonly used in evolutionary algorithms that
use the sampling technique for the selection of the
best chromosomes.
 The four previous classes allow to find the
median string and the process starts when the main
class creates an instance of the evolutionary
algorithm class (AdmAG) passing as parameters the
set of strings to which the median string is going to
be calculated; the input strings correspond to raw
data that is loaded by the main class from an input
file.

Fig. 3. Steps followed in the evolutionary computation

At the time of creating the evolutionary
algorithm class instance the constructor method is
responsible for creating the table of symbols to be
used, including only the characters that appear in the
input strings passed as an argument, this in order to
optimize the search space. Once this is done, the

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 4 Volume 18, 2019

AG method is invoked, which is responsible for
executing the steps defined in the evolutionary
computation shown in Figure 3.

With the previous steps, evolutionary
programming allows to create and explore a large
search space made up of chromosomes that contain
strings created from the input strings. A description
of what happens in each step is presented below:

Initialization: Consists of filling the search space
with 100 chromosomes. The search space is
implemented as a vector of chromosomes formed
basically with random strings created according to
the table of symbols. Each chromosome represents a
possible solution to the problem of the median
string.

Evaluation: Consists of ordering the
chromosomes of the search space from least to
greatest according to the evaluation value obtained
when comparing the current string (that conforms to
the chromosome) with respect to the received input
strings. The evaluation value represents how close a
chromosome is to the input strings. The evaluation
values are obtained for each chromosome at the time
of ordering and are stored as part of its structure.

Selection: With the evaluation values, it is
created a vector that passes as a parameter to create
an instance of the Statistics class, which is
responsible for choosing the statistically most
suitable chromosomes according to their evaluation
value. It is important to highlight that before
creating this instance, negative numbers or zeros
must be avoided, so before using the statistics class,
the minimum of the evaluation function is
calculated and if this value is not positive it is
necessary a displacement.

That is to say, a kind of prenormalization is done
because the statistics class makes the true
normalization to apply the cumulative inverse
function (main function of the class) that is
responsible for randomly choosing the most suitable
chromosomes that are copied to a vector called
"Mating Pool". The chromosomes with higher
evaluation value are more likely to be chosen, but
all have some probability including the least fit,
because for their selection in the cumulative inverse
function a strategy called sampling draw is used; the
number of chromosomes that pass to the Mating
Pool corresponds to 10% of the size of the search
space.

Reproduction: Once in the Mating Pool, two
chromosomes that are located next to each other are
already chosen and the percentage is decided if they
are going to mutate or if they are going to cross each
other. If it mutates, it is decided randomly, which of
the four defined mutation functions is going to be

applied and if it is going to cross, it is decided
randomly which of the two crossing functions will
be chosen. The new chromosomes that result from
the mutation and/or crossing are taken to a new
vector of chromosomes and when all the
reproductions are finished and the vector is
complete, it is ordered according to the evaluation
function; the reproduction ends when all the
chromosomes of the Mating Pool are taken.

Replacement: To replace chromosomes from the
search space with the new chromosomes that result
from reproduction, the criterion is used: if it is better
than the worst of those found in the search space,
then it enters the search space. This implies that to
enter one of the new chromosomes into the search
space, it is required that its evaluation function be
better than that of the worst chromosome located in
the search space; new chromosomes that do not
enter the search space will be discarded because
they are not "better" than those already existing are.
After entering the new chromosomes in the search
space, it is ordered and the process starts again until
it is observed that new chromosomes are not
entering the search space, for this reason the
algorithm is stopped and the highest chromosome of
the search space is returned which will be the one
that contains the median string intended to find.

To finish the description of the evolutionary
algorithm implemented, three things need to be
detailed first, how the representation of individuals
was handled, secondly, the function of evaluation or
defined fitness (one of the most important elements)
and third, the crossing and mutation operations
designed.

Regarding the representation of individuals, the
chromosome is made up of a single gene that
corresponds to a string of characters. Each
chromosome represents a possible solution to the
problem of the median string and when creating the
strings that comprise it, the following considerations
are taken into account: the sizes of these strings
range from the minimum size of the input strings to
the largest size of the input strings; all characters are
chosen from the symbol table that is created only by
using characters that appear in the input strings. The
above restrictions correspond to heuristics that are
totally logical since the median string can not be
smaller than the minimum one, nor even larger than
the maximum one.

On the other hand, the evaluation function
defined to measure the fitness of the chromosomes
in the evolutionary algorithm is presented and
described below:

Evaluation Value = Similarity by Column - Total
 Dissimilarity (2)

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 5 Volume 18, 2019

Similarity by column. Corresponds to the evaluation
that is made of the similarity of the characters of the
strings evaluated in each column or position in the
following way: if the characters of the column are
equal, a value of 1 is assigned, if they are different -
1 and if it is a blank space-2. The final value of the
evaluation of the similarity by column corresponds
to the sum of the results of the evaluation of each
column when comparing the string that conforms to
the chromosome against all the input strings. A high
evaluation value represents that the strings are
similar, but it may obtain negative values that
represent that the strings are not similar.

Total dissimilarity. This measure represents how
different the evaluated strings are. To measure the
dissimilarity of the strings, the Levenshtein’s
method was used to find a value called editing
distance, which represents how different the strings
are. When the editing distance is zero, it means that
the strings are equal but as it increases, it represents
a greater dissimilarity. The measure of total
dissimilarity is always positive.

Finally, with regard to crossing operations two
forms were designed, crossing 1 that creates a new
chromosome by crossing two chromosomes in a
single randomly chosen point and crossing 2, which
creates a new chromosome crossing two
chromosomes in two points chosen in a random
way. Moreover, for the mutation, four operations
were designed:

To move. Where a new chromosome is created
by moving all the characters of the string one
position to the left or to the right. The character that
comes out of the chromosome is introduced on the
opposite side, leaving the string of the same size.

To remove. Creates a new chromosome by
removing a character from a random position. To
the Levestein’s distance, the amount of removed
elements is added, to assure that the gain in
distance, not only because the string diminishes in
length, but also because an element that was doing
that the distance grew was removed. To remove can
be taken as a mutation process.

To insert. For creating a new chromosome by
inserting a character from the ones in the symbol
table. The symbol is chosen randomly from the
symbol table and the place where it is to be inserted
is chosen randomly from the string, this being a
larger unit. To insert can be taken as a mutation
process.

To modify. Creates a new chromosome by
modifying one character for another. The position to
be modified is chosen randomly and the character to
be inserted is chosen randomly from the symbol
table.

When applying any of the above functions, the
symbol table that is created from the characters that
make up the input strings is used.

4 Experimental results
In order to evaluate the developed evolutionary
algorithm that allows finding the median string, two
different types of tests were carried out: first, testing
the evolutionary algorithm to find the median string
of several given input strings generated in
Crowdsourcing tasks. Secondly, evaluating the
algorithm evolutionary versus a performed
implementation of an algorithm that calculates the
exact median string to compare response times.

4.1 Evaluation of the evolutionary algorithm
finding the median string
The first group of tests (Test No.1, Test No.2 and
Test No.3) were intended to evaluate the functioning
of the evolutionary algorithm by finding the median
string for several different input strings. Numerous
tests of this type were carried out varying the length
and number of entries, and the number of symbols
that made up the strings.

Below are the results of three of the tests
performed where they were used as input strings,
responses generated by Crowdsourcing tasks of
transcription of information when it was a question
of collecting a data corresponding to the word
"Fotocopiado". For each of the tests ten executions
were made using the same machine (Lenovo G40
computer with Windows 7, 2.16 GHz and 2 GB of
memory) and without making variations to the
algorithm or input strings. The inputs provided to
the algorithm shown in Table 2 and the outputs
delivered by algorithm, the times required to
perform the computation, the editing distance of the
calculated median string with respect to the input
strings were recorded for each execution, these data
are shown in Tables 3, 4 and 5.

Table 2. Input strings used in the tests of the calculation
of the median string

Input string Test No.1 Test No.2 Test No.3

String No.1 fotocopiado fotocoPiado fotoCoPiado

String No.2 Fotocopiad Fotoopiad Ftoopiad

String No.3 Fotocopado Foocopado oocopado

String No.4 Foticopiado Foticopiadu Foyicopiadu

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 6 Volume 18, 2019

Table 3. Strings calculated by the algorithm
Execution Test No.1

 Median

String

Editing

Distance

Time

(Sec)

No. 1 Fotocopiado 4 1,17

No. 2 Fotocopiado 4 1,07

No. 3 Fotocopiado 4 1,12

No. 4 Fotocopiado 4 1,23

No. 5 Fotocopiado 4 1,96

No. 6 Fotocopiado 4 1,11

No. 7 Fotocopiado 4 1,16

No. 8 Fotocopiado 4 1,11

No. 9 Fotocopiado 4 1,31

No. 10 Fotocopiado 4 2,00

Table 4. Strings calculated by the algorithm
Execution Test No.2

 Median

String

Editing

Distance

Time

(Sec)

No. 1 Fotocopiado 8 14,13

No. 2 Fotocopiado 8 14,13

No. 3 Fotocopiado 8 13,10

No. 4 Fotocopiado 8 14,18

No. 5 Fotocopiado 8 14,14

No. 6 Fotocopiado 8 14,12

No. 7 Fotocopiado 8 14,16

No. 8 Fotocopiado 8 14,18

No. 9 Fotocopiado 8 11.66

No. 10 Fotocopiado 8 14,13

Table 5. Strings calculated by the algorithm
Execution Test No.3

 Median

String

Editing

Distance

Time

(Sec)

No. 1 Fooopado 15 15,89

No. 2 Fooopiada 15 4,32

No. 3 Focopiada 15 4,32

No. 4 Fotocopiado 12 4,01

No. 5 Fotocopiado 12 2,91

No. 6 Fotopopiado 14 10,74

4.2 Evaluation of evolutionary algorithm versus
naive algorithm
The second part of the tests was aimed at evaluating
the response time of the evolutionary algorithm; it

was specifically intended to verify if the
evolutionary algorithm could continue finding the
median string in a reasonable time, even though the
input strings were increasing their length. In order to
perform this test, another so-called naive algorithm
had to be implemented that was designed to
calculate the exact median string (the
implementation of this algorithm is included as a
method of the AdmAG class) and served as a
reference point to compare the performance of the
evolutionary algorithm in regard to the response
time. It was called a naive algorithm precisely
because it calculates the exact median string, but it
can only be used when the input strings have a small
length. For example to calculate the median string
corresponding to the following input strings:
minima, Minim, Miima and Manima. The naive
algorithm takes 0.764 seconds, which is a short time
in the case of a complex calculation, but as the
length of the strings increases so does time, for the
strings: estatuto, Estatut, Estatoto and Esatuto. The
naive algorithm takes 397 seconds, equivalent to 6
minutes, which is a longer time but still continues to
be acceptable.
However, if the length of the string increases and
the symbols that make it up, it is possible to have
times that are not acceptable. For example having to
calculate the exact median string for entries as
"fotocopiadora" would take approximately 29 days.
This is why this algorithm that calculates the exact
median string was called naive, since it is not viable
to use it for the large amount of time it takes to
perform the calculations.
 If the input string is "fotocopiadora", then a
symbol table (or alphabet) consisting of: "f", "o",
"t", "c", "p", "i", "a", "d", "r" (9 different
characters). The naive algorithm has to process 913
possible combinations that is of the order of 1012
operations, more exactly 2541865828329, this
figure when dividing it by the number of operations
that a computer makes per second, gives the number
of seconds that is required to process all
combinations. For example, if you have a computer
that does one million operations per second, then to
calculate this input string would be taken
2541865828329 / 106 = 2541866 seconds= 29 days.
 The test No.4 consisted of comparing the
response times of both algorithms, the evolutionary
and the so-called naive, using the same input strings
that changed in length starting with 3 characters that
were incremented until reaching 7 characters of an
execution to another, but always keeping the same
number of symbols that make them up. The input
strings used in the test were taken from a corpus of
tests called "abecede" that was proposed and used in

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 7 Volume 18, 2019

[9] where it was extensively inquired about different
ways of finding the median string. Both algorithms
were evaluated when processing input strings
formed by combinations of the following strings:
dac, bdac, caaac, ccaadc, aadaaac.
 Table 4 shows the response times obtained in test
No.4, meanwhile in Figure 4 the behavior of each
algorithm is plotted.

Table 6. Response times, evolutionary versus naive
algorithm

Execution

Response

Time, Naive

Algorithm

Response Time,

Evolutionary

Algorithm

Execution No.1 0,015 0,02

Execution No.2 0,015 0,13

Execution No.3 0,047 0,161

Execution No.4 0,203 0,198

Execution No.5 0,978 0,25

Execution No.6 4,623 0,333

Execution No.7 21,804 0,374

To investigate the behavior of the evolutionary

algorithm, several regression models were generated
from the available data. After testing with some
different types of regression, two models were
identified that fit the response delivered by the
evolutionary algorithm, as shown in Figure 5.

Fig. 4. Response time, Naive Algorithm versus
Evolutionary Algorithm

Fig. 5. Evolutionary Algorithm Time Trend

The models shown in Figure 5 were obtained
from the data in Table 6. The first model that is
drawn in orange corresponds to a logarithmic model
and in green, the second model that corresponds to a
linear model. The linear model is the one that best
fits the response delivered by the evolutionary
algorithm (which is drawn in blue) according to the
coefficient of determination R2 that has a value of
0.9795.

5 Discussion of results
The results presented of the tests carried out on the
developed evolutionary algorithm show that the
algorithm can calculate the median string correctly
and in a low or reasonable time that increases as the
input strings have greater dissimilarity. The
response time of the algorithm also increases when
the input strings present a greater extension; this is
previously known as combinatorial problems.
 For the test No.1, the input strings presented the
lowest level of dissimilarity that is reflected in the
editing distance calculated by the evolutionary
algorithm, 4 in all the executions performed in this
test. In tests No.3 and No.4, the dissimilarity of the
input string was increased, a situation that is
identified when performing a visual inspection of
them, or when observing the editing distance
indicated by the algorithm that for test No. 2 was 8
in all the executions and in the No.3 test it varied
between performances from 12 to 15. This last
result allows indicating that for a set of input strings
that present greater dissimilarity, several strings that
have the same editing distance can be found or
calculated concluding that in these cases the median
string is not unique, unlike what is observed in the

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 8 Volume 18, 2019

first two tests where a single median string is
obtained for a low dissimilarity in the input strings.
 It should also be noted that in tests No.1 and
No.2, the obtained results show that the median
string found in all the executions was equal to the
exact value or "hidden truth" that was wanted to be
found that corresponded to the "Fotocopiado" string.
In these cases, it can be indicated that the action of
the evolutionary algorithm can be assimilated as an
action of correction of the errors presented by the
input strings. In contrast, in test No.3 the median
string delivered by the evolutionary algorithm did
not coincide in most executions with the exact value
that was expected. These results indicate that the
evolutionary algorithm can perform correction of
errors present in the input strings when they present
low dissimilarity, but otherwise the error correction
action of the algorithm is not as effective.
 On the other hand, the results of the test No.4,
which correspond to the behavior of the
evolutionary algorithm in its response time, allow to
suggest that for input strings whose length does not
exceed 4 characters, the response time is low in both
Algorithms being faster the naive algorithm.
Nevertheless, as the input strings increase in length
by exceeding four characters, the evolutionary
algorithm is much faster. The response time of the
naive algorithm grows exponentially, while the
response time of the evolutionary algorithm does so
linearly with a very low slope. Hence, it is
suggested that the evolutionary algorithm can find
the median string in a reasonable time that does not
grow exponentially.
 Among the constraints identified in the operation
of the algorithm, it must be reported that the use of
the C ++ language generates a limitation in the size
of the input strings which can not be greater than 12
characters, because memory overflow is caused in
some related variables with the handling of the
combinations that are generated in the search space
of the solution. This situation was identified once
the implementation of the evolutionary algorithm
was available and running tests were performed.
 Finally, it should be noted that the application of
the concept of Median String to perform the
aggregation of strings in Crowdsourcing and its
implementation with evolutionary algorithms
presents an innovative nature for the developments
in this field.

6 Conclusions
In Crowdsourcing, the aggregation of results is one
of the most important approaches or mechanisms
used to obtain results that are more reliable. The

implementation of this mechanism is simple when
having numeric entries but it is quite complex when
the entries correspond to strings.
 In this study, it was showed how to apply the
concept of Median String to perform the
aggregation of strings in Crowdsourcing, developing
an evolutionary algorithm for this purpose.
 The obtained findings provide elements to
suggest that the aggregation of strings in
Crowdsourcing applying the concept of Median
String allows strengthening the aggregation
mechanisms by providing correction of the errors
presented in the input strings. However, it is
important to emphasize that the results that can be
obtained depend largely on the input strings that
must not present large deviations from the exact
value to be captured.
 The above is a restriction associated to the use
of the evolutionary algorithm and not of the
algorithm as such that does present a restriction in
the size of the input strings that cannot exceed 12
characters. To overcome this restriction, it is
proposed as future work to carry out a new
implementation of the algorithm using a
programming language, different from the C
language, and that is not typed as Racket (Scheme)
seeking to have fewer limitations on the memory
size that is assigned to the variables, then the ability
to process longer input strings could be expanded.
In the same way, within the work to be followed, it
is intended to expand the test cases and compare the
performance of the evolutionary algorithm
developed against other algorithms used for this
same task.

References:
[1] J. Howe, The rise of crowdsourcing, Wired
 Mag., Vol 14, No.6, 2006, pp. 1–4.
[2] D. Brabham, Crowdsourcing as a model for
 problem solving: leveraging the collective
 intelligence of online communities for public
 good. The University of Utah, 2010.
[3] A. Quinn & B.Bederson, Human computation:
 a survey and taxonomy of a growing field,
 Proceedings of the SIGCHI conference on
 human factors in computing systems, 2011,
 pp.1403–1412.
[4] L. Duan, S. Oyama, H. Sato, & M. Kurihara,
 Separate or joint? Estimation of multiple labels
 From crowdsourced annotations, Expert Syst.
 Appl.,Vol.41, No.13, 2014, 5723–5732.
[5] S. Altschul, W. Gish, W. Miller, E. W. Myers,
 & D. Lipman, Basic local alignment search
 tool, J. Mol. Biol., Vol.215, No.3, 1990, pp.

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 9 Volume 18, 2019

 403–410.
[6] D. Sankoff & J. Kruskal, Time warps, string
 edits, and macromolecules: the theory and
 practice of sequence comparison, Read.
 Addison-Wesley Publ, 1, 1983.
[7] C. de la Higuera & F. Casacuberta, Topology of
 strings: Median string is NP-complete, Theor.
 Comput. Sci., Vol.230, No.1, 2000, pp.39–48.
[8] T. Kohonen, Median strings, Pattern Recognit.
 Lett., Vol.3, No.5, 1985, pp. 309–313.
[9] C. Martínez-Hinarejos, La cadena media y su
 aplicación en reconocimiento de formas, Phd.
 Thesis. UPV, 2003.

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 10 Volume 18, 2019

