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Abstract: - In Crowdsourcing, the aggregation of results consists of introducing redundancy by asking several 
workers to perform the same task, and then adding the answers given by the workers seeking to obtain results 
that are more reliable. The aggregation of results is a very promising approach that can be easily implemented 
when having numerical entries, but it is quite complex when the entries correspond to strings. This article 
details how the concept of Median String was applied to perform the aggregation of Crowdsourcing strings, 
developing an evolutionary algorithm for this purpose. The results obtained show that our algorithm can 
calculate the Median String, which is a NP-Hard problem, of correct way but when applied to correct errors in 
Crowdsourcing calculating the correct answer (hidden truth) depends on the quality of the inputs that must 
present low dissimilarity 
 
Key-Words: - aggregation of results, evolutionary algorithms, median String, error correction, crowdsourcing. 
 
1 Introduction 
The concept of Crowdsourcing is widely 
disseminated nowadays, which refers, according to 
its creator Jeff Howe, to the "act of a company or 
institution taking a function once performed by 
employees and outsourcing it to an undefined (and 
generally large) network of people in the form of an 
open call" [1]. This definition proposed by Howe, 
although it is quite concrete, provides elements to 
suggest that Crowdsourcing can be seen as a new 
business model that is considered particularly useful 
in tasks that require a large number of points of 
view or different solutions to problems [2]. 

Crowdsourcing is generally carried out through 
the Web and over the years has proven to be an 
effective and scalable approach to solve different 
problems in various fields [2], even to be used to 
solve problems that are computationally expensive 

or impossible to solve for machines, but which are 
rather simple for human beings; hence, sometimes 
the tasks proposed to the multitude are called 
Human Intelligence Task (HITs). 

Among the technical challenges faced by 
crowdsourcing, one of the most important is to 
control the quality of the results obtained, because 
given the open nature of crowdsourcing, the data 
collected through a process of this type are 
potentially noisy [3]. To overcome this challenge, 
several approaches or mechanisms have been 
proposed, such as: (i) aggregation of results, (ii) 
gold data, (iii) multilevel reviews, (iv) expert 
review, (v) pre-selection and (vii) reputation. 

With regard to this study, the aggregation of 
results approach is of interest, which consists of 
introducing redundancy by asking several workers 
to perform the same task, and then adding the 
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answers or results delivered by the workers seeking 
a more reliable result. The aggregation of results is a 
very promising approach that can be easily 
implemented when having numerical entries, but it 
is quite complex when the entries correspond to 
strings [4]. 

Bearing in mind that in the last decades several 
problems derived from the treatment of strings have 
been the subject of research in fields such as 
artificial vision, speech recognition, spell checking, 
detection of plagiarism, extensive searches in 
databases, Internet searches, pattern recognition, and 
bioinformatics, [5], [6]. In this study, it is proposed 
that by performing an adequate processing of the 
strings, it may be possible to strengthen the 
Crowdsourcing mechanisms of aggregation of 
results, which seek to find the hidden truth in the set 
of responses given by the multitude for the proposed 
task. What is specifically proposed is to perform the 
aggregation of strings in Crowdsourcing applying 
the concept of Median String to perform correction 
of errors presented in the input strings. The concept 
of Median String in mention is equivalent to the 
concept of average vector, but having in this case a 
set of data conformed by character strings what 
causes that its calculation is not simple and takes to 
face a NP-Hard problem [7]. 

This article details how the concept of Median 
String was applied to aggregate a set of strings 
generated in Crowdsourcing tasks, developing an 
evolutionary algorithm that provides good results 
with a reasonable computational cost. The structure 
of the document is as follows: section 2, deals with 
the fundamentals; in section 3, the proposed 
evolutionary algorithm for calculating the median 
string of Crowdsourcing entries is presented; 
Section 4 shows the experimental results; Section 5 
contains the discussion of results; and section 6, 
presents the conclusions. 
 
 
2 Background 
In this section, the main concept for the work that 
corresponds to the Median String is described and 
the problem that is addressed when trying to find 
just the median string of a set of given strings. In 
addition, a brief description of the evolutionary 
algorithms proposed as a heuristic for the solution of 
the mentioned problem and some related works are 
presented 
 
 
 
 

2.1 Median String 
The initial definition of median string was presented 
by Kohonen [8] who defines the concept for the first 
time, as follows: given a set of strings, the median 
string is defined as the string that minimizes ther 
sum of distances to the strings of the set [8]. The 
above definition is represented by the following 
mathematical expression (1):         

mS=  mins∈∑ * ∑ d (s, sin
i=1 )                                            

(1)      
 

In the above equation mS denotes the median 
string to find given a set of strings S1= {S1, S2, … , 
Sn}  formed by elements of an alphabet Σ, where Σ 
* indicates that the strings have finite length and d is 
the measure of dissimilarity or distance defined 
according to the application. 

The concept of median string is equivalent to the 
average vector but in this case, the data set is made 
up of strings of characters, so its calculation is not 
simple. To find the median string of a set of given 
strings, it is necessary to fulfill the condition that the 
sum of the distances of this with all the given strings 
must be minimal. 

The distances   can be measured in several ways 
but the best known is with the Levenshtein metric, 
which allows to find the distance between two 
strings, that is, it is a measure that represents how 
different the strings are. Table 1 shows examples 
where the Levestein distance is calculated, which 
basically corresponds to the minimum number of 
operations required to transform one character string 
into another; it is understood by operation, either an 
insertion, elimination or the substitution of a 
character. 

Table 1. Example of distance between strings 
String 1 String 2 Distance 

casa casa 0 

casa caza 1 

cesa caza 2 

casa perro 5 

abcd dcba 4 

 
When trying to find the Median String, a search 

space must be generated and explored, consisting of 
all the strings that can be created with all possible 
combinations of the elements of the alphabet Σ. The 
problem then is to look in this space until finding a 
string whose sum of distances with respect to the 
entry set of string is the minimum. 
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In spite of the definition of Median String is 
apparently simple, it was shown that the calculation 
of the exact median string is a NP-Hard problem [7], 
which in practice leads to the need for approaches 
that calculate an approximate solution through 
algorithms that have a computational cost 
polynomial and not exponential as when the exact 
median string is found. 

To address the solution of problems such as 
finding the median string, evolutionary algorithms 
can be used, which is precisely what is discussed 
next. 
 
 
2.1   Evolutionary algorithms 
Historically, evolutionary algorithms are considered 
a branch of artificial intelligence, since they were 
used in the 1960s to add intelligence to finite-state 
machines, but today they are used to solve a wide 
variety of problems that are computationally 
difficult to solve. That is to say, those that do not 
have a solution in polynomial time, such as: the 
problem of the traveling agent, the problem of the 
backpack, the problem of finding a Hamiltonian 
cycle, etc. All these problems for relatively small 
entries, the response time executed on the best 
computer in the world would take the time when the 
universe was created until today. That is why it is 
necessary to attack these problems with alternative 
strategies where the response time is reasonable. 

There are several different ways or approaches to 
implement evolutionary algorithms. Among the best 
known are the genetic algorithms created by John 
Henry Holland in the 70s, which gave rise to 
evolutionary computation; these algorithms are 
characterized because the chromosome is encoded 
in zeros and ones, and all the functions are applied 
to expressions of zeros and ones, besides having a 
function of decoding. 

In this work, another existing approach was used, 
genetic programming, which is very similar to the 
genetic algorithm but the chromosome is not coded, 
the phenotypic part is the same as the genotypic one 
and the operators are defined according to the case 
and application. The general operation of an 
evolutionary algorithm consists of the following 
steps: 

Initialization: a set of chromosomes are created 
with random values, where each chromosome is a 
possible solution to the problem that is to be solved 
or optimized. The set of chromosomes generated in 
the initialization are stored in a memory space called 
search space. 

Evaluation: in this phase, a fitness value or a 
classification is given to the chromosome in order to 
know how close the solving the problem is. 

Selection for reproduction: a subset of the 
population of existing chromosomes in the search 
space is selected to apply subsequently a series of 
functions generally known as reproduction (crossing 
or mutation) or survival functions. There are several 
strategies to select the chromosomes after 
establishing how many or in what percentage they 
will pass for reproduction, for example: choosing 
the ten best chromosomes, that is to say the ten ones 
with the best fitness function; randomly choosing 10 
chromosomes from the search space; make a 
sampling by lottery, where the chromosomes with 
the best fitness function are more likely to be 
chosen; using the roulette method, a random value is 
generated and from this value are formed (through a 
simple recurrence relation) other missing random 
values; and by tournament, selecting three 
chromosomes randomly and from these ones, the 
one with the best fitness value is chosen and the 
procedure is repeated until the number of fixed 
chromosomes is chosen. 

Recombination: different reproductive functions 
are applied to the selected chromosomes with the 
purpose of generating new descendants. Among the 
functions to be applied are those of crossing and 
mutation. Not all descendant chromosomes are 
going to be good, but the recombination process 
allows some better chromosomes to be generated. 
This procedure is done until reaching a point where 
the new chromosomes do not improve those found 
in the search space, a signal that serves to stop the 
evolutionary algorithm. 

Replacement: there are many ways to replace old 
chromosomes in the search space with the new 
descendant chromosomes, among the most used are: 
(a) the ten chromosomes generated will replace the 
ten worst chromosomes in the search space; (b) if 
many chromosomes are generated then the entire 
search space is replaced with all the descendant 
chromosomes; (c) only the chromosomes that 
overcome or gain the worst chromosomes are 
replaced (many of the chromosomes generated are 
worse than the worst chromosomes in the search 
space. 

When an evolutionary algorithm is implemented, 
the elements shown in Figure 1 must be generated. 
These elements appear during the execution of the 
evolutionary algorithm as described below. 

The search space is created in the initialization 
containing the chromosomes to which the fitness 
function in the evaluation is applied. Subsequently, 
during the selection, chromosomes that are selected 
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to proceed with reproduction are copied into the 
mating pool where new chromosomes are created, 
which during the replacement can take the place of 
the worst chromosomes in the search space by 
completing the process that can be repeated until the 
new chromosomes do not improve those in the 
search space or a defined number of iterations is 
completed. As in the search space, there are n 
possible solutions; all the algorithms that are 
implemented following this scheme must be of low 
computational cost. 

 

Fig. 1. Main elements to be implemented in evolutionary 
computation 
 
 
3 Evolutionary algorithm developed 
to calculate the median string 
Evolutionary algorithms using the genetic 
programming approach carried out the solution to 
the problem of finding the median string.  

 

Fig. 2. Class diagram of the implemented solution 

The evolutionary algorithm developed was 
implemented in the C ++ programming language, 
which is a language recognized for its speed of 
execution. 

To start the description of the evolutionary 
algorithm developed, Figure 2 is provided, which 
corresponds to the class diagram of the implemented 
solution. 

As it is observed in the previous figure there are 
four classes: (1) Main class, in charge of starting the 
execution of the evolutionary algorithm; (2) a class 
called AdmAG that implements the steps defined in 
evolutionary programming such as initialization, 
evaluation, selection, reproduction and replacement; 
(3) Chromosome class, used to model the 
chromosomes; (4) Statistics class, which contains 
methods to support various statistical operations that 
are commonly used in evolutionary algorithms that 
use the sampling technique for the selection of the 
best chromosomes. 
      The four previous classes allow to find the 
median string and the process starts when the main 
class creates an instance of the evolutionary 
algorithm class (AdmAG) passing as parameters the 
set of strings to which the median string is going to 
be calculated; the input strings correspond to raw 
data that is loaded by the main class from an input 
file. 

       

Fig. 3. Steps followed in the evolutionary computation 
 

At the time of creating the evolutionary 
algorithm class instance the constructor method is 
responsible for creating the table of symbols to be 
used, including only the characters that appear in the 
input strings passed as an argument, this in order to 
optimize the search space.  Once this is done, the 
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AG method is invoked, which is responsible for 
executing the steps defined in the evolutionary 
computation shown in Figure 3. 

With the previous steps, evolutionary 
programming allows to create and explore a large 
search space made up of chromosomes that contain 
strings created from the input strings. A description 
of what happens in each step is presented below: 

Initialization: Consists of filling the search space 
with 100 chromosomes. The search space is 
implemented as a vector of chromosomes formed 
basically with random strings created according to 
the table of symbols. Each chromosome represents a 
possible solution to the problem of the median 
string. 

Evaluation: Consists of ordering the 
chromosomes of the search space from least to 
greatest according to the evaluation value obtained 
when comparing the current string (that conforms to 
the chromosome) with respect to the received input 
strings. The evaluation value represents how close a 
chromosome is to the input strings. The evaluation 
values are obtained for each chromosome at the time 
of ordering and are stored as part of its structure. 

Selection: With the evaluation values, it is 
created a vector that passes as a parameter to create 
an instance of the Statistics class, which is 
responsible for choosing the statistically most 
suitable chromosomes according to their evaluation 
value. It is important to highlight that before 
creating this instance, negative numbers or zeros 
must be avoided, so before using the statistics class, 
the minimum of the evaluation function is 
calculated and if this value is not positive it is 
necessary a displacement. 

That is to say, a kind of prenormalization is done 
because the statistics class makes the true 
normalization to apply the cumulative inverse 
function (main function of the class) that is 
responsible for randomly choosing the most suitable 
chromosomes that are copied to a vector called 
"Mating Pool". The chromosomes with higher 
evaluation value are more likely to be chosen, but 
all have some probability including the least fit, 
because for their selection in the cumulative inverse 
function a strategy called sampling draw is used; the 
number of chromosomes that pass to the Mating 
Pool corresponds to 10% of the size of the search 
space. 

Reproduction: Once in the Mating Pool, two 
chromosomes that are located next to each other are 
already chosen and the percentage is decided if they 
are going to mutate or if they are going to cross each 
other. If it mutates, it is decided randomly, which of 
the four defined mutation functions is going to be 

applied and if it is going to cross, it is decided 
randomly which of the two crossing functions will 
be chosen. The new chromosomes that result from 
the mutation and/or crossing are taken to a new 
vector of chromosomes and when all the 
reproductions are finished and the vector is 
complete, it is ordered according to the evaluation 
function; the reproduction ends when all the 
chromosomes of the Mating Pool are taken. 

Replacement: To replace chromosomes from the 
search space with the new chromosomes that result 
from reproduction, the criterion is used: if it is better 
than the worst of those found in the search space, 
then it enters the search space. This implies that to 
enter one of the new chromosomes into the search 
space, it is required that its evaluation function be 
better than that of the worst chromosome located in 
the search space; new chromosomes that do not 
enter the search space will be discarded because 
they are not "better" than those already existing are. 
After entering the new chromosomes in the search 
space, it is ordered and the process starts again until 
it is observed that new chromosomes are not 
entering the search space, for this reason the 
algorithm is stopped and the highest chromosome of 
the search space is returned which will be the one 
that contains the median string intended to find. 

To finish the description of the evolutionary 
algorithm implemented, three things need to be 
detailed first, how the representation of individuals 
was handled, secondly, the function of evaluation or 
defined fitness (one of the most important elements) 
and third, the crossing and mutation operations 
designed. 

Regarding the representation of individuals, the 
chromosome is made up of a single gene that 
corresponds to a string of characters. Each 
chromosome represents a possible solution to the 
problem of the median string and when creating the 
strings that comprise it, the following considerations 
are taken into account: the sizes of these strings 
range from the minimum size of the input strings to 
the largest size of the input strings; all characters are 
chosen from the symbol table that is created only by 
using characters that appear in the input strings. The 
above restrictions correspond to heuristics that are 
totally logical since the median string can not be 
smaller than the minimum one, nor even larger than 
the maximum one. 

On the other hand, the evaluation function 
defined to measure the fitness of the chromosomes 
in the evolutionary algorithm is presented and 
described below: 

Evaluation Value = Similarity by Column - Total                              
                                Dissimilarity  (2) 
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Similarity by column. Corresponds to the evaluation 
that is made of the similarity of the characters of the 
strings evaluated in each column or position in the 
following way: if the characters of the column are 
equal, a value of 1 is assigned, if they are different -
1 and if it is a blank space-2. The final value of the 
evaluation of the similarity by column corresponds 
to the sum of the results of the evaluation of each 
column when comparing the string that conforms to 
the chromosome against all the input strings. A high 
evaluation value represents that the strings are 
similar, but it may obtain negative values that 
represent that the strings are not similar. 

Total dissimilarity. This measure represents how 
different the evaluated strings are. To measure the 
dissimilarity of the strings, the Levenshtein’s 
method was used to find a value called editing 
distance, which represents how different the strings 
are. When the editing distance is zero, it means that 
the strings are equal but as it increases, it represents 
a greater dissimilarity. The measure of total 
dissimilarity is always positive. 

Finally, with regard to crossing operations two 
forms were designed, crossing 1 that creates a new 
chromosome by crossing two chromosomes in a 
single randomly chosen point and crossing 2, which 
creates a new chromosome crossing two 
chromosomes in two points chosen in a random 
way. Moreover, for the mutation, four operations 
were designed: 

To move. Where a new chromosome is created 
by moving all the characters of the string one 
position to the left or to the right. The character that 
comes out of the chromosome is introduced on the 
opposite side, leaving the string of the same size. 

To remove. Creates a new chromosome by 
removing a character from a random position. To 
the Levestein’s distance, the amount of removed 
elements is added, to assure that the gain in 
distance, not only because the string diminishes in 
length, but also because an element that was doing 
that the distance grew was removed. To remove can 
be taken as a mutation process. 

To insert. For creating a new chromosome by 
inserting a character from the ones in the symbol 
table. The symbol is chosen randomly from the 
symbol table and the place where it is to be inserted 
is chosen randomly from the string, this being a 
larger unit. To insert can be taken as a mutation 
process. 

To modify. Creates a new chromosome by 
modifying one character for another. The position to 
be modified is chosen randomly and the character to 
be inserted is chosen randomly from the symbol 
table. 

When applying any of the above functions, the 
symbol table that is created from the characters that 
make up the input strings is used. 

 
 

4 Experimental results 
In order to evaluate the developed evolutionary 
algorithm that allows finding the median string, two 
different types of tests were carried out: first, testing 
the evolutionary algorithm to find the median string 
of several given input strings generated in 
Crowdsourcing tasks. Secondly, evaluating the 
algorithm evolutionary versus a performed 
implementation of an algorithm that calculates the 
exact median string to compare response times. 
 
 
4.1 Evaluation of the evolutionary algorithm 
finding the median string 
The first group of tests (Test No.1, Test No.2 and 
Test No.3) were intended to evaluate the functioning 
of the evolutionary algorithm by finding the median 
string for several different input strings. Numerous 
tests of this type were carried out varying the length 
and number of entries, and the number of symbols 
that made up the strings. 

Below are the results of three of the tests 
performed where they were used as input strings, 
responses generated by Crowdsourcing tasks of 
transcription of information when it was a question 
of collecting a data corresponding to the word 
"Fotocopiado". For each of the tests ten executions 
were made using the same machine (Lenovo G40 
computer with Windows 7, 2.16 GHz and 2 GB of 
memory) and without making variations to the 
algorithm or input strings. The inputs provided to 
the algorithm shown in Table 2 and the outputs 
delivered by algorithm, the times required to 
perform the computation, the editing distance of the 
calculated median string with respect to the input 
strings were recorded for each execution, these data 
are shown in Tables 3, 4 and 5. 

Table 2. Input strings used in the tests of the calculation 
of the median string 

Input string Test No.1 Test No.2 Test No.3 

String No.1 fotocopiado fotocoPiado fotoCoPiado 

String No.2 Fotocopiad Fotoopiad Ftoopiad 

String No.3 Fotocopado Foocopado oocopado 

String No.4 Foticopiado Foticopiadu Foyicopiadu 
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Table 3. Strings calculated by the algorithm 
Execution Test No.1 

 Median 

String 

Editing 

Distance 

Time 

(Sec) 

No. 1 Fotocopiado 4 1,17 

No.  2 Fotocopiado 4 1,07 

No.  3 Fotocopiado 4 1,12 

No.  4 Fotocopiado 4 1,23 

No.  5 Fotocopiado 4 1,96 

No.  6 Fotocopiado 4 1,11 

No.  7 Fotocopiado 4 1,16 

No.  8 Fotocopiado 4 1,11 

No.  9 Fotocopiado 4 1,31 

No. 10 Fotocopiado 4 2,00 

Table 4. Strings calculated by the algorithm 
Execution Test No.2 

 Median 

String 

Editing 

Distance 

Time 

(Sec) 

No. 1 Fotocopiado 8 14,13 

No.  2 Fotocopiado 8 14,13 

No.  3 Fotocopiado 8 13,10 

No.  4 Fotocopiado 8 14,18 

No.  5 Fotocopiado 8 14,14 

No.  6 Fotocopiado 8 14,12 

No.  7 Fotocopiado 8 14,16 

No.  8 Fotocopiado 8 14,18 

No.  9 Fotocopiado 8 11.66 

No. 10 Fotocopiado 8 14,13 

Table 5. Strings calculated by the algorithm 
Execution Test No.3 

 Median 

String 

Editing 

Distance 

Time 

(Sec) 

No. 1 Fooopado 15 15,89 

No.  2 Fooopiada 15 4,32 

No.  3 Focopiada 15 4,32 

No.  4 Fotocopiado 12 4,01 

No.  5 Fotocopiado 12 2,91 

No.  6 Fotopopiado 14 10,74 

 
 
4.2 Evaluation of evolutionary algorithm versus 
naive algorithm 
The second part of the tests was aimed at evaluating 
the response time of the evolutionary algorithm; it 

was specifically intended to verify if the 
evolutionary algorithm could continue finding the 
median string in a reasonable time, even though the 
input strings were increasing their length. In order to 
perform this test, another so-called naive algorithm 
had to be implemented that was designed to 
calculate the exact median string (the 
implementation of this algorithm is included as a 
method of the AdmAG class) and served as a 
reference point to compare the performance of the 
evolutionary algorithm in regard to the response 
time. It was called a naive algorithm precisely 
because it calculates the exact median string, but it 
can only be used when the input strings have a small 
length. For example to calculate the median string 
corresponding to the following input strings: 
minima, Minim, Miima and Manima. The naive 
algorithm takes 0.764 seconds, which is a short time 
in the case of a complex calculation, but as the 
length of the strings increases so does time, for the 
strings: estatuto, Estatut, Estatoto and Esatuto. The 
naive algorithm takes 397 seconds, equivalent to 6 
minutes, which is a longer time but still continues to 
be acceptable.  
However, if the length of the string increases and 
the symbols that make it up, it is possible to have 
times that are not acceptable. For example having to 
calculate the exact median string for entries as 
"fotocopiadora" would take approximately 29 days. 
This is why this algorithm that calculates the exact 
median string was called naive, since it is not viable 
to use it for the large amount of time it takes to 
perform the calculations.  
      If the input string is "fotocopiadora", then a 
symbol table (or alphabet) consisting of: "f", "o", 
"t", "c", "p", "i", "a", "d", "r" (9 different 
characters). The naive algorithm has to process 913 
possible combinations that is of the order of 1012 
operations, more exactly 2541865828329, this 
figure when dividing it by the number of operations 
that a computer makes per second, gives the number 
of seconds that is required to process all 
combinations. For example, if you have a computer 
that does one million operations per second, then to 
calculate this input string would be taken 
2541865828329 / 106 = 2541866 seconds= 29 days. 
      The test No.4 consisted of comparing the 
response times of both algorithms, the evolutionary 
and the so-called naive, using the same input strings 
that changed in length starting with 3 characters that 
were incremented until reaching 7 characters of an 
execution to another, but always keeping the same 
number of symbols that make them up. The input 
strings used in the test were taken from a corpus of 
tests called "abecede" that was proposed and used in 
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[9] where it was extensively inquired about different 
ways of finding the median string. Both algorithms 
were evaluated when processing input strings 
formed by combinations of the following strings: 
dac, bdac, caaac, ccaadc, aadaaac.  
    Table 4 shows the response times obtained in test 
No.4, meanwhile in Figure 4 the behavior of each 
algorithm is plotted. 
 

Table 6. Response times, evolutionary versus naive 
algorithm 

Execution 

Response 

Time, Naive 

Algorithm 

Response Time, 

Evolutionary 

Algorithm 

Execution No.1 0,015 0,02 

Execution No.2 0,015 0,13 

Execution No.3 0,047 0,161 

Execution No.4 0,203 0,198 

Execution No.5 0,978 0,25 

Execution No.6 4,623 0,333 

Execution No.7 21,804 0,374 

 
To investigate the behavior of the evolutionary 

algorithm, several regression models were generated 
from the available data. After testing with some 
different types of regression, two models were 
identified that fit the response delivered by the 
evolutionary algorithm, as shown in Figure 5. 
 

 

Fig. 4. Response time, Naive Algorithm versus 
Evolutionary Algorithm 

 

 

Fig. 5. Evolutionary Algorithm Time Trend 
 

The models shown in Figure 5 were obtained 
from the data in Table 6. The first model that is 
drawn in orange corresponds to a logarithmic model 
and in green, the second model that corresponds to a 
linear model. The linear model is the one that best 
fits the response delivered by the evolutionary 
algorithm (which is drawn in blue) according to the 
coefficient of determination R2 that has a value of 
0.9795. 
 
 
5 Discussion of results 
The results presented of the tests carried out on the 
developed evolutionary algorithm show that the 
algorithm can calculate the median string correctly 
and in a low or reasonable time that increases as the 
input strings have greater dissimilarity. The 
response time of the algorithm also increases when 
the input strings present a greater extension; this is 
previously known as combinatorial problems.  
    For the test No.1, the input strings presented the 
lowest level of dissimilarity that is reflected in the 
editing distance calculated by the evolutionary 
algorithm, 4 in all the executions performed in this 
test. In tests No.3 and No.4, the dissimilarity of the 
input string was increased, a situation that is 
identified when performing a visual inspection of 
them, or when observing the editing distance 
indicated by the algorithm that for test No. 2 was 8 
in all the executions and in the No.3 test it varied 
between performances from 12 to 15. This last 
result allows indicating that for a set of input strings 
that present greater dissimilarity, several strings that 
have the same editing distance can be found or 
calculated concluding that in these cases the median 
string is not unique, unlike what is observed in the 

WSEAS TRANSACTIONS on COMPUTERS Luis Gomez, Andres Rey, Angel Lozada

E-ISSN: 2224-2872 8 Volume 18, 2019



 

 

first two tests where a single median string is 
obtained for a low dissimilarity in the input strings. 
    It should also be noted that in tests No.1 and 
No.2, the obtained results show that the median 
string found in all the executions was equal to the 
exact value or "hidden truth" that was wanted to be 
found that corresponded to the "Fotocopiado" string. 
In these cases, it can be indicated that the action of 
the evolutionary algorithm can be assimilated as an 
action of correction of the errors presented by the 
input strings. In contrast, in test No.3 the median 
string delivered by the evolutionary algorithm did 
not coincide in most executions with the exact value 
that was expected. These results indicate that the 
evolutionary algorithm can perform correction of 
errors present in the input strings when they present 
low dissimilarity, but otherwise the error correction 
action of the algorithm is not as effective.  
    On the other hand, the results of the test No.4, 
which correspond to the behavior of the 
evolutionary algorithm in its response time, allow to 
suggest that for input strings whose length does not 
exceed 4 characters, the response time is low in both 
Algorithms being faster the naive algorithm. 
Nevertheless, as the input strings increase in length 
by exceeding four characters, the evolutionary 
algorithm is much faster. The response time of the 
naive algorithm grows exponentially, while the 
response time of the evolutionary algorithm does so 
linearly with a very low slope. Hence, it is 
suggested that the evolutionary algorithm can find 
the median string in a reasonable time that does not 
grow exponentially.  
    Among the constraints identified in the operation 
of the algorithm, it must be reported that the use of 
the C ++ language generates a limitation in the size 
of the input strings which can not be greater than 12 
characters, because memory overflow is caused in 
some related variables with the handling of the 
combinations that are generated in the search space 
of the solution. This situation was identified once 
the implementation of the evolutionary algorithm 
was available and running tests were performed.  
    Finally, it should be noted that the application of 
the concept of Median String to perform the 
aggregation of strings in Crowdsourcing and its 
implementation with evolutionary algorithms 
presents an innovative nature for the developments 
in this field. 
 
 
6  Conclusions 
In Crowdsourcing, the aggregation of results is one 
of the most important approaches or mechanisms 
used to obtain results that are more reliable. The 

implementation of this mechanism is simple when 
having numeric entries but it is quite complex when 
the entries correspond to strings.    
      In this study, it was showed how to apply the 
concept of Median String to perform the 
aggregation of strings in Crowdsourcing, developing 
an evolutionary algorithm for this purpose.  
      The obtained findings provide elements to 
suggest that the aggregation of strings in 
Crowdsourcing applying the concept of Median 
String allows strengthening the aggregation 
mechanisms by providing correction of the errors 
presented in the input strings. However, it is 
important to emphasize that the results that can be 
obtained depend largely on the input strings that 
must not present large deviations from the exact 
value to be captured.   
      The above is a restriction associated to the use 
of the evolutionary algorithm and not of the 
algorithm as such that does present a restriction in 
the size of the input strings that cannot exceed 12 
characters. To overcome this restriction, it is 
proposed as future work to carry out a new 
implementation of the algorithm using a 
programming language, different from the C 
language, and that is not typed as Racket (Scheme) 
seeking to have fewer limitations on the memory 
size that is assigned to the variables, then the ability 
to process longer input strings could be expanded. 
In the same way, within the work to be followed, it 
is intended to expand the test cases and compare the 
performance of the evolutionary algorithm 
developed against other algorithms used for this 
same task. 
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