**AUTHORS:**Rachid Kaidi, Karim Elmoutaouakil, Mohamed Ettaouil

**Download as PDF**

**ABSTRACT:**
As traffic keeps increasing, en route capacity, especially in Europe, becomes a serious problem.
According to the European Commission, every year, the number of flights in operation increases by 5%, which is
the principal cause of airspace saturation and raise of the controller’s workload. Today, the Sectorization of
Airspace Problem (SAP) has become one of the most important problems of operational research. The main
objective of the SAP is to minimize the total coordination workload between adjacent sectors and to balance the
controllers’ workload among sectors. To solve this problem, we model the SAP in terms of 0-1 quadratic
programming subject to linear constraints. As result, we use the Continuous Hopfield Network CHN to solve the
proposed model; in addition, some numerical results are introduced to confirm the most optimal model.

**KEYWORDS:**
- Air Traffic Control ATC, Sectorization of Airspace Problem SAP, Quadratic Programming QP,
Continuous Hopfield Network CHN

**REFERENCES:**

[1] J.M.Alliot and H.Gruber, Using Genetic Algorithm for solving ATC conflict, In proceedings of the Ninth IEEE Conference on Artificiel Intelligence for application. IEEE, 1993.

[2] C.E. Bichot and J.M. Alliot, Optimisation par colonies de fourmisappliqué au découpage de l’espace aérien européen en zones de qualification, In RIVF 2005.

[3] C.E.Bichot, J.M.Alliot, N.Durand and P.Brisset, Optimisation par fusion et fission Application au problème du découpage aérien européen, Journal Européen des Systèmes Automatisés (JESA), 38(9-10):1141–1173, Cité p 62, 90, 109, 2004.

[4] D.Delahaye, Optimization of airspace sectorization via the genetic algorithm, Ph.D, computer ENSAE, 1995.

[5] D.Delahey, J.M. Alliot, M .Schoener, and J.L .Farge, Genetic algorithm automatic for regrouping of air traffic sectors, proceeding of the European conference on Artificial Intelligence, ECAI,1994.

[6] D. Delahaye, M.Schoenauer, and J. M. Alliot, Airspace Sectoring by Evolutionary Computation, IEEE International Congress on Evolutionary Computation, 1998.

[7] M. Ettaouil, K.Elmoutaouakil and Y.Ghanou, The Continuous Hopfield Networks (CHN) for the Placement of the Electronic Circuits Problem, Wseas Transactions On Computer, Issue 12, Volume 8, 2009.

[8] M. Ettaouil, M. Lazaar, K. Elmoutaoukil and K. Haddouch, A new algorithm for optimization of the Kohonen network architectures using the Continuous Hopfield Networks, Wseas Transactions on Computers, Issue 4, Volume 12, April 2013, pp.155-163

[9] M. Ettaouil , C.Loqman, K. Haddouch and y.Hami, Maximal Constraint Satisfaction Problems solved by Continuous Hopfield Networks, Wseas Transactions on Computers, Issue 2, Volume 12, February 2013, pp. 29-40.

[10] M.Ettaouil, and C.Loqman, Constraint satisfaction problem solved by semi definite relaxation, Wseas Trasactions On Computer, Issue 7, Volume 7, 951-961, 2008.

[11] M. Ettaouil, C. Loqman, Sectorisation de l’espace aérien et réseaux de contraintes, In Proceedings in premier congrés international de la société marocaine de mathématiques appliquées. pp. 150—152, 2008.

[12] D. J.Evansi and M. N. Sulaiman, Solving optimization problems using neucomp-a neural network compiler, International Journal of Computer Mathematics, Vol. 62, pp. 1-21, 1996.

[13] D. J.Evansi and Sulaiman, M. N. 1996, Solving optimisation problems using neucomp-a neural network compiler, International Journal of Computer Mathematics, Vol. 62, No. 1, pp. 1- 21.

[14] A. Ghosh and S.K.Pal, Object Background classification using Hopfield type neural networks, International Journal of Pattern Recognition and artificial Intelligence, pp. 989- 1008, 1992.

[15] D.Gianazza. J.M Alliot G.Granger LOG CENA/ENAC 7, avenue Edouard Belin 31055 Toulouse Cedex, FRANCE

[16] D.Goldberg, Genetic Algorithms, Addi-son Wesley, ISBN: 0-201-15767-5, 1989.

[17] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.

[18] J.J.Hopfield, Neurons with graded response have collective computational properties like those of two-states neurons, In proceedings of the National academy of sciences of the USA 81, pp. 3088-3092, 1984.

[19] Hopfield, J.J., Tank, D.W. 1985, Neural computation of decisions in optimization problems. pp. 1--25, Biological Cybernetics.

[20] Hou, E. S. H. Ansari, N. and Ren, H. 1994. A genetic algorithm for multiprocessor scheduling, IEEE Transactions on Parallel and Distributed Systems, Vol. 5, pp. 113– 120.

[21] Kaidi Rachid, El moutaouakil Karim, Ettaouil Mohamed, The static sectorisation of airspace via genetic algorithm, in JATIT 31Mach2014 vol 61 No 3.

[22] Minoux,M.1983.Programmationmathémati-que, théorie et algorithmes. Paris, Dunod.

[23] Nasrabadi, N.M and Choo, C.Y. 1994, Hopfield network for stereo vision correspondence, New York:Marcel Dekker.

[24] Shah, H, Safabakhsh, H. TASOM, R. 2000,The Time Adaptive Self-Organizing Map, International Conference on Information Technology, Coding and Computing (ITCC'00), 422.

[25] P.M. Talaván, J. Yáñez, A continuous Hopfield network equilibrium points algorithm, computers and operations research 32,2179- 2196, 2005.

[26] S.Yavuz, I. Cabar, O. Erol, Robot Mapping and Map Optimization Using Genetic Algorithm and Artificial Neural Networks, WSEAS, Issue 7, Volume 7, July 2008.

[27] M.Zbigniew,Geneticalgorithms+datastructures= evolution programs, Springer-Verlag, 1992. ISBN: 0-387-55387.