
A new approach of known plaintext attack with Genetic Algorithm

T.MEKHAZNIA
1
, A. ZIDANI

2
, M. DERDOUR

3

1,2
LASIC Laboratory

University of Batna, ALGERIA
3
LAMIS Laboratory

University of Tebessa, ALGERIA

mekhaznia@yahoo.fr

Abstract: - Cryptanalysis of modern cryptosystems is viewed as NP-Hard problem. Block ciphers, a modern

symmetric key cipher are characterised with the nonlinearity and low autocorrelation of their structure. In

literature, various attacks were accomplished based on traditional research algorithms such the brute force, but

results still insufficient especially with wide instances due to resources requirement, which increase with the

size of the problem. Actual research tends toward the use of bio-inspired intelligence algorithms, which are

heuristic methods able to handle various combinatorial problems due to their optimisation of search space and

fast convergence with reasonable resource consumption. The paper presents a new approach based on genetic

algorithm for cryptanalysis of block ciphers; we focuses especially around the problem formulation, which

seems a critical factor that depends the attack success. The experiments were accomplished on various set of

data; the obtained results indicate that the proposed methodology seems an efficient tool in handling such

attacks. Moreover, results comparisons of the considered approach with similar heuristics such Particle Swarm

Optimisation and Brute Force reports its effectiveness in solving the considered problem.

Key-Words: - Block ciphers; Genetic Algorithm; Particle swarm optimisation; Cryptanalysis; Bio-inspired

intelligence.

1 Introduction
Cryptography refers to the science of

information’s protection. Cryptographic techniques

denote the mechanisms to achieve security goals

such confidentiality and authentication that consists

in preventing access even from indiscrete eyes and

developing avenues of encryption methodologies

[1][2]. They involves an input data called a plaintext

and a small amount of information denoted a key in

order to customize an output data called a ciphertext

which viewed as unintelligible information

obfuscated to all not intended parties and appears

meaningful only through a legal decryption process.

A cipher algorithm denotes the mathematical

function that enables the encryption and decryption

process. The set of plaintexts, ciphertexts, keys and

related algorithms is called a cryptosystem.

Actually, modern cryptosystems becomes a

unavoidable tool for real life applications; research

in this area becomes very intensive whatsoever on

building new concepts or improvement of existent

ones.

Cryptanalysis denotes the way of studying the

concepts of cryptosystems in order to detect their

weakness and attempt to extract parts of

corresponded plaintext without knowing the secret

data which normally needed for decryption such

keys or algorithms. The term attack refers to the

manner in using cryptanalysis on ciphertexts in

order to reveal the original plaintext; if the plaintext

is fully restored, the attack is successful. So, the

strategies in building robust ciphers that prevent

effective attacks seem a hard task especially with

the increase of data transfer through public

networks. The efficiency of cryptanalysis is based

upon the knowledge of cryptosystems material such

encryption algorithms, language specificities, parts

of plain and cipher texts and eventually any luck.

The knowledge of such information favourite right

attacks [3]; its aims is to measure the cryptosystems

strength and therefore, help researchers to perform

more robust algorithms for upcoming times [4].

Cryptanalysis uses numerous techniques of attacks,

depending of information available about

cryptosystems such fragments of ciphertexts and

their corresponding plaintexts, which permit, in

certain circumstances to deduce the encryption keys.

Also, success of attacks depends of available

resources such processing time allowed, amount of

storage memory and available experimental data. In

general, there is no systematic way for an

eavesdropper to recover a ciphertext; it may be

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 18 Volume 17, 2018

necessary to understand the cryptosystem design

and figure out its weakness based on decryption

results analysis, flows of implementation or by

building encryption keys behaviour.

While the majority of classical ciphers can be

easily broken by applying metaheuristic techniques,

research in cryptanalysis is focused on modern

cryptosystems and especially on block ciphers. In

order to evaluate their security, we assume that the

attacker has access to all ciphered data, the

encryption algorithm and in some cases, to other

details such the subject of texts and the literary

language in which they were written. However, the

cryptanalysis is in general, limited to the ciphertext

only attack which seems the most challenging kind

of attacks. Under this assumption, the attacker

generates several chosen keys and proceeds to the

decryption. Upon these considerations, we show that

blocks with reduced data are insecure; e.g, a key of

10 bits, such the Simplified Data Encryption

standard algorithm (SDES), implying 2
10

 different

ciphertexts which can be easily attacked by the

brute force attack, man-in-the-middle attack or

frequency character analysis. The blocks security

can be increased by using wide size keys. Although,

it becomes unfeasible for an attacker to try every

possible alternative until the desired plaintext is

found for keys of more than 56 bits such Data

Encryption Standard algorithm (DES). In order to

overcome this difficulty, a significant progress has

been emergent in recent two decays; the first

breakthrough date back to the 90s where Biham and

Shamir have proposed the differential cryptanalysis

which analyses the effect of the produced plaintexts

and their correspondent ciphertexts [5]. It was

tested on the DES [6][7]; experiments have shown

that, a combination of 2
47

 chosen plaintexts is

enough to reveal the encryption key. This result was

improved by Matsui [8][9] who proposed the linear

cryptanalysis for attack of the DES algorithm [10]

which uses a relation between inputs and outputs of

decryption algorithms that holds with a certain

probability and showed that just 2
43

 known

plaintexts are sufficient to reveal the decryption key.

Later, Biryukov and Wagner [11] proposed the

integral cryptanalysis or slide attack; it is based, in

general on known or chosen plaintexts. These

techniques are able to break various ciphers,

nevertheless, and given their reduced setting, remain

ineffective against a wide class of modern

cryptosystems. By another way, the brute force is a

common attack; it tries the 2
b
 possibilities of b-

length key within the search space to find the right

key. It has a successful outcome in breaking

ciphertexts but need enough resources and so, has

less success in practice. However, and in order to

avoid this class of attacks, actual research in

cryptanalysis of block ciphers tends toward

metaheuristic techniques and especially, bio-

inspired algorithms which have been found efficient

in resolution of such problem. These methods have

been successfully applied in a wide range of

research application areas where they gets better

results in a faster and cheaper way.

Bio-inspired algorithms are a general purpose

approach based on bio-inspired intelligence. It is a

well-known paradigm that successfully used as a

powerful tools for solving complex combinatorial

problems [12] with reasonable amount of resources

consumption. Various works [13][14] shown that

algorithms based bio-inspired intelligence have a

successful potential to handle wide instances and

may be adapted to produce approximate solutions

for a large variety of optimisation problems. They

use intelligent system that offers an independence of

movement of agents, which tends to replace the

preprograming and centralized control. In last few

years, many of such algorithms were emerged [15].

In cryptology, bio-inspired algorithms seem an

attractive tool for building block ciphers or

encryption key recovery.

The objective of this contribution is to

investigate a new way in which bio-inspired

algorithms can be efficiency used for attack on

encryption keys of block ciphers. The study

provides a new approach of known plaintext attack

based on genetic algorithm to overcome some

limitations related to heuristics defectiveness. Its

principle is inspired from an intelligent way of

selection of individuals that consists and, at every

generation, in building new individuals based on the

performance of others individuals regardless of

usual genetic operators. The goal of the approach is

to allow a fast convergence without need of initial

approximation to unknown parameters.

The rest of paper is organised as follows; section

2 presents a brief description of block ciphers, their

characteristics and application areas. Section 3

begins with an overview of bio-inspired intelligence

heuristics and introduces a brief description of

genetic algorithm. The section 4 presents a historical

background of various attacks of block cipher using

bio-inspired techniques and focuses on the

performance of the used methodologies. In section

5, a proposal for using genetic algorithm as attack

tool of block ciphers is given; followed by a

formulation of the problem and a description of

algorithms and parameters. Various experiments,

results and comments are illustrated in section 6

followed by a brief discussion in section 7. Finally,

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 19 Volume 17, 2018

the section 8 presents the paper conclusion and

directions of future work.

2 Block ciphers
Block ciphers can be either public or symmetric

keys. In following, we focus on these last class [16]

which uses an iterated encryption function E: {0,1}
n

x{0,1}
k

→{0,1}
n
. It takes an n-bits input of plaintext

M and a k-bit key k and in return, produces a unique

n-bits ciphertext C. The process is accomplished by

a sequential r times repetition of a nonlinear

complex transformation E based on several

substitution and permutation of basic operations. Its

principle consists, and for every iteration i of the

encryption process (figure 1), to split the n-bits

block of M into two identical halves Li and Ri. Then,

a round function f is applied to a one half using a

subkey ki, derived from a main secret key k; the

output is exclusive-ored with the other half. Then,

the two halves are swapped as effect presented by

relation (1).

 (Li,Ri)=(Ri-1,Li-1⨁f(Ri-1,ki)) (1)

The f function is nonlinear and invertible, usually

represented as a substitution boxe (called sboxe). It

produces an output block of m bits size based on a

input block of n bits size (m<n) which ensures that

all subsequent blocks are different.

The block ciphers are built based on nonlinearity

and low autocorrelation and characterized by their

simplicity of implementation, high speed of

encryption and resistance against various attacks,

nevertheless, blocks with small size (n < 64) are

vulnerable to attacks based on statistical analysis

where the compilation of frequency statistics of

plaintexts becomes feasible with reasonable

computing resources.

The advantage of such algorithm is that the

encryption and decryption functions are identical.

To allow a unique decryption, the encryption

transformation must be a bijection, defining one-to-

one on n-bits of each encrypted block. So, to reverse

a round, it is only necessary to apply the same

transformation again, which will cancel the changes

of the binary operation XOR.

Block ciphers algorithms became a basis

component in many encryption schemes such

Blowfish [17], LUCIFER [18], CAST [19], DES

[20], IDEA [21], RC5 [22], FEAL [23] and AES

[24].

Fig. 1. A bloc cipher round

3 Bio-inspired intelligence heuristics
Bio-inspired intelligence is a sub-branch of artificial

intelligence; it denoted the collective behaviour of

natural and artificial systems including several

agents, interacting locally among themselves and

their surrounding environment according to a set of

basis rules. The early concept has been emerged

many decades ago [25] and takes its inspiration

from the comportment of organisms that lives in

communities. In fact, organisms are relatively

unintelligent on their own but doted of a capability

to achieve tasks necessary for their survival (food

quest, safety, strategies of evading or relocation) in

a synchronized and decentralized way without need

dictating how each individual agent should act [26].

Bio-inspired techniques are adaptive strategies and

concepts, defined to model the life activity of social

swarms in nature. They employs a population of

individuals that explore the search space for

promising regions and solicited as a robust low-cost

tool for resolution of various complex problems

[27][28]. This principle is used to develop general-

purpose algorithms, characterised by their flexibility

and ability in resolving hard tasks with rational

resources consumption.

Since the first idea in bio-inspired intelligence

was proposed, several related strategies were

emerged in literature, namely, Ant Colony

Optimisation [29], Bacteria foraging [30], Honey

bee swarm [31], Cat swarm optimisation [32],

Immune optimisation Algorithm [33], Glowworm

[34], Bat algorithm [35], Wolf optimiser [36], etc.

The performance of bio-inspire algorithms has

increased the attention of researchers to use them

into their own activities. The most reporting results

show the successful of such algorithms application

in numerous real life domains including structural

optimisation [37], scheduling [38], data analysis

f

Li

Ri-1 ki Li-1

Ri



WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 20 Volume 17, 2018

[39], multi-objective or dynamic problems in

machine learning [40] and other real-life disciplines

[41].

Bio-inspired algorithms allow handling very

large spaces of solutions; however, they do not fully

show their competitive edge over certain static

problems. They suffer from stagnation situations

caused by the lack of central coordination and

drawback of parameters tuning. So, they are not

suitable for time-critical applications (such online

control systems) or deterministic applications given

that they cannot guarantee if an optimal solution is

ever found; that’s, the space exploration becomes

useless, if a cross between a local and global

solution occurs [42][43].

 Genetic Algorithm (GA in short), a sub-class of

bio-inspired intelligence optimisation methods,

based on genetic inheritance of species in a way

related to a competition principle. This fact leads

individuals (called chromosomes) that exhibit a

better experience and adaptation to their

environment to survive and transmit their genetic

material to subsequent generations by using

evolution operators such crossover and mutation.

The selection of fitting chromosomes among each

generation is completed based on a fitness criterion

in regard of environment behaviour. The first formal

model of GA was introduced in literature by [44],

followed by numerous extension studies [45] [46]

[47] which are successfully applied in resolution of

a wide area of optimisation problems such design,

scheduling, control and robotics [48][49].

In practice, GA denotes a methodology built on

the concept of artificial systems, which have the

ability of adaptation to environmental changes and

allow providing approximate solutions to

combinatory problems. Their specificity is to merge

the exploitation of accomplished results with the

exploration of new locations in order to accomplish

tasks that cannot be performed efficiency by

classical search methods. GA mechanism starts

usually with a population p0 of n individuals

(vectors of finite elements); each represents a

possible solution si of the considered problem. The

evolution process consists, and through a certain

number of generations, on an iterative application of

stochastic operators, which alter individuals

structure in order to produce better ones; each

generation keep a fixed number of individuals based

on their fitting results.

The following steps describe the GA principle:

 Evaluation of each current solution based of a

given fitness function.

 Selection of a set of solutions s  S with s ≤ n/2

according to certain rules related to a fitness

criterion.

 Submit selected solutions to crossover and

mutation in order to reproduce different further

solutions s’ S.

 Build a new set of solution s” based on s and s’

which replaces S.

The process will continue until a satisfactory

solution is emerged or in the limit of a stopped

criterion.

Genetic operators are ‘blind’ transformations

operate on individuals regardless to the considered

problem. The simplest form of GA involves three

operators:

 Selection: select a set of individuals for

reproduction.

 Crossover: consists on swap of bit sequences

between two individuals in order to create new

offspring. The aim of such transformation is to

produce a variety of structures and avoid the

domination of a particular type.

 Mutation: allow to flip some of individual

elements with a low probability. Its aim is to

keep available all individuals characteristics

within each generation.

The efficiency of GA depends on the well choice of

various values of used parameters: population size,

crossover points, fitness function characteristics and

the number of generations, which rely, in general to

the experience and the intuition.

The GA has proved their success in resolution of

various optimisation problems [45] [50]

[51][52][53]. In cryptanalysis, such algorithm has

been used as a guided random search toward

adequate space areas [54]. It allows a fast and not

premature convergence where only better solutions

are retained upon each generation [55].

4 Block ciphers cryptanalysis

4.1 Literature review
Over last decay, a significant part of research in bio-

inspired intelligence techniques related to

cryptanalysis of block ciphers has been reported. In

literature, most of contributions have employed a

research methodology built upon heuristics where

the objective function is based on frequency

character analysis. Bafghi and Sadeghiyan [56]

proposed a model for finding suitable key

characteristics on the last decryption round by using

ant colony optimisation technique (ACO); results

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 21 Volume 17, 2018

were acceptable and provided a reduction of search

space. In their works, Clark et al. [42] proposed an

approach based on Boolean functions for attack of

sboxes structures; experiments allow providing well

results for reduce data. On another way, Laskari et

al. [57][58][59] used a variety of computational

algorithms such particle swarm optimisation (PSO)

in resolution of cryptographic problems and

demonstrate their effectiveness in cryptosystems

security. Also, Song et al. [60] showed that GA

constitutes an effective tool for attack of Feistel

ciphers. Also, the idea proposed by Nalini and Rao

[61] included experiments of attack of symmetric

ciphers using various heuristics; results proved the

effectiveness of such techniques for cryptanalysis of

DES and DES reduced to four rounds (DES-4).

Later, Husein et al. [55] combined the GA with the

differential cryptanalysis in order to develop a fast

algorithm for the attack of the DES; experiments

were carried out on DES reduced to eight rounds

(DES-8); they proved the efficiency of the results

obtained compared to exhaustive search and

differential cryptanalysis. The GA were also applied

by Garg et al. [62] for attack of SDES cryptosystem

where the experiments permit retrieval of most key

bits. GA also have been used by Yang et al. [63] for

attack of DES reduced to six rounds with a specific

fitness function based on Hamming distance of

relevant binary strings; the results obtained indicate

that the proposed approach are effective to attack

such cipher. On another way, bio-inspired

algorithms have been used by [64] and [65] for

attack of block ciphers such DES-4 and DES; they

showed that the PSO is more competitive than GA

on the attack DES-4. Also, this heuristic has been

used by Pandy and Mishra [66]; experiments

revealed most bits of used decryption keys and

showed that these algorithms may be a powerful

tool in cryptanalysis of such ciphers. Also,

Vimalathithan and Valarmathi [67] have proved the

effectiveness the PSO for reducing the search key

space of various symmetric ciphers. The known

plaintext attack has also been an interest of many

researchers; in this context, an idea that involves

reducing search space of 4DES by deducing correct

bits from keys themselves has been opted by

Hamdani et al. [68]; experiments were carried based

respectively on Particle Swarm Optimisation (PSO)

and artificial immune system (AI) achieved better

results. Another alternative has been proposed by

Khan et al. [69]; it consists in the use of the ACO

for attack of DES-4 cryptosystem; ants moves throw

a generic search space of two vertices labelled ‘1’

and ‘0’ and at every iteration, each ant select a node

label based on its fitness value. Experimental results

allowed finding 19 bits (among 56) of DES

encryption key. Abd-Elmonim et al. [70] proposed

another approach based on particle swarm

optimisation in attack of DES cryptosystem. They

attempts to deduce root key bits by analysing the

difference of sboxes inputs in the first and last

round; results allowed locating 39 bits among a total

of 48 bits. Another interesting idea has been

proposed by Jadon et al. [71] as an improvement of

differential cryptanalysis. It consists to recover the

remaining 14 bits of DES key by using a binary

PSO algorithm; the fitness function is based on the

difference between the number of ciphertexts pairs

used by differential cryptanalysis and the number of

pairs that satisfy the known plaintexts. The

produced results showed that such idea is a better

tool in attack of Feistel ciphers.

4.2 Analysis
The study of various approaches mentioned above

shows that most attacks affect reduced versions of

DES, namely SDES and DES with a limited number

of rounds; this fact proves that DES with 16 rounds

remains robust and resistant to various attacks. The

few studies and attacks that have addressed DES

such [72] where the results seems interesting: more

than 26 key bits are revealed. However, they

provide no indication about experimental

environment such ciphers characteristics which

should be, generally extract from known Corpus in

order to approve the results quality.

The second remark refers to the ambiguity

related to the environment parameters. It is easy to

note that each metaheuristic algorithm includes not

less than ten parameters, which should be evaluated

before starting the attack process. Most of works

cited have proceeded to an intuitive evaluation or, in

some cases, to an empirical estimation of parameters

values according some characteristics related to the

considered problem, while others contributions

precede to experiments without mention about the

manner of parameters initialisation. Also, the

ciphers size has its importance in the quality of

results; A large size cipher allows in general, better

results; this rule is not confirmed by certain works

such [73].

As it mentioned, the most cited results are

divergent. The results obtained are, in some cases

unjustified and limited to their experimental

environment. This fact prevents the possibility of

experiments reproduction and loss of their

efficiency and competiveness, especially in absence

of standard benchmarks of ciphers database that can

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 22 Volume 17, 2018

be used by the research community in order to

measure the quality of results. Based on these

considerations, we agree that the character

frequency analysis (which adopted as a fitness

evaluation by some contributions related to modern

symmetric ciphers) cannot be considered as an

efficient way of evaluation of block cipher

decryption since the attack of such ciphers

experience the avalanche effect that hides the

statistical information of plaintexts [74]. In addition,

such evaluation may be used only for ASCII texts;

so, the conversion of binary texts to ASCII form

produces in sometimes, non-alphabetic characters,

which cannot be evaluated by the considered fitness

function. On another way, attacks techniques related

to block ciphers are dedicated and not intended

other cryptosystems. They also require high

computing resources given the non-linearity of the

sboxes and the wide size of decryption keys [75].

5 Proposed approach
In general, cryptanalysis is viewed as a discrete

search problem through a finite key space. The

complexity of such problem is measured based on

the average number of candidate keys required to

mount the attack; it is therefore, proportional to the

space size. In literature, the most attacks have been

performed in a way that reducing the complexity of

such problem; so, a cipher with wide key spaces is

considered secure. This fact needs much attention to

the problem formulation in order to avoid modest

results not so far than random search [76].

In this context, we have inspired from the idea of

Hamdani et al. [68] where the deduction of correct

plaintext bits seems a best way of candidate keys. It

consists in practice, on the generation of a specific

form of keys, which satisfy a maximum of correct

bits, and therefore, allows a fast convergence.

5.1 Key representation
In block ciphers, a key is a vector of n bits.

Therefore and, for convenience, we use the binary

GA where each chromosome is represented by a

stream of bits. Therefore, genetic operators consist

on swapping or inversion of keys bits.

5.2 Fitness function
The fitness function must include the maximum of

material that exhibit the ciphertexts properties and

may be independent of statistical information of the

language of texts. It represents the difference

between real and candidate keys. Since the real key

is unknown, the distance is evaluated based on the

number of correct bits in the produced plaintext in

regard of the known plaintext. In usual decryption

of block ciphers, a plaintext Ms is obtained based on

a ciphertext Cs and a key ks. In absence of ks, the

attacker proceeds to a decryption of Cs by a trial key

kt in order to obtain a target plaintext Mt. The

fitness function f
t
k measures the difference between

Ms and Mt. This situation requires Ms as an input

referential for comparison. A close difference

between Ms and Mt denotes an adequate solution.

The fitness function is built upon this idea. In

literature, such function has been proposed under

various combination schemes [63-64][68-72] [77].

The most commonly used is given by equation (2).

fk=1-S/n (2)

where S denoted the number of same bits in

identical positions between Ms and Mt ; n is the size

of text block.

In general, a fitness function must be maximised

against the objective function of the problem, which

is minimising the cost function given by equation

(2). In our case, we denote that the fitness function

corresponds to the cost function and may be

minimized; its value can achieve an overall

minimum 0 when S=n which denotes that kt and ks

are equivalents.

5.3 Key evaluation
Given a initial population of candidate decryption

keys, each of which represents a basic solution of

the considered problem. A key is used to produce

blocks of plaintexts. The evaluation is accomplished

for each plaintext block independently of other

blocks. A random Initial population of candidate

keys is chosen. Table 1 illustrates an example of a

population of five keys of SDES cryptosystem and

the fitness values of the correspondent plaintexts Mt

(t=1..5). The evaluation is built upon a given Ms

where the correspondent decryption key is ks =

‘1101010100’.

 f

tk

k1 1 0 0 1 1 0 0 1 1 1 0.625
k2 1 0 0 1 1 0 1 0 1 1 0.875

k3 0 0 1 1 1 0 1 0 1 1 1.0

k4 0 1 1 0 0 1 0 1 1 1 0.75

k5 1 1 0 1 0 0 1 0 1 0 0.5

Table 1. Example of candidate keys evaluation.

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 23 Volume 17, 2018

5.4 Attack principle
It consists on the following tasks that will be

performed at every iteration of the evolution

process.

 Compute the amount and average of ‘0’ and ‘1’

separately for keys which have a fitness

value f
t
k ≤ α, where α ]0,1], a given threshold.

 Generate a referential key k* built upon

statistical average values of ‘0’ and ‘1’ obtained

above. Each bit of k* is normalised as 1 if the

average of ‘1’ is greater than the average of ‘0’

and vice versa. A random bit value is retained is

case of equality.

 Proceed to the crossover which concern just keys

with fitness value less than α. The crossover

occurs for each two keys selected based on a

fitness proportionate strategy. With a single

crossover point, each two keys produce a child.

 The mutation is accomplished with a standard

rate (2 to 5%) for each selected key separately.

Then, keys that exhibit acceptable result are injected

in next generation, whereas other keys will be

removed.

 Table 2 shows an example of the evolution process;

with a given α=0.75, the retained keys of table 1 are

k1, k4 and k5. The crossover is accomplished

between k1 and k4 with a single crossover point; the

produced child is k1-4. The retained keys are k1, k4,

k5 , k1-4 and k* which constitute the population of the

next generation. The (*) symbol in the last row of

table 2 means that the corresponding bit value is

randomly chosen.

 f
t
k

k1 1 0 0 1 1 0 0 1 1 1 0.625

k4 0 1 1 0 0 1 0 1 1 1 0.75

k1-4 1 0 0 1 1 1 0 1 1 1 0.5

k5 1 1 0 1 0 0 1 0 1 0 0.5

 ‘1’ 3 2 1 3 2 2 1 3 4 3

 ‘0’ 1 2 3 1 2 2 3 1 0 1

Avg ‘1’ 0.75 0.5 0.25 0.75 0.5 0.5 0.25 0.75 1.0 0.75

Avg ‘0’ 0.25 0.5 0.75 0.25 0.5 0.5 0.75 0.25 0.0 0.25

k* 1 1* 0 1 0* 0* 0 1 1 1 0.375

Table 2. Construction of a referential key k*

5.5 Implementation
The attack consists on applying the encryption

algorithm for each candidate key ki
.
. The function 1

outlines the main steps of attack process of DES ; it

takes in input, a block cipher Cs of size n and a

decryption key ki and produces a plaintext Mt. The

variables L, R, E, S, P and IP denoted respectively

the left and right halves of block cipher, the

expansion, substitution, permutation and the initial

permutation achieved by the encryption algorithm.

The LX and T are temporary arrays.

Function 1. Decrypt(Cs, n, k)

structure L[n/2], LX[n/2], R[n/2], T[n]
Sboxe ← SboxeDES;; IP ← IPDES ; IP-1← IP-1

DES; E←
EDES; S← SDES
IP(Cs)
for i ← 1 to n do

 L[i] ← Cs[i];, R[i] ← Cs[n/2+i]
endfor
for i ← 1 to nbRound do

Generate (ki)

T ← E(R) ; T← Tki ; LX ← S(T,Sboxe)

LX← P(LX) ; L ← R ; R ← LLX
endfor
for i ← 1 to n/2 do

Mt[i] ← L[i]; Mt[n/2+i] ← R[i]
endfor
IP-1(Mt)
return(Mt)

Each output block Mt of size n is evaluated

according to the fitness function illustrates by

equation (2) and outlined by function 2.

At every iteration, a referential key k* is

generated based on the keys kt which have the best

performance (f
t
k ≤ α). The process of generation is

illustrated by function 3.

Function 2. Cost(Mt, Ms)

Cost ← 0
for i ← 1 to n do

if Mt[i] = Ms[i] Cost ← +1 endif
 endfor
Cost ← 1-Cost/n

Function 3. RefKey()

structure avg[n,2], Refkey<bit[n],fitness>
for j ← 1 to n do

avg[j,1] ← Sum(k[i].bit[j] for all i and bit[j]=’1’
avg[j,2] ← Sum(k[i].bit[j] or all i and bit[j]=’0’

endfor
for j ← 1 to n do

Refkey.bit[j] ← max(avg[j,1],avg[j,2])
if (avg[j,1]=avg[j,2])

Refkey.bit[j] ← rnd(1)
endif

endfor
Return(Refkey)

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 24 Volume 17, 2018

5.6 Attack with genetic algorithm
To apply Genetic Algorithm in cryptanalysis of

block ciphers and, based on a population of popSize

individuals, a set of keys ki (i=1..popSize) are

randomly generated in first. Each of which is

modelled by a structure key_struc<bit[n],fitness>.

Algorithm 1 outlines the main steps of the attack

using GA; the cross() function creates a key kij

based on a first part of a key ki and a second part of

a key kj. Both ki and kj have simultaneously a fitness

value less than α. kij will replaces kp, a chosen key

among whose have a fitness greater than α. The

mutation inv() is merely an inversion of a key bit

based on a given rate. Each key kj is then used to

decrypt the proposed ciphertext Cs. Each plaintext

M
t
i (i=1..popSize) is evaluated; its fitness is denoted

by ki.fitness. Then, the referential key k* should be

generated; it will replaces the worst one.

Algorithm 1. AG in attack of block ciphers

input: Ms, Cs, key_struc<bit[n],fitness>,n,
kpopSiz, seg_nb, mut_rate, alpha

output: k*, Mtk*
generate ki (i=1..popSize)
for i ← 1 to popSize do

Mti ← decrypt(Cs,n,ki)
ki .fitness ← cost(Mti , Ms)

endfor
sort(ki , fitness) (i=1..popSize)
while not <exit criterion>

i ← 1, j ← popSize
while i < j-1 and ki+1.fitness≤alpha do

cross(ki, ki+1, kj, alpha)
i ← i+1, j ← j-1

endwhile
for i ← 1 to popSize do

ki ← inv(ki , bitx, mut_rate)
ki .fitness ← cost(decrypt(Cs,n,ki) , Ms)

endfor
sort(ki , fitness) (i=1..popSize)
kpopSize ← refKey()

k* ← k1

endwhile
return (k*,Mt1)

The process will be stopped after a fixed number

of iterations or if no improvement in solution occurs

after a fixed period.

Similar to all heuristic algorithms, GA is unable

de reproduce an exact solution, that is, and in the

algorithm 1, k* is rarely a right key but rather close

to the right one. Hence, the produced plaintext can

be partially readable and easily revised and

corrected based on manual changes.

5.7 Attack with Particle Swarm Optimisation
Particle swarm optimisation (PSO, in short), is a

population based method attributed to Kennedy and

Eberhart [78], inspired by the social comportment of

animals and insects that lives in communities and

exhibit both individual and social behaviour. Unlike

GA, PSO has no genetic operators but a swarm of

particles, which evolves through space search and

exchange environmental information in order to

identify promising regions, according to an effective

strategy, which consists to follow particles with best

positions in regard of the food source.

The PSO algorithm uses a population of particles

denoted by their positions (in the search space)

which kept randomly in first, and represent potential

solutions. Through exploration, each particle i

maintains its best position xi it ever encountered by

moving toward the position xp of its best

neighbourhood [79] and the position xg of the best

particle of the swarm with a moderate velocity vi

according to the following equations:

vi=civi+cp(pi-xi)+cg(g-xi) (3)

xi=xi+vi

(4)

where pi and g are respectively the position of the

best neighbourhood of i and the position of the best

particle of swarm. ci, cp and cg are random numbers

(called learning factors) uniformly distributed in

range [0,1].

Since its inception, PSO gained popularity due to

its simplicity and effectiveness in production of

good results with low cost and has been object of

several improvements and variants [80][81][82] [83]

[84][85]. It has been also successfully applied in

solving various complex combinatorial problems

[86][87][88][89][90][91]. In cryptanalysis PSO has

been widely used for attack of various

cryptosystems in classical and modern ciphers

[92][93][94].

Algorithm 2 describes the main steps of PSO

applied to cryptanalysis of block ciphers; each

particle i corresponds to a key ki with keysize bits

length.

At every iteration of the decryption process, each bit

j of the key ki is updated according to the following

rule: a flip to 1 (if vi > α) and to 0 otherwise; the

new position xi of particle i correspond to the key i

with an updated bit j. Both vi and α may be in range

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 25 Volume 17, 2018

]0,1]. The obtained keys are then valued according

to the fitness function used. Only the best keys may

survive. The process will continue until it reaches an

acceptable plaintext or after a fixed number of

iterations. For simplicity, we omit the near

neighbourhood from the process.

Algorithm 2. PSO in attack of block ciphers
input: Ciphern, SwarmSize, keySize, α
output: S*, k*

Generate ki, vi, ci (i=1.. SwarmSize) and cg

Evaluate Si, (i=1.. SwarmSize)
S* ←min(Si, i=1.. SwarmSize)

while not (exit criterion)
for j ← 1 to KeySize do

for i ← 1 to SwarmSize do

Pick random number ci {0,1}
vi ←civi + cg| ki .bitj - k*.bitj |
if vi>α
 ki .bitj ← 1 else ki .bitj ← 0
endif
if Si < S*

S* ← Si ; k* ← ki
endif

endfor
endfor

endwhile
return (k*)

6 Experimentation and results
In this section, various experiments were conducted

on GA and other heuristics applied to cryptanalysis

of used cryptosystems. The aim of experiments is to

emphasize the effectiveness of the considered

approach in the resolution of such problem.

6.1 Experimental settings
The experiments have been conducted on a set of

sample binary texts in range of 800 to 16000 bits

(100 to 2000 alphabet characters) extracts from ICE

[95] and converted to upper case letters without

spaces. Longer texts are generally easy to decipher.

Moreover, the cryptanalysis is usually applied to

fragments of data and messages exchanged through

networks which are in most cases, processed by

small blocks. Encryption algorithms used are:

Simplified Data Encryption Standard (SDES) [96],

Data Encryption Standard reduced to 8 rounds

(DES-8), FEAL-8 [23] and eight rounds of RC-5

[22]. Each key is assimilated as a binary vector of

64 bits (case of DES-8 and FEAL-8), 40 bits in case

of RC-5 and 10 bits in case of SDES. The used

algorithms are coded on Matlab 2.14 and performed

on a CPU 3.2 Ghz. For genetic operators’

parameters, we have set a single crossover point and

a standard mutation rate of 4%. Numerical results

were averaged over 10 runs of each test.

Tests were accomplished in three steps: The first,

illustrated by figures 2, 3 and 4 below is intended to

locate the optimal values of most common AG

parameters such population size and the number of

generations. The second, shown in figures 5 and 6,

exhibit the performance of the proposed approach

where the reference key k* is introduced; whereas,

figures 7 and 8 illustrate a comparative study of the

proposed approach against PSO and brute force

attack.

6.2 Performance of algorithms
The first experiment refers to the impact of varying

the size of the GA population with the performance

of encryption algorithms in terms of recovered bits

within the decryption key. The figure 2 shows the

average percentage of correct bits recovered by GA

for various population sizes. It turns that the

performance increases with population size and

becomes stable around a threshold of 60 individuals.

Also, AG performs better for SDES algorithm (due

to the shortest of its key) while DES-8 seems the

hardest one among others.

Fig. 2. Performance evaluation of recognition rate of correct key

bits vs population size

With a selected population of 60 individuals and a

ciphertext of 2400 bits (300 ASCII characters), the

bar chart in figure 3 gives a comparison information

about the recognition rate of recovered bits with the

number of generations. It turns out that, the

performance increases with the number of

generations; the growth rate becomes constant

beyond 3000. As, results of figure 2, AG

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 26 Volume 17, 2018

outperforms with SDES algorithm and allows an

acceptable results for RC-5.

Fig. 3. Performance evaluation of recognition rate of correct key

bits vs generation number

The experiment in figure 4 shows the effect of

varying the ciphertext size with the performance of

AG in terms of the number of recovered bits within

the decryption key. The figure shows that is no

improvement for small ciphertexts (less than 2000

bits) and noticeable results for texts of more than

2400 bits (300 ASCII characters). In addition, the

result seems more significant for SDES algorithm

where the complete key bits are recovered. Overall

and, except DES-8, AG performs more than 50% for

all used algorithms.

Fig. 4. Performance evaluation of recognition rate of correct key

bits vs ciphertext size

6.3 Evaluation of AGk* approach
In following experiments, we introduce the

reference key k* in AG generations and, based on

previous results, we adopted the best parameters

values, namely: a population of 60 individuals, a

processing execution of 3000 generations and

various ciphertexts of 2400 bits each.

As mentioned in §3.3, k* is built upon generation

keys which satisfied a fitness value less than a

threshold α. The best value of α is located based on

experiment illustrated by figure 5 which shows the

performance of recognition rate of correct bits

produced by AGk* (AG with k*) with the variation

of α.

Fig. 5. Performance evaluation of recognition rate of correct key

bits vs alpha

In this figure, we note that the best performance is

obtained when using a threshold value around 0.6.

The best performance is achieved for SDES

algorithm (with α > 0.2), for RC-5 cryptosystem

(0.8 > α > 0.4) and in range [0.5, 0.6] for other

algorithms.

In following experiments, we opt for α =0.6.

The bar chart in figure 6 illustrated the variation

of CPU time for both AG and AGk* when using

optimal parameters values defined above with a

duration that corresponds to 3000 generations. It is

noticeable that AG uses less processing time than

AGk*. This difference is justified by the extra time

spent in computing of sums and averages of key bits

needed in building of k*. Overall, DES-8 and

FEAL-8 cryptosystems seem the greediest in time

consumption.

Fig. 6. Performance evaluation of recognition rate of correct key

bits vs ciphertext size

The experiments below are not intended to enhance

the performance of bio-inspired heuristics but to

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 27 Volume 17, 2018

measure the effectiveness of proposed approach

against other similar algorithms. Tests were

operated based on the best parameters values given

by previous experiments. Figure 7 gives a

comparison performance of AG, AGk*, Brute force

attack and PSO with the recognition rate of correct

key bits when using a processing duration that

corresponds to 5000 generations.

Fig. 7. Performance evaluation of recognition rate of correct key

bits vs alpha

The figure 7 shows that the proposed approach

outperforms significantly other algorithms and

seems competitive with PSO. We note also that the

SDES key is fully broken and results related toDES-

8, FEAL-8 and RC-5 are acceptable (with more than

70% of recovered bits).

Within the same parameters, the figure 8 gives

information about the processing CPU time used by

AG, AGk*, PSO and brute force attack on

ciphertexts produced by SDES, DES-8, FEAL-8 and

RC-5. It’s easy to notice that AGk* and, as PSO

needs more processing time than AG and brute

force. Based on this result, it appears that the GAk*

uses more time than other algorithms, but this delay

can be improved by the well performance of the

approach as mentioned in figure 6 above.

Fig. 8. Performance evaluation of recognition rate of correct key

bits vs alpha

7 Discussion
In literature, the above cryptosystems have been

objects of various attacks. FEAL-8 cryptosystem is

announced to be broken with less than 10000 chosen

plaintexts [97] [98] and by 2
25

 known plaintexts

with a success rate of 70% [99]. These results have

been reduced to 2
15

 known plaintexts [100] and

finally to less than 2000 pairs of chosen plaintexts

[101]. The RC-5 cryptosystem with reduced rounds

(8 and 12) is also declared be broken with 2
48

chosen plaintexts [102] and less than 2
44

 chosen

plaintexts [103]. The most attacks were based on

linear, differential, timing and correlation

cryptanalysis and are outdated; this fact prevents

any way of comparison since our tests uses

computational intelligence heuristics. In case of

DES cryptosystem variants, the most attacks as

mentioned in §4.1 approve the fact that SDES and

DES-n (with n<6) is breakable whereas is not the

case for other cryptosystems such DES-8 where the

best success rate is less than 65%. So, attacks tend

in general, to reduce the key space instead of

locating correct bits. However and, with an average

of 70% of recovered bits, our strategy conquers

existent results with its efficiency in resolution of

such problem.

8 Conclusion
Bio-inspired intelligence algorithms, an active area

in artificial intelligence, denoted as a successful

research methodology in resolution of complex real-

life problems such cryptanalysis with moderate

resources consumption.

The paper outlines the main concepts of such

methodology in cryptanalysis of block ciphers based

cryptosystems and focuses on Genetic Algorithm, a

most popular bio-inspired intelligence technique.

Also, we proposed a new approach based on genetic

algorithm for attack of such ciphers. It consists for

each generation, and in addition of usual genetic

operators, to build a referential key based on the

performance of certain other keys, it will replaces

the worst one in subsequent generation. This

strategy allows a fast convergence and keeps

permanently a high quality of results.

The experiments conducted indicate that the

proposed methodology can be successfully applied

as a powerful tool in handling such problem. The

produced results obtained based on various typical

instances, allow locating more than 60% of correct

bits-key with acceptable resource consumption for

some variants of block ciphers cryptosystems such

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 28 Volume 17, 2018

FEAL-8, RC-5 and DES eight rounds while SDES

keys were fully broken.

The proposed algorithm have not yet been

explored to find its full capabilities; that is, tests

were operated on a reduced space of data, however,

the approach presented can be adjusted in order to

achieve other cryptosystems and results can also be

extended to more data and improved by the well

choice of environment parameters.

Based on the literature related to cryptanalysis

problem, we notice that, the construction of the

fitness function represents a critical determinant of

the results quality, since the various forms of

functions used in classical cryptanalysis cannot be

used as evaluation tool for modern ciphers due to

the nonlinearity of block ciphers. Although and, as

a future direction, the proposed approach may open

possibilities in investigation of further complicated

cryptosystems attacks.

References:

[1] W. Stallings, Cryptography and Network

Security, Netw. Secur., pp. 66–74, 2006.

[2] A. J. Menezes, P. C. Van Oorschot, and S. a.

Vanstone, Handbook of Applied

Cryptography, Electr. Eng., vol. 106, p. 780,

1997.

[3] K. V. S. Rao, M. R. Krishna, and D. Bujji

Babu, Cryptanalysis of a Feistel Type Block

Cipher by Feed Forward Neural Network Using

Right Sigmoidal Signals, Int. J. Soft Comput.,

vol. 4, no. 3, pp. 131–135, 2009.

[4] F. L. Bauer, Decrypted Secrets: Methods and

Maxims of Cryptology. Heidelberg: Springer-

Verlag, 1997.

[5] E. Biham and A. Shamir, Diifferential

Cryptanalysis of the Data Encryption Standard.

Springer-Verlag, 1993.

[6] E. Biham and A. Shamir, Differential

Cryptanalysis of the Full 16-round DES, in

Advances in Cryptology — CRYPTO’ 92,

2001, pp. 487–496.

[7] E. Biham and A. Shamir, Differential

cryptanalysis of DES-like cryptosystems, J.

Cryptol., vol. 4, no. 1, pp. 3–72, 1991.

[8] M. Matsui and Y. A, new method for known

plaintext attack of feal cipher, Lect. Notes

Comput. Sci., pp. 81–91, 1992.

[9] M. Matsui, The first experimental

cryptanalysis of the data encryption standard,

in 14th Annual International Cryptology

Conference, 1994, pp. 1–11.

[10] M. Matsui, Linear Cryptanalysis Method for

DES Cipher, LNCS, vol. 765, pp. 386–397,

1994.

[11] A. Biryukov and D. Wagner, Advances in

Cryptology — EUROCRYPT 2000, in

Lecture Notes in Computer Sciences, Springer

Berlin Heidelberg, 2000, pp. 589–606.

[12] A. H. Gandomi and A. H. Alavi, Multi-stage

genetic programming: A new strategy to

nonlinear system modeling, Inf. Sci. (Ny).,

vol. 181, no. 23, pp. 5227–5239, 2011.

[13] C. Blum and X. Li, Swarm Intelligence in

Optimisation, Swarm Intell. Introd. Appl.,

pp. 43–85, 2008.

[14] T. S. C. Felix and K. T. Manoj, Swarm

Intelligence, Focus on Ant and Particle

Swarm Optimization, in Numerical Analysis

and Scientific Computing, T. S. C. Felix and

K. T. Manoj, Eds. I-Tech Education and

Publishing, 2007.

[15] T. M. R. Sharvani.G.S, N.K. Cauvery,

Different Types of Swarm Intelligence

Algorithm for Routing, in 2009

International Conference on Advances in

Recent Technologies in Communication and

Computing, 2009, pp. 604–609.

[16] H. Feistel, Cryptography and Computer

Privacy, Scientific American, vol. 228, no. 5.

pp. 15–23, 1973.

[17] B. Schneier, The Blowfish Encryption

Algorithm, Dr. Dobbs J., vol. 23, pp. 38–40,

1998.

[18] H. Feistel, Block cipher cryptographic

system, #3 798 359, 1974.

[19] A. Carlisle, Constructing of Symmetric

ciphers using the CAST design Procedure,”

Des. Codes, Cryptogr., vol. 12, pp. 283–316,

1997.

[20] National Bureau Of Standards, Data

Encryption Standard (DES), Technology,

vol. 46–3, no. 46, pp. 1–26, 1999.

[21] X. Lai and J. L. Massey, A proposal for a

new block encryption standard, Adv.

Cryptology—EUROCRYPT’90, pp. 389–404,

2006.

[22] R. L. Rivest, The RC5 Encryption

Algorithm, Technology, vol. 1008, pp. 86–

96, 1995.

[23] A. Shimizu and S. Miyaguchi, Fast Data

Encipherment Algorithm FEAL, in

Advances in Cryptology — EUROCRYPT

’87, 1988, vol. 304, pp. 267–278.

[24] S. Heron, Advanced Encryption Standard

(AES), Netw. Secur., vol. 2009, no. 12, pp.

8–12, Dec. 2009.

[25] W. S. McCulloch and W. Pitts, A logical

calculus of the ideas immanent in nervous

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 29 Volume 17, 2018

activity, Bull. Math. Biophys., vol. 5, no. 4,

pp. 115–133, 1943.

[26] P. Tarasewich and P. R. McMullen, Swarm

intelligence: power in numbers, Commun.

ACM, vol. 45, no. August, pp. 62–67, 2002.

[27] E. Bonabeau, M. Dorigo, and G. Theraulaz,

From Natural to Artificial Swarm

Intelligence. Oxford University Press, 1999.

[28] L. M. Hiot, Y. S. Ong, B. K. Panigrahi, Y.

Shi, M.-H. Lim, P. K. Tripathi, S.

Bandyopadhyay, and S. K. Pal, Handbook of

Swarm Intelligence, vol. 8. 2010.

[29] M. Dorigo, V. Maniezzo, and A. Colorni,

Positive feedback as a search strategy,

Tech. Rep. 91-016, 1991.

[30] K. M. Passino, Biomimicry of bacterial

foraging for distributed optimization and

control, Control Systems, IEEE, vol. 22, no.

3. pp. 52–67, 2002.

[31] D. F. Signorini and J. M. Slattery, Neural

networks., Lancet (London, England), vol.

346, no. 8988, p. 1500, Dec. 1995.

[32] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, Cat

swarm optimization, PRICAI 2006 Trends

Artif. Intell., pp. 854–858, 2006.

[33] M. Bakhouya and J. Gaber, An Immune

Inspired-based Optimization Algorithm:

Application to the Traveling Salesman

Problem, vol. 9, no. 1, pp. 105–116, 2007.

[34] K. N. Krishnanand and D. Ghose,

Glowworm swarm optimization for

simultaneous capture of multiple local

optima of multimodal functions, Swarm

Intell., vol. 3, no. 2, pp. 87–124, 2009.

[35] X. S. Yang, A new metaheuristic Bat-

inspired Algorithm, Stud. Comput. Intell.,

vol. 284, pp. 65–74, 2010.

[36] S. Mirjalili, S. M. Mirjalili, and A. Lewis,

Grey Wolf Optimizer, Adv. Eng. Softw.,

vol. 69, pp. 46–61, 2014.

[37] R. E. Perez and K. Behdinan, Particle swarm

approach for structural design optimization,

Comput. Struct., vol. 85, no. 19–20, pp.

1579–1588, 2007.

[38] P. Pongchairerks, Particle swarm

optimization algorithm applied to scheduling

problems, ScienceAsia, vol. 35, no. 1, pp.

89–94, 2009.

[39] G. Hanrahan, Swarm intelligence

metaheuristics for enhanced data analysis

and optimization., Analyst, vol. 136, no. 18,

pp. 3587–94, 2011.

[40] D. E. Goldberg and J. H. Holland, Genetic

Algorithms and Machine Learning, Mach.

Learn., vol. 3, no. 2, pp. 95–99, 1988.

[41] A. P. Engelbrecht, Fundamentals of

Computational Swarm Intelligence, vol. 8.

Wiley, 2005.

[42] J. A. Clark, J. L. Jacob, and S. Stepney, The

design of S-boxes by simulated annealing,

New Gener. Comput., vol. 23, no. 3, pp.

219–231, 2005.

[43] J. Olamaei, T. Niknam, and G. Gharehpetian,

Application of particle swarm optimization

for distribution feeder reconfiguration

considering distributed generators, Appl.

Math. Comput., vol. 201, no. 1–2, pp. 575–

586, 2008.

[44] J. H. Holland, Adaptation in Natural and

Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and

Artificial Intelligence, vol. 1, no. 1. 1975.

[45] D. E. Goldberg, Genetic Algorithms in

Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

[46] M. D. Vose and A. Hall, Modeling Simple

Genetic Algorithms, Evol. Comput., vol. 3,

no. 4, pp. 453–472, 1996.

[47] J. H. HOLLAND, Adaptation in natural and

artificial systems. MIT Press, 1992.

[48] L. J. Fogel, A. J. Owens, and M. J. Walsh,

Artificial Intelligence through Simulated

Evolution, Wiley, no. 1965, pp. 27–38,

1997.

[49] I. F. Gonos, N. E. Mastorakis, S. Member,

M. N. S. Swamy, and L. Fellow, A Genetic

Algorithm Approach to the Problem of

Factorization of General Multidimensional

Polynomials, vol. 50, no. 1, pp. 16–22,

2003.

[50] D. B. Fogel, Evolutionary algorithms in

theory and practice, Complexity, vol. 2, no.

4, pp. 26–27, Mar. 1997.

[51] C. W. Ahn, Practical genetic algorithms,

vol. 18. 2006.

[52] Z. Michalewicz, Genetic algorithms + data

structures = evolution programs (3rd ed.),

vol. 1. 1996.

[53] K. F. Man, K. S. Tang, and S. Kwong,

Genetic algorithms: Concepts and

applications, IEEE Trans. Ind. Electron.,

vol. 43, no. 5, pp. 519–534, 1996.

[54] R. Matthews, The use of genetic algorithms

in cryptanalysis, Cryptologia, 1993.

[55] H. M. H. Husei, B. I. Bayoumi, F. S. Holail,

B. E. M. Hasan, and M. Z. Abd El-Mageed,

A genetic algorithm for cryptanalysis with

application to DES-like systems, Int. J.

Netw. Secur., vol. 8, no. 2, pp. 177–188,

2009.

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 30 Volume 17, 2018

[56] A. G. Bafghi and B. Sadeghiyan, Finding

suitable differential characteristics for block

ciphers with Ant colony technique, in Ninth

International Symposium on Computers and

Communications, 2004. Proceedings. ISCC

2004, 2004, vol. 1, pp. 418–423 Vol.1.

[57] E. C. Laskari, G. C. Meletiou, Y. C.

Stamatiou, and M. N. Vrahatis,

Cryptography and cryptanalysis through

computational intelligence, Stud. Comput.

Intell., vol. 57, pp. 1–49, 2007.

[58] E. C. Laskari, G. C. Meletiou, Y. C.

Stamatiou, and M. N. Vrahatis, Applying

evolutionary computation methods for the

cryptanalysis of Feistel ciphers, Appl. Math.

Comput., vol. 184, no. 1, pp. 63–72, 2007.

[59] E. C. Laskari, G. C. Meletiou, Y. C.

Stamatiou, and M. N. Vrahatis,

Evolutionary computation based

cryptanalysis: A first study, Nonlinear

Anal. Methods Appl., vol. 63, no. 5–7, pp.

E823–E830, 2005.

[60] J. Song, H. Zhang, Q. Meng, and Z. Wang,

Cryptanalysis of four-round des based on

genetic algorithm, 2007 Int. Conf. Wirel.

Commun. Netw. Mob. Comput. WiCOM

2007, pp. 2326–2329, 2007.

[61] N. Nalini and G. Raghavendra Rao, Attacks

of simple block ciphers via efficient

heuristics, Inf. Sci. (Ny)., vol. 177, pp.

2553–2569, 2007.

[62] P. Garg, S. Varshney, and M. Bhardwaj,

Cryptanalysis of Simplified Data Encryption

Standard using Genetic Algorithm, Am. J.

Networks Commun., vol. 4, no. 3, pp. 32–36,

2015.

[63] Y. Fan, S. Jun, and Z. Huanguo,

Quantitative cryptanalysis of six-round DES

using Evolutionary computation, in Third

Internationa Symposium, ISICA, 2008, pp.

134–141.

[64] W. Shahzad, A. B. Siddiqui, and F. A. Khan,

Cryptanalysis of Four-Rounded DES using

Binary Particle Swarm Optimization,

Simulation, pp. 1757–1758, 2009.

[65] R. Vimalathithan and M. L. Valarmathi,

Cryptanalysis of Simplified-DES using

Computational Intelligence, WSEAS Trans.

Comput., vol. 10, no. 7, pp. 210–219, 2011.

[66] S. Pandey and P. M. Mishra, Particle Swarm

Optimization in Cryptanalysis of DES, Int.

J. Adv. Res. Comput. Eng. Technol., vol. 1,

no. 4, pp. 379–381, 2012.

[67] R. Vimalathithan and M. Valarmathi,

Cryptanalysis of Simplified-AES using

Particle Swarm Optimisation, Def. Sci. J.,

vol. 62, no. 2, pp. 117–121, 2012.

[68] S. A. A. Hamdani, S. Shafiq, and Farrukh

Aslam Khan, Cryptanalysis of Four-

Rounded DES Using Binary Artificial

Immune System, in Lecture Notes in

Computer Scienc, Y. T. Ytan, Y. Sh, and T.

Kay Chen, Eds. Springer Berlin Heidelberg,

2010, pp. 338–346.

[69] S. Khan, W. Shahzad, and F. A. Khan,

Cryptanalysis of four-rounded DES using ant

colony optimization, 2010 Int. Conf. Inf.

Sci. Appl. ICISA 2010, pp. 2161–2166, 2010.

[70] W. G. Abd-Elmonim, N. I. Ghali, A. E.

Hassanien, and A. Abraham, Known-

plaintext attack of DES-16 using particle

swarm optimization, Proc. 2011 3rd World

Congr. Nat. Biol. Inspired Comput. NaBIC

2011, pp. 12–16, 2011.

[71] S. S. Jadon, H. Sharma, E. Kumar, and J. C.

Bansal, Application of binary particle

swarm optimization in cryptanalysis of DES,

Adv. Intell. Soft Comput., vol. 130 AISC, no.

VOL. 1, pp. 1061–1071, 2012.

[72] R. Vimalathithan and M. Valarmathi,

Cryptanalysis of DES using Computational

Intelligence, WSEAS Trans. Comput., vol.

55, no. 2, pp. 237–244, 2011.

[73] F. Teytaud and C. Fonlupt, A Critical

Reassessment of Evolutionary Algorithms on

the cryptanalysis of the simplified data

encryption standard algorithm, arXiv Prepr.

arXiv1407.1993, p. 12, 2014.

[74] C. De Canniere, A. Biryukov, and B.

Preneel, An introduction to Block Cipher

Cryptanalysis, Proc. IEEE, vol. 94, no. 2,

pp. 346–356, 2006.

[75] D. Coppersmith, The Data Encryption

Standard (DES) and its strength against

attacks, IBM Journal of Research and

Development, vol. 38, no. 3. pp. 243–250,

1994.

[76] P. Isasi and J. C. Hernandez, Introduction to

the Applications of Evolutionary

Computation in Computer Security and

Cryptography, Comput. Intell., vol. 20, no.

3, pp. 445–449, Aug. 2004.

[77] D. G. N. Hunter and A. R. McKenzie,

Experiments with Relaxation Algorithms for

Breaking Simple Substitution Ciphers,

Comput. J., vol. 26, no. 1, pp. 68–71, 1983.

[78] J. Kennedy and R. Eberhart, Particle swarm

optimization, Proc. ICNN’95 - Int. Conf.

Neural Networks, vol. 4, pp. 1942–1948,

1995.

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 31 Volume 17, 2018

[79] R. . Eberhart, P. Simpson, and R. Dobbins,

Computational Intelligence PC Tools.

Academic Press, 1996.

[80] Y. Shi and R. C. Eberhart, Empirical study

of particle swarm optimization, Proc. 1999

Congr. Evol. Comput., pp. 1945–1950, 1999.

[81] M. Zambrano-Bigiarini, M. Clerc, and R.

Rojas, Standard Particle Swarm

Optimisation 2011 at CEC-2013: A baseline

for future PSO improvements, in 2013

IEEE Congress on Evolutionary

Computation, 2013, pp. 2337–2344.

[82] D. Bratton and T. Blackwell, A Simplified

Recombinant PSO, J. Artif. Evol. Appl., vol.

2008, no. 1, pp. 1–10, 2008.

[83] M. Meissner, M. Schmuker, and G.

Schneider, Optimized Particle Swarm

Optimization (OPSO) and its application to

artificial neural network training., BMC

Bioinformatics, vol. 7, p. 125, 2006.

[84] W. J. Zhang and X. F. Xie, DEPSO: Hybrid

Particle Swarm with Differential Evolution

Operators, Proc. 2003 IEEE Int. Conf. Syst.

Man Cybern., vol. 4, no. 1, pp. 3816–3821,

2003.

[85] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H.

Chung, Adaptive Particle Swarm

Optimization, IEEE Trans. Syst. Man

Cybern. Part B-Cybernetics, vol. 39, no. 6,

pp. 1362–1381, 2009.

[86] J. Salerno, Using the particle swarm

optimization technique to train a recurrent

neural model, in Proceedings Ninth IEEE

International Conference on Tools with

Artificial Intelligence, 1997, pp. 45–49.

[87] J. Kennedy, R. C. Eberhart, and Y. Shi,

Swarm Intelligence, Swarm Intell., pp. 287–

325, 2001.

[88] E. H. Luna, C. A. C. Coello, and A. H.

Aguirre, On the use of a population-based

particle swarm optimizer to design

combinational logic circuits, in 2004

NASA/DoD Conference on Evolvable

Hardware, 2004. Proceedings, 2004, pp.

183–190.

[89] X. Hu, R. C. Eberhart, and Y. Shi,

Engineering optimization with particle

swarm, Swarm Intelligence Symposium,

2003. SIS ’03. Proceedings of the 2003

IEEE. pp. 53–57, 2003.

[90] H. Yoshida, K. Kawata, Y. Fukuyama, S.

Takayama, and Y. Nakanishi, A particle

swarm optimization for reactive power and

voltage control considering voltage security

assessment, IEEE Trans. Power Syst., vol.

15, no. 4, pp. 1232–1239, 2000.

[91] J. Robinson and Y. Rahmat-Samii, Particle

swarm optimization in electromagnetics,

Antennas Propagation, IEEE Trans., vol. 52,

no. 2, pp. 397–407, 2004.

[92] M. F. Uddin and a. M. Youssef,

Cryptanalysis of Simple Substitution Ciphers

Using Particle Swarm Optimization, 2006

IEEE Int. Conf. Evol. Comput., pp. 677–680,

2006.

[93] N. Nalini and G. Raghavendra Rao,

Cryptanalysis of block ciphers via

improvised particle swarm optimization and

extended simulated annealing techniques,

Int. J. Netw. Secur., vol. 6, no. 3, pp. 342–

353, 2008.

[94] K. Dworak and U. Boryczka, Cryptanalysis

of SDES Using Modified Version of Binary

Particle Swarm Optimization, in

Computational Collective Intelligence, vol.

9330, Springer International Publishing,

2015, pp. 159–168.

[95] G. Nelson, S. Wallis, and B. Aarts,

Exploring Natural Language, vol. G29.

Amsterdam: John Benjamins Publishing

Company, 2002.

[96] E. Schaefer, A Simplified {D}ata

{E}ncryption {S}tandard Algorithm,

Cryptologia, vol. 20, no. 1, pp. 77–84, 1996.

[97] B. den BOER, Cryptanalysis of {F.E.A.L.},

in Advances in Cryptology.

EUROCRYPT’88, vol. 330.

[98] H. Gilbert and G. Chassé, A Statistical

Attack of the FEAL-8 Cryptosystem, in

Advances in Cryptology-CRYPT0’ 90. Eds.

Berlin, Heidelberg: Springer Berlin

Heidelberg, 1990, pp. 22–33.

[99] K. Ohta and K. Aoki, Linear cryptanalysis

of the fast data encipherment algorithm,

Adv. Cryptology—Crypto’94, pp. 12–16,

1994.

[100] M. Matsui and A. Yamagishi, A New

Method for Known Plaintext Attack of

FEAL Cipher, in Advances in Cryptology

— EUROCRYPT’ 92, 1993, vol. 658, pp. 81–

91.

[101] E. Biham and A. Shamir, Differential

Cryptanalysis of Feal and N-Hash, 547, pp.

1–16, 1991.

[102] L. R. Knudsen and W. Meier, Improved

Differential Attacks on RC5, in Advances in

Cryptology CRYPTO’96, 1996, pp. 216–228.

[103] A. Biryukov and E. Kushilevitz, Improved

cryptanalysis of RC5, Finland, 1998, pp. 85–

99.

WSEAS TRANSACTIONS on COMPUTERS T.Mekhaznia, A. Zidani, M. Derdour

E-ISSN: 2224-2872 32 Volume 17, 2018

