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Abstract: - Cryptanalysis of modern cryptosystems is viewed as NP-Hard problem. Block ciphers, a modern 

symmetric key cipher are characterised with the nonlinearity and low autocorrelation of their structure. In 

literature, various attacks were accomplished based on traditional research algorithms such the brute force, but 

results still insufficient especially with wide instances due to resources requirement, which increase with the 

size of the problem. Actual research tends toward the use of bio-inspired intelligence algorithms, which are 

heuristic methods able to handle various combinatorial problems due to their optimisation of search space and 

fast convergence with reasonable resource consumption. The paper presents a new approach based on genetic 

algorithm for cryptanalysis of block ciphers; we focuses especially around the problem formulation, which 

seems a critical factor that depends the attack success. The experiments were accomplished on various set of 

data; the obtained results indicate that the proposed methodology seems an efficient tool in handling such 

attacks. Moreover, results comparisons of the considered approach with similar heuristics such Particle Swarm 

Optimisation and Brute Force reports its effectiveness in solving the considered problem. 

 

 
Key-Words: - Block ciphers; Genetic Algorithm; Particle swarm optimisation; Cryptanalysis; Bio-inspired 

intelligence. 

 

1 Introduction 
Cryptography refers to the science of 

information’s protection. Cryptographic techniques 

denote the mechanisms to achieve security goals 

such confidentiality and authentication that consists 

in preventing access even from indiscrete eyes and 

developing avenues of encryption methodologies 

[1][2]. They involves an input data called a plaintext 

and a small amount of information denoted a key in 

order to customize an output data called a ciphertext 

which viewed as unintelligible information 

obfuscated to all not intended parties and appears 

meaningful only through a legal decryption process.  

A cipher algorithm denotes the mathematical 

function that enables the encryption and decryption 

process. The set of plaintexts, ciphertexts, keys and 

related algorithms is called a cryptosystem. 

Actually, modern cryptosystems becomes a 

unavoidable tool for real life applications; research 

in this area becomes very intensive whatsoever on 

building new concepts or improvement of existent 

ones.   

Cryptanalysis denotes the way of studying the 

concepts of cryptosystems in order to detect their 

weakness and attempt to extract parts of 

corresponded plaintext without knowing the secret 

data which normally needed for decryption such 

keys or algorithms. The term attack refers to the 

manner in using cryptanalysis on ciphertexts in 

order to reveal the original plaintext; if the plaintext 

is fully restored, the attack is successful. So, the 

strategies in building robust ciphers that prevent 

effective attacks seem a hard task especially with 

the increase of data transfer through public 

networks. The efficiency of cryptanalysis is based 

upon the knowledge of cryptosystems material such 

encryption algorithms, language specificities, parts 

of plain and cipher texts and eventually any luck. 

The knowledge of such information favourite right 

attacks [3]; its aims is to measure the cryptosystems 

strength and therefore, help researchers to perform 

more robust algorithms for upcoming times [4]. 

Cryptanalysis uses numerous techniques of attacks, 

depending of information available about 

cryptosystems such fragments of ciphertexts and 

their corresponding plaintexts, which permit, in 

certain circumstances to deduce the encryption keys. 

Also, success of attacks depends of available 

resources such processing time allowed, amount of 

storage memory and available experimental data. In 

general, there is no systematic way for an 

eavesdropper to recover a ciphertext; it may be 
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necessary to understand the cryptosystem design 

and figure out its weakness based on decryption 

results analysis, flows of implementation or by 

building encryption keys behaviour.   

While the majority of classical ciphers can be 

easily broken by applying metaheuristic techniques, 

research in cryptanalysis is focused on modern 

cryptosystems and especially on block ciphers. In 

order to evaluate their security, we assume that the 

attacker has access to all ciphered data, the 

encryption algorithm and in some cases, to other 

details such the subject of texts and the literary 

language in which they were written. However, the 

cryptanalysis is in general, limited to the ciphertext 

only attack which seems the most challenging kind 

of attacks. Under this assumption, the attacker 

generates several chosen keys and proceeds to the 

decryption. Upon these considerations, we show that 

blocks with reduced data are insecure;  e.g, a key of 

10 bits, such the Simplified Data Encryption 

standard algorithm (SDES), implying 2
10

 different 

ciphertexts which can be easily attacked by the 

brute force attack, man-in-the-middle attack or 

frequency character analysis. The blocks security 

can be increased by using wide size keys. Although, 

it becomes unfeasible for an attacker to try every 

possible alternative until the desired plaintext is 

found for keys of more than 56 bits such Data 

Encryption Standard algorithm (DES). In order to 

overcome this difficulty, a significant progress has 

been emergent in recent two decays; the first 

breakthrough date back to the 90s where Biham and 

Shamir have proposed the differential cryptanalysis 

which analyses the effect of the produced plaintexts 

and their correspondent ciphertexts [5].  It was 

tested on the DES [6][7]; experiments have shown 

that, a combination of 2
47

 chosen plaintexts is 

enough to reveal the encryption key. This result was 

improved by Matsui [8][9] who proposed the linear 

cryptanalysis for attack of the DES algorithm [10] 

which uses a relation between inputs and outputs of 

decryption algorithms that holds with a certain 

probability and showed that just 2
43

 known 

plaintexts are sufficient to reveal the decryption key. 

Later, Biryukov and Wagner [11] proposed the 

integral cryptanalysis or slide attack; it is based, in 

general on known or chosen plaintexts. These 

techniques are able to break various ciphers, 

nevertheless, and given their reduced setting, remain 

ineffective against a wide class of modern 

cryptosystems. By another way, the brute force is a 

common attack; it tries the 2
b
 possibilities of b-

length key within the search space to find the right 

key. It has a successful outcome in breaking 

ciphertexts but need enough resources and so, has 

less success in practice. However, and in order to 

avoid this class of attacks, actual research in 

cryptanalysis of block ciphers tends toward 

metaheuristic techniques and especially, bio-

inspired algorithms which have been found efficient 

in resolution of such problem. These methods have 

been successfully applied in a wide range of 

research application areas where they gets better 

results in a faster and cheaper way.  

Bio-inspired algorithms are a general purpose 

approach based on bio-inspired intelligence. It is a 

well-known paradigm that successfully used as a 

powerful tools for solving complex combinatorial 

problems [12] with reasonable amount of resources 

consumption. Various works [13][14] shown that 

algorithms based bio-inspired intelligence have a 

successful potential to handle wide instances and 

may be adapted to produce approximate solutions 

for a large variety of optimisation problems. They 

use intelligent system that offers an independence of 

movement of agents, which tends to replace the 

preprograming and centralized control. In last few 

years, many of such algorithms were emerged [15]. 

In cryptology, bio-inspired algorithms seem an 

attractive tool for building block ciphers or 

encryption key recovery.  

The objective of this contribution is to 

investigate a new way in which bio-inspired 

algorithms can be efficiency used for attack on 

encryption keys of block ciphers. The study 

provides a new approach of known plaintext attack 

based on genetic algorithm to overcome some 

limitations related to heuristics defectiveness. Its 

principle is inspired from an intelligent way of 

selection of individuals that consists and, at every 

generation, in building new individuals based on the 

performance of others individuals regardless of 

usual genetic operators. The goal of the approach is 

to allow a fast convergence without need of initial 

approximation to unknown parameters.    

The rest of paper is organised as follows; section 

2 presents a brief description of block ciphers, their 

characteristics and application areas. Section 3 

begins with an overview of bio-inspired intelligence 

heuristics and introduces a brief description of 

genetic algorithm. The section 4 presents a historical 

background of various attacks of block cipher using 

bio-inspired techniques and focuses on the 

performance of the used methodologies.  In section 

5, a proposal for using genetic algorithm as attack 

tool of block ciphers is given; followed by a 

formulation of the problem and a description of 

algorithms and parameters. Various experiments, 

results and comments are illustrated in section 6 

followed by a brief discussion in section 7. Finally, 
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the section 8 presents the paper conclusion and 

directions of future work.  

 

 

2 Block ciphers 
Block ciphers can be either public or symmetric 

keys. In following, we focus on these last class [16] 

which uses an iterated encryption function E: {0,1}
n 

x{0,1}
k 

→{0,1}
n
. It takes an n-bits input of plaintext 

M and a k-bit key k and in return, produces a unique 

n-bits ciphertext C. The process is accomplished by 

a sequential r times repetition of a nonlinear 

complex transformation E based on several 

substitution and permutation of basic operations. Its 

principle consists, and for every iteration i of the 

encryption process (figure 1), to split the n-bits 

block of M into two identical halves Li and Ri. Then, 

a round function f is applied to a one half using a 

subkey ki, derived from a main secret key k; the 

output is exclusive-ored with the other half. Then, 

the two halves are swapped as effect presented by 

relation (1). 

 

 (Li,Ri)=(Ri-1,Li-1⨁f(Ri-1,ki))                                    (1) 

 

The f function is nonlinear and invertible, usually 

represented as a substitution boxe (called sboxe). It 

produces an output block of m bits size based on a 

input block of n bits size (m<n) which ensures that 

all subsequent blocks are different.  

The block ciphers are built based on nonlinearity 

and low autocorrelation and characterized by their 

simplicity of implementation, high speed of 

encryption and resistance against various attacks, 

nevertheless, blocks with small size (n < 64) are 

vulnerable to attacks based on statistical analysis 

where the compilation of frequency statistics of 

plaintexts becomes feasible with reasonable 

computing resources. 

The advantage of such algorithm is that the 

encryption and decryption functions are identical. 

To allow a unique decryption, the encryption 

transformation must be a bijection, defining one-to-

one on n-bits of each encrypted block. So, to reverse 

a round, it is only necessary to apply the same 

transformation again, which will cancel the changes 

of the binary operation XOR. 

Block ciphers algorithms became a basis 

component in many encryption schemes such 

Blowfish [17], LUCIFER [18], CAST [19], DES 

[20], IDEA [21], RC5 [22], FEAL [23] and AES 

[24]. 

 

 

 
 

Fig. 1.  A bloc cipher round 

 
 
3 Bio-inspired intelligence heuristics 
Bio-inspired intelligence is a sub-branch of artificial 

intelligence; it denoted the collective behaviour of 

natural and artificial systems including several 

agents, interacting locally among themselves and 

their surrounding environment according to a set of 

basis rules. The early concept has been emerged 

many decades ago [25] and takes its inspiration 

from the comportment of organisms that lives in 

communities. In fact, organisms are relatively 

unintelligent on their own but doted of a capability 

to achieve tasks necessary for their survival (food 

quest, safety, strategies of evading or relocation) in 

a synchronized and decentralized way without need 

dictating how each individual agent should act [26].   

Bio-inspired techniques are adaptive strategies and 

concepts, defined to model the life activity of social 

swarms in nature. They employs a population of 

individuals that explore the search space for 

promising regions and solicited as a robust low-cost 

tool for resolution of various complex problems 

[27][28]. This principle is used to develop general-

purpose algorithms, characterised by their flexibility 

and ability in resolving hard tasks with rational 

resources consumption.  

Since the first idea in bio-inspired intelligence 

was proposed, several related strategies were 

emerged in literature, namely, Ant Colony 

Optimisation [29], Bacteria foraging [30], Honey 

bee swarm [31], Cat swarm optimisation [32], 

Immune optimisation Algorithm [33], Glowworm 

[34], Bat algorithm [35], Wolf optimiser [36], etc. 

The performance of bio-inspire algorithms has 

increased the attention of researchers to use them 

into their own activities. The most reporting results 

show the successful of such algorithms application 

in numerous real life domains including structural 

optimisation [37], scheduling [38], data analysis 

f 

Li 

Ri-1 ki Li-1 

Ri 

 
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[39], multi-objective or dynamic problems in 

machine learning [40] and other real-life disciplines 

[41].  

Bio-inspired algorithms allow handling very 

large spaces of solutions; however, they do not fully 

show their competitive edge over certain static 

problems. They suffer from stagnation situations 

caused by the lack of central coordination and 

drawback of parameters tuning. So, they are not 

suitable for time-critical applications (such online 

control systems) or deterministic applications given 

that they cannot guarantee if an optimal solution is 

ever found; that’s, the space exploration becomes 

useless, if a cross between a local and global 

solution occurs [42][43].  

 Genetic Algorithm (GA in short), a sub-class of 

bio-inspired intelligence optimisation methods, 

based on genetic inheritance of species in a way 

related to a competition principle. This fact leads 

individuals (called chromosomes) that exhibit a 

better experience and adaptation to their 

environment to survive and transmit their genetic 

material to subsequent generations by using 

evolution operators such crossover and mutation. 

The selection of fitting chromosomes among each 

generation is completed based on a fitness criterion 

in regard of environment behaviour. The first formal 

model of GA was introduced in literature by [44], 

followed by numerous extension studies [45] [46] 

[47] which are successfully applied in resolution of 

a wide area of optimisation problems such design, 

scheduling, control and robotics [48][49]. 

In practice, GA denotes a methodology built on 

the concept of artificial systems, which have the 

ability of adaptation to environmental changes and 

allow providing approximate solutions to 

combinatory problems. Their specificity is to merge 

the exploitation of accomplished results with the 

exploration of new locations in order to accomplish 

tasks that cannot be performed efficiency by 

classical search methods.  GA mechanism starts 

usually with a population p0 of n individuals 

(vectors of finite elements); each represents a 

possible solution si of the considered problem. The 

evolution process consists, and through a certain 

number of generations, on an iterative application of 

stochastic operators, which alter individuals 

structure in order to produce better ones; each 

generation keep a fixed number of individuals based 

on their fitting results. 

The following steps describe the GA principle: 

 Evaluation of each current solution based of a 

given fitness function. 

 Selection of a set of solutions s  S with s ≤ n/2 

according to certain rules related to a fitness 

criterion.  

 Submit selected solutions to crossover and 

mutation in order to reproduce different further 

solutions s’ S. 

 Build a new set of solution s” based on s and s’ 

which replaces S.  

The process will continue until a satisfactory 

solution is emerged or in the limit of a stopped 

criterion. 

Genetic operators are ‘blind’ transformations 

operate on individuals regardless to the considered 

problem. The simplest form of GA involves three 

operators: 

 Selection: select a set of individuals for 

reproduction.  

 Crossover: consists on swap of bit sequences 

between two individuals in order to create new 

offspring. The aim of such transformation is to 

produce a variety of structures and avoid the 

domination of a particular type. 

 Mutation: allow to flip some of individual 

elements with a low probability. Its aim is to 

keep available all individuals characteristics 

within each generation. 

The efficiency of GA depends on the well choice of 

various values of used parameters: population size, 

crossover points, fitness function characteristics and 

the number of generations, which rely, in general to 

the experience and the intuition. 

The GA has proved their success in resolution of 

various optimisation problems [45] [50] 

[51][52][53]. In cryptanalysis, such algorithm has 

been used as a guided random search toward 

adequate space areas [54]. It allows a fast and not 

premature convergence where only better solutions 

are retained upon each generation [55].  

 

 

4 Block ciphers cryptanalysis 
 
4.1 Literature review 
Over last decay, a significant part of research in bio-

inspired intelligence techniques related to 

cryptanalysis of block ciphers has been reported. In 

literature, most of contributions have employed a 

research methodology built upon heuristics where 

the objective function is based on frequency 

character analysis. Bafghi and Sadeghiyan [56] 

proposed a model for finding suitable key 

characteristics on the last decryption round by using 

ant colony optimisation technique (ACO); results 
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were acceptable and provided a reduction of search 

space. In their works, Clark et al. [42] proposed an 

approach based on Boolean functions for attack of 

sboxes structures; experiments allow providing well 

results for reduce data. On another way, Laskari et 

al. [57][58][59] used a variety of computational 

algorithms such particle swarm optimisation (PSO) 

in resolution of cryptographic problems and 

demonstrate their effectiveness in cryptosystems 

security. Also, Song et al. [60] showed that GA 

constitutes an effective tool for attack of Feistel 

ciphers. Also, the idea proposed by Nalini and Rao 

[61] included experiments of attack of symmetric 

ciphers using various heuristics; results proved the 

effectiveness of such techniques for cryptanalysis of 

DES and DES reduced to four rounds (DES-4). 

Later, Husein et al. [55] combined the GA with the 

differential cryptanalysis in order to develop a fast 

algorithm for the attack of the DES; experiments 

were carried out on DES reduced to eight rounds 

(DES-8); they proved the efficiency of the results 

obtained compared to exhaustive search and 

differential cryptanalysis. The GA were also applied 

by Garg et al. [62] for attack of SDES cryptosystem 

where the experiments permit retrieval of most key 

bits. GA also have been used by Yang et al. [63] for 

attack of DES reduced to six rounds with a specific 

fitness function based on Hamming distance of 

relevant binary strings; the results obtained indicate 

that the proposed approach are effective to attack 

such cipher.  On another way, bio-inspired 

algorithms have been used by [64] and [65] for 

attack of block ciphers such DES-4 and DES; they 

showed that the PSO is more competitive than GA 

on the attack DES-4. Also, this heuristic has been 

used by Pandy and Mishra [66]; experiments 

revealed most bits of used decryption keys and 

showed that these algorithms may be a powerful 

tool in cryptanalysis of such ciphers. Also, 

Vimalathithan and Valarmathi [67] have proved the 

effectiveness the PSO for reducing the search key 

space of various symmetric ciphers. The known 

plaintext attack has also been an interest of many 

researchers; in this context, an idea that involves 

reducing search space of 4DES by deducing correct 

bits from keys themselves has been opted by 

Hamdani et al. [68]; experiments were carried based 

respectively on Particle Swarm Optimisation (PSO) 

and artificial immune system (AI) achieved better 

results. Another alternative has been proposed by 

Khan et al. [69]; it consists in the use of the ACO 

for attack of DES-4 cryptosystem; ants moves throw 

a generic search space of two vertices labelled ‘1’ 

and ‘0’ and at every iteration, each ant select a node 

label based on its fitness value. Experimental results 

allowed finding 19 bits (among 56) of DES 

encryption key. Abd-Elmonim et al. [70] proposed 

another approach based on particle swarm 

optimisation in attack of DES cryptosystem. They 

attempts to deduce root key bits by analysing the 

difference of sboxes inputs in the first and last 

round; results allowed locating 39 bits among a total 

of 48 bits. Another interesting idea has been 

proposed by Jadon et al. [71] as an improvement of 

differential cryptanalysis. It consists to recover the 

remaining 14 bits of DES key by using a binary 

PSO algorithm; the fitness function is based on the 

difference between the number of ciphertexts pairs 

used by differential cryptanalysis and the number of 

pairs that satisfy the known plaintexts. The 

produced results showed that such idea is a better 

tool in attack of Feistel ciphers. 

 

 

4.2 Analysis 
The study of various approaches mentioned above 

shows that most attacks affect reduced versions of 

DES, namely SDES and DES with a limited number 

of rounds; this fact proves that DES with 16 rounds 

remains robust and resistant to various attacks. The 

few studies and attacks that have addressed DES 

such [72] where the results seems interesting: more 

than 26 key bits are revealed. However, they 

provide no indication about experimental 

environment such ciphers characteristics which 

should be, generally extract from known Corpus in 

order to approve the results quality.  

The second remark refers to the ambiguity 

related to the environment parameters. It is easy to 

note that each metaheuristic algorithm includes not 

less than ten parameters, which should be evaluated 

before starting the attack process. Most of works 

cited have proceeded to an intuitive evaluation or, in 

some cases, to an empirical estimation of parameters 

values according some characteristics related to the 

considered problem, while others contributions 

precede to experiments without mention about the 

manner of parameters initialisation. Also, the 

ciphers size has its importance in the quality of 

results; A large size cipher allows in general, better 

results; this rule is not confirmed by certain works 

such [73]. 

As it mentioned, the most cited results are 

divergent. The results obtained are, in some cases 

unjustified and limited to their experimental 

environment. This fact prevents the possibility of 

experiments reproduction and loss of their 

efficiency and competiveness, especially in absence 

of standard benchmarks of ciphers database that can 
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be used by the research community in order to 

measure the quality of results. Based on these 

considerations, we agree that the character 

frequency analysis (which adopted as a fitness 

evaluation by some contributions related to modern 

symmetric ciphers) cannot be considered as an 

efficient way of evaluation of block cipher 

decryption since the attack of such ciphers 

experience the avalanche effect that hides the 

statistical information of plaintexts [74]. In addition, 

such evaluation may be used only for ASCII texts; 

so, the conversion of binary texts to ASCII form 

produces in sometimes, non-alphabetic characters, 

which cannot be evaluated by the considered fitness 

function. On another way, attacks techniques related 

to block ciphers are dedicated and not intended 

other cryptosystems. They also require high 

computing resources given the non-linearity of the 

sboxes and the wide size of decryption keys [75].   

 

 

5 Proposed approach 
In general, cryptanalysis is viewed as a discrete 

search problem through a finite key space. The 

complexity of such problem is measured based on 

the average number of candidate keys required to 

mount the attack; it is therefore, proportional to the 

space size. In literature, the most attacks have been 

performed in a way that reducing the complexity of 

such problem; so, a cipher with wide key spaces is 

considered secure. This fact needs much attention to 

the problem formulation in order to avoid modest 

results not so far than random search [76]. 

In this context, we have inspired from the idea of 

Hamdani et al. [68] where the deduction of correct 

plaintext bits seems a best way of candidate keys.  It 

consists in practice, on the generation of a specific 

form of keys, which satisfy a maximum of correct 

bits, and therefore, allows a fast convergence.   

 
 
5.1 Key representation 
In block ciphers, a key is a vector of n bits. 

Therefore and, for convenience, we use the binary 

GA where each chromosome is represented by a 

stream of bits.  Therefore, genetic operators consist 

on swapping or inversion of keys bits. 

 

 

5.2 Fitness function 
The fitness function must include the maximum of 

material that exhibit the ciphertexts properties and 

may be independent of statistical information of the 

language of texts. It represents the difference 

between real and candidate keys. Since the real key 

is unknown, the distance is evaluated based on the 

number of correct bits in the produced plaintext in 

regard of the known plaintext. In usual decryption 

of block ciphers, a plaintext Ms is obtained based on 

a ciphertext Cs and a key ks. In absence of ks, the 

attacker proceeds to a decryption of Cs by a trial key 

kt in order to obtain a target plaintext Mt.  The 

fitness function f 
t
k measures the difference between 

Ms and Mt. This situation requires Ms as an input 

referential for comparison. A close difference 

between Ms and Mt denotes an adequate solution. 

The fitness function is built upon this idea. In 

literature, such function has been proposed under 

various combination schemes [63-64][68-72] [77].  

The most commonly used is given by equation (2). 

 

fk=1-S/n                                                             (2) 

 

where S denoted the number of same bits in 

identical positions between Ms and Mt ; n is the size 

of text block. 

In general, a fitness function must be maximised 

against the objective function of the problem, which 

is minimising the cost function given by equation 

(2). In our case, we denote that the fitness function 

corresponds to the cost function and may be 

minimized; its value can achieve an overall 

minimum 0 when S=n which denotes that kt and ks 

are equivalents. 

 

 

5.3 Key evaluation 
Given a initial population of candidate decryption 

keys, each of which represents a basic solution of 

the considered problem. A key is used to produce 

blocks of plaintexts. The evaluation is accomplished 

for each plaintext block independently of other 

blocks. A random Initial population of candidate 

keys is chosen. Table 1 illustrates an example of a 

population of five keys of SDES cryptosystem and 

the fitness values of the correspondent plaintexts Mt 

(t=1..5). The evaluation is built upon a given Ms 

where the correspondent decryption key is ks = 

‘1101010100’. 

 
 f 

tk 

k1 1 0 0 1 1 0 0 1 1 1 0.625 
k2 1 0 0 1 1 0 1 0 1 1 0.875 

k3 0 0 1 1 1 0 1 0 1 1 1.0 

k4 0 1 1 0 0 1 0 1 1 1 0.75 

k5 1 1 0 1 0 0 1 0 1 0 0.5 

Table 1.  Example of candidate keys evaluation. 
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5.4 Attack principle 
It consists on the following tasks that will be 

performed at every iteration of the evolution 

process. 

 Compute the amount and average of ‘0’ and ‘1’ 

separately  for  keys  which  have  a  fitness 

value f 
t
k ≤ α, where α ]0,1], a given threshold. 

 Generate a referential key k* built upon 

statistical average values of ‘0’ and ‘1’ obtained 

above.  Each bit of k* is normalised as 1 if the 

average of ‘1’ is greater than the average of ‘0’ 

and vice versa. A random bit value is retained is 

case of equality. 

 Proceed to the crossover which concern just keys 

with fitness value less than α. The crossover 

occurs for each two keys selected based on a 

fitness proportionate strategy. With a single 

crossover point, each two keys produce a child.  

 The mutation is accomplished with a standard 

rate (2 to 5%) for each selected key separately. 

Then, keys that exhibit acceptable result are injected 

in next generation, whereas other keys will be 

removed. 

 Table 2 shows an example of the evolution process; 

with a given α=0.75, the retained keys of table 1 are 

k1, k4 and k5. The crossover is accomplished 

between k1 and k4 with a single crossover point; the 

produced child is k1-4. The retained keys are k1, k4, 

k5 , k1-4 and k* which constitute the population of the 

next generation. The (*) symbol in the last row of 

table 2 means that the corresponding bit value is 

randomly chosen. 

 f 
t
k 

k1 1 0 0 1 1 0 0 1 1 1 0.625 

k4 0 1 1 0 0 1 0 1 1 1 0.75 

k1-4 1 0 0 1 1 1 0 1 1 1 0.5 

k5 1 1 0 1 0 0 1 0 1 0 0.5 

 ‘1’ 3 2 1 3 2 2 1 3 4 3  

 ‘0’ 1 2 3 1 2 2 3 1 0 1  

Avg ‘1’ 0.75    0.5   0.25   0.75   0.5   0.5   0.25   0.75   1.0   0.75  

Avg ‘0’ 0.25    0.5    0.75   0.25   0.5   0.5   0.75   0.25   0.0   0.25  

k* 1 1* 0 1 0* 0* 0 1 1 1 0.375 

Table 2. Construction of a referential key k* 

 

5.5 Implementation 
The attack consists on applying the encryption 

algorithm for each candidate key ki
.
. The function 1 

outlines the main steps of attack process of DES ; it 

takes in input, a block cipher Cs of size n and a 

decryption key ki and produces a plaintext  Mt. The 

variables L, R, E, S, P and IP denoted respectively 

the left and right halves of block cipher, the 

expansion, substitution, permutation and the initial 

permutation achieved by the encryption algorithm. 

The LX and T are temporary arrays.  

 

Function 1. Decrypt(Cs, n, k) 

structure L[n/2],  LX[n/2], R[n/2], T[n] 
Sboxe ← SboxeDES;; IP ← IPDES ; IP-1← IP-1

DES; E← 
EDES; S← SDES 
IP(Cs) 
for i ← 1 to n do 

  L[i] ← Cs[i];, R[i] ← Cs[n/2+i] 
endfor 
for i ← 1 to nbRound do 

Generate (ki )  

T ← E(R) ; T← Tki   ; LX ← S(T,Sboxe) 

LX← P(LX) ; L ← R ; R ← LLX 
endfor 
for i ← 1 to n/2 do 

Mt[i] ← L[i]; Mt[n/2+i] ← R[i] 
endfor 
IP-1(Mt) 
return(Mt) 

 

Each output block Mt of size n is evaluated 

according to the fitness function illustrates by 

equation (2) and outlined by function 2.  

 

 
At every iteration, a referential key k* is 

generated based on the keys kt which have the best 

performance (f 
t
k  ≤ α). The process of generation is 

illustrated by function 3. 

 

Function 2. Cost(Mt, Ms) 

Cost ← 0 
for i ← 1 to n  do  

if Mt[i] = Ms[i]  Cost ← +1 endif 
 endfor 
Cost ← 1-Cost/n  

Function 3. RefKey() 

structure avg[n,2], Refkey<bit[n],fitness> 
for j ← 1 to n  do  

avg[j,1] ← Sum(k[i].bit[j] for all i and bit[j]=’1’ 
avg[j,2] ← Sum(k[i].bit[j] or all i and bit[j]=’0’ 

endfor 
for j ← 1 to n  do   

Refkey.bit[j]  ← max(avg[j,1],avg[j,2] )  
if (avg[j,1]=avg[j,2])  

Refkey.bit[j]  ← rnd(1)   
endif 

endfor 
Return(Refkey) 
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5.6 Attack with genetic algorithm 
To apply Genetic Algorithm in cryptanalysis of 

block ciphers and, based on a population of popSize 

individuals, a set of keys ki (i=1..popSize) are 

randomly generated in first. Each of which is 

modelled by a structure key_struc<bit[n],fitness>. 

Algorithm 1 outlines the main steps of the attack 

using GA; the cross() function creates a key kij 

based on a first part of a key ki and a second part of 

a key kj. Both ki and kj have simultaneously a fitness 

value less than α. kij will replaces kp, a chosen key 

among whose have a fitness greater than α. The 

mutation inv() is merely an inversion of a key bit 

based on a given rate. Each key kj is then used to 

decrypt the proposed ciphertext Cs. Each plaintext 

M
t
i (i=1..popSize) is evaluated; its fitness is denoted 

by ki.fitness. Then, the referential key k* should be 

generated; it will replaces the worst one. 

 

 

Algorithm 1. AG in attack of block ciphers 

input: Ms, Cs, key_struc<bit[n],fitness>,n,  
kpopSiz, seg_nb, mut_rate, alpha  

output:  k*, Mtk*  
generate ki (i=1..popSize) 
for  i ← 1 to popSize do 

Mti ← decrypt(Cs,n,ki) 
ki .fitness ← cost(Mti , Ms) 

endfor 
sort(ki , fitness) (i=1..popSize) 
while not <exit criterion>   

i ← 1, j ← popSize  
while i < j-1 and ki+1.fitness≤alpha  do   

cross(ki, ki+1, kj, alpha) 
i ← i+1,  j ← j-1 

endwhile 
for  i ← 1 to popSize  do 

ki ← inv(ki , bitx, mut_rate) 
ki .fitness ← cost(decrypt(Cs,n,ki ) , Ms) 

endfor 
sort(ki , fitness) (i=1..popSize) 
kpopSize ← refKey() 

k* ← k1 

endwhile 
return (k*,Mt1)  

 

 

The process will be stopped after a fixed number 

of iterations or if no improvement in solution occurs 

after a fixed period. 

Similar to all heuristic algorithms, GA is unable 

de reproduce an exact solution, that is, and in the 

algorithm 1, k* is rarely a right key but rather close 

to the right one. Hence, the produced plaintext can 

be partially readable and easily revised and 

corrected based on manual changes. 

 
5.7 Attack with Particle Swarm Optimisation 
Particle swarm optimisation (PSO, in short), is a 

population based method attributed to Kennedy and 

Eberhart [78], inspired by the social comportment of 

animals and insects that lives in communities and 

exhibit both individual and social behaviour. Unlike 

GA, PSO has no genetic operators but a swarm of 

particles, which evolves through space search and 

exchange environmental information in order to 

identify promising regions, according to an effective 

strategy, which consists to follow particles with best 

positions in regard of the food source.  

The PSO algorithm uses a population of particles 

denoted by their positions (in the search space) 

which kept randomly in first, and represent potential 

solutions. Through exploration, each particle i 

maintains its best position  xi it ever encountered by 

moving toward the position xp of its best 

neighbourhood [79] and the position xg of the best 

particle of the swarm with a moderate velocity vi 

according to the following equations:  

 

vi=civi+cp(pi-xi)+cg(g-xi)                                   (3) 

 

xi=xi+vi
                                                                                                 

(4) 

 

where pi and g are respectively the position of the 

best neighbourhood of i and the position of the best 

particle of swarm. ci, cp and cg are random numbers 

(called learning factors) uniformly distributed in 

range [0,1]. 

Since its inception, PSO gained popularity due to 

its simplicity and effectiveness in production of 

good results with low cost and has been object of 

several improvements and variants [80][81][82] [83] 

[84][85]. It has been also successfully applied in 

solving various complex combinatorial problems 

[86][87][88][89][90][91]. In cryptanalysis PSO has 

been widely used for attack of various 

cryptosystems in classical and modern ciphers 

[92][93][94].  

Algorithm 2 describes the main steps of PSO 

applied to cryptanalysis of block ciphers; each 

particle i corresponds to a key ki with keysize bits 

length.  

At every iteration of the decryption process, each bit 

j of the key ki is updated according to the following 

rule: a flip to 1 (if vi > α) and to 0 otherwise; the 

new position xi of particle i correspond to the key i 

with an updated bit j. Both vi and α may be in range 
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]0,1]. The obtained keys are then valued according 

to the fitness function used. Only the best keys may 

survive. The process will continue until it reaches an 

acceptable plaintext or after a fixed number of 

iterations. For simplicity, we omit the near 

neighbourhood from the process. 

 

Algorithm 2.  PSO in attack of block ciphers 
input: Ciphern,  SwarmSize, keySize, α 
output:  S*, k*    

Generate ki, vi, ci (i=1..  SwarmSize )  and cg 

Evaluate Si, (i=1..   SwarmSize ) 
S* ←min(Si, i=1..   SwarmSize )  

while not (exit criterion )    
for  j ← 1 to KeySize do   

for  i ← 1 to   SwarmSize do   

Pick random number ci {0,1}  
vi ←civi + cg| ki .bitj - k*.bitj |  
if vi>α   
   ki .bitj ← 1 else   ki .bitj ← 0  
endif 
if Si < S*  

S* ← Si ; k* ← ki   
endif 

endfor 
endfor  

endwhile 
return (k*) 

 

 
 
6 Experimentation and results 
In this section, various experiments were conducted 

on GA and other heuristics applied to cryptanalysis 

of used cryptosystems. The aim of experiments is to 

emphasize the effectiveness of the considered 

approach in the resolution of such problem. 

 

 

6.1 Experimental settings 
The experiments have been conducted on a set of 

sample binary texts in range of 800 to 16000 bits 

(100 to 2000 alphabet characters) extracts from ICE 

[95] and converted to upper case letters without 

spaces. Longer texts are generally easy to decipher. 

Moreover, the cryptanalysis is usually applied to 

fragments of data and messages exchanged through 

networks which are in most cases, processed by 

small blocks. Encryption algorithms used are: 

Simplified Data Encryption Standard (SDES) [96], 

Data Encryption Standard reduced to 8 rounds 

(DES-8), FEAL-8 [23] and eight rounds of RC-5 

[22]. Each key is assimilated as a binary vector of 

64 bits (case of DES-8 and FEAL-8), 40 bits in case 

of RC-5 and 10 bits in case of SDES.  The used 

algorithms are coded on Matlab 2.14 and performed 

on a CPU 3.2 Ghz. For genetic operators’ 

parameters, we have set a single crossover point and 

a standard mutation rate of 4%. Numerical results 

were averaged over 10 runs of each test.  

Tests were accomplished in three steps: The first, 

illustrated by figures 2, 3 and 4 below is intended to 

locate the optimal values of most common AG 

parameters such population size and the number of 

generations. The second, shown in figures 5 and 6, 

exhibit the performance of the proposed approach 

where the reference key k* is introduced; whereas, 

figures 7 and 8 illustrate a comparative study of the 

proposed approach against PSO and brute force 

attack. 

 

 

6.2 Performance of algorithms 
The first experiment refers to the impact of varying 

the size of the GA population with the performance 

of encryption algorithms in terms of recovered bits 

within the decryption key. The figure 2 shows the 

average percentage of correct bits recovered by GA 

for various population sizes. It turns that the 

performance increases with population size and 

becomes stable around a threshold of 60 individuals. 

Also, AG performs better for SDES algorithm (due 

to the shortest of its key) while DES-8 seems the 

hardest one among others.   

 

 
Fig. 2.  Performance evaluation of recognition rate of correct key 

bits vs population size 

 

 

With a selected population of 60 individuals and a 

ciphertext of  2400 bits (300 ASCII characters), the 

bar chart in figure 3 gives a comparison information 

about the recognition rate of recovered bits with the 

number of generations. It turns out that, the 

performance increases with the number of 

generations; the growth rate becomes constant 

beyond 3000.  As, results of figure 2, AG 
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outperforms with SDES algorithm and allows an 

acceptable results for RC-5. 

 

 

 
Fig. 3.  Performance evaluation of recognition rate of correct key 

bits vs generation number  

 

 

The experiment in figure 4 shows the effect of 

varying the ciphertext size with the performance of 

AG in terms of the number of recovered bits within 

the decryption key. The figure shows that is no 

improvement for small ciphertexts (less than 2000 

bits) and noticeable results for texts of more than 

2400 bits (300 ASCII characters). In addition, the 

result seems more significant for SDES algorithm 

where the complete key bits are recovered.  Overall 

and, except DES-8, AG performs more than 50% for 

all used algorithms.  

 

 

 
 

Fig. 4.  Performance evaluation of recognition rate of correct key 

bits vs ciphertext size  

 

 

6.3 Evaluation of AGk* approach 
In following experiments, we introduce the 

reference key k* in AG generations and, based on 

previous results, we adopted the best parameters 

values, namely: a population of 60 individuals, a 

processing execution of 3000 generations and 

various ciphertexts of 2400 bits each.  

As mentioned in §3.3, k* is built upon generation 

keys which satisfied a fitness value less than a 

threshold α. The best value of α is located based on 

experiment illustrated by figure 5 which shows the 

performance of recognition rate of correct bits 

produced by AGk* (AG with k*) with the variation 

of α.   

 

 

 
 

Fig. 5.  Performance evaluation of recognition rate of correct key 

bits vs alpha  

 

 

In this figure, we note that the best performance is 

obtained when using a threshold value around 0.6. 

The best performance is achieved for SDES 

algorithm (with α > 0.2), for RC-5 cryptosystem 

(0.8 > α > 0.4) and in range [0.5, 0.6] for other 

algorithms. 

In following experiments, we opt for α =0.6. 

The bar chart in figure 6 illustrated the variation 

of CPU time for both AG and AGk* when using 

optimal parameters values defined above with a 

duration that corresponds to 3000 generations. It is 

noticeable that AG uses less processing time than 

AGk*. This difference is justified by the extra time 

spent in computing of sums and averages of key bits 

needed in building of k*. Overall, DES-8 and 

FEAL-8 cryptosystems seem the greediest in time 

consumption.   

 

 

 
Fig. 6.  Performance evaluation of recognition rate of correct key 

bits vs ciphertext size  

 

 

The experiments below are not intended to enhance 

the performance of bio-inspired heuristics but to 
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measure the effectiveness of proposed approach 

against other similar algorithms. Tests were 

operated based on the best parameters values given 

by previous experiments. Figure 7 gives a 

comparison performance of AG, AGk*, Brute force 

attack and PSO with the recognition rate of correct 

key bits when using a processing duration that 

corresponds to 5000 generations.   

 

 
 

Fig. 7.  Performance evaluation of recognition rate of correct key 

bits vs alpha  

 

 

The figure 7 shows that the proposed approach 

outperforms significantly other algorithms and 

seems competitive with PSO. We note also that the 

SDES key is fully broken and results related toDES-

8, FEAL-8 and RC-5 are acceptable (with more than 

70% of recovered bits). 

Within the same parameters, the figure 8 gives 

information about the processing CPU time used by 

AG, AGk*, PSO and brute force attack on 

ciphertexts produced by SDES, DES-8, FEAL-8 and 

RC-5. It’s easy to notice that AGk* and, as PSO 

needs more processing time than AG and brute 

force. Based on this result, it appears that the GAk* 

uses more time than other algorithms, but this delay 

can be improved by the well performance of the 

approach as mentioned in figure 6 above.  

 

 

 
 

Fig. 8.  Performance evaluation of recognition rate of correct key 

bits vs alpha  

 

 

7 Discussion 
In literature, the above cryptosystems have been 

objects of various attacks. FEAL-8 cryptosystem is 

announced to be broken with less than 10000 chosen 

plaintexts [97] [98] and by 2
25

 known plaintexts 

with a success rate of 70% [99]. These results have 

been reduced to 2
15

 known plaintexts [100] and 

finally to less than 2000 pairs of chosen plaintexts 

[101]. The RC-5 cryptosystem with reduced rounds 

(8 and 12) is also declared be broken with 2
48

 

chosen plaintexts [102] and less than 2
44

 chosen 

plaintexts [103].  The most attacks were based on 

linear, differential, timing and correlation 

cryptanalysis and are outdated; this fact prevents 

any way of comparison since our tests uses 

computational intelligence heuristics. In case of 

DES cryptosystem variants, the most attacks as 

mentioned in §4.1 approve the fact that SDES and 

DES-n (with n<6)  is breakable whereas is not the 

case for other cryptosystems such DES-8 where the 

best success rate is less than 65%. So, attacks tend 

in general, to reduce the key space instead of 

locating correct bits. However and, with an average 

of 70% of recovered bits, our strategy conquers 

existent results with its efficiency in resolution of 

such problem. 

 

 

8 Conclusion 
Bio-inspired intelligence algorithms, an active area 

in artificial intelligence, denoted as a successful 

research methodology in resolution of complex real-

life problems such cryptanalysis with moderate 

resources consumption.  

The paper outlines the main concepts of such 

methodology in cryptanalysis of block ciphers based 

cryptosystems and focuses on Genetic Algorithm, a 

most popular bio-inspired intelligence technique. 

Also, we proposed a new approach based on genetic 

algorithm for attack of such ciphers. It consists for 

each generation, and in addition of usual genetic 

operators, to build a referential key based on the 

performance of certain other keys, it will replaces 

the worst one in subsequent generation. This 

strategy allows a fast convergence and keeps 

permanently a high quality of results. 

The experiments conducted indicate that the 

proposed methodology can be successfully applied 

as a powerful tool in handling such problem. The 

produced results obtained based on various typical 

instances, allow locating more than 60% of correct 

bits-key with acceptable resource consumption for 

some variants of block ciphers cryptosystems such 
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FEAL-8, RC-5 and DES eight rounds while SDES 

keys were fully broken.  

The proposed algorithm have not yet been 

explored to find its full capabilities; that is, tests 

were operated on a reduced space of data, however, 

the approach presented can be adjusted in order to 

achieve other cryptosystems and results can also be 

extended to more data and improved by the well 

choice of environment parameters. 

Based on the literature related to cryptanalysis 

problem, we notice that, the construction of the 

fitness function represents a critical determinant of 

the results quality, since the various forms of 

functions used in classical cryptanalysis cannot be 

used as evaluation tool for modern ciphers due to 

the nonlinearity of block ciphers.  Although and, as 

a future direction, the proposed approach may open 

possibilities in investigation of further complicated 

cryptosystems attacks. 
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