
Secure and convenient secret management in distributed computer
systems.

BLAZEJ ADAMCZYK
Silesian University of Technology

Institute of Computer Science
Akademicka 16, 44-100 Gliwice

POLAND
blazej.adamczyk@polsl.pl

Abstract: Team administration of large, distributed computer systems might become challenging when it comes to
access control mechanisms. Some devices provide multi-user environment and use of centralized authentication
servers while other do not have these features what brings the need for creating shared secrets among all the admin-
istrators. Shared secrets are also quite frequently used to provide database and datastore accesses for application
servers. This article summarizes different approaches for a secret sharing system discussing their features and
security. The author first shows an example of improper secret sharing system design discussing its consequences.
Finally the paper presets a secure design pattern for such a system covering a proper use of cryptography, a zero-
knowledge server and a convenient user interface at the same time.

Key–Words: shared secrets, password management, authentication, security

1 Introduction
Access control in heterogeneous distributed computer
system should be easy manageable and at the same
time as secure as possible. The National Institute of
Standards and Technology has prepared a guide [1]
regarding correct password management techniques.
Usually both goals can be achieved by creating a sep-
arate user accounts for all system users inside a cen-
tralized store and configuring all the devices to au-
thenticate their users against that store. Authentica-
tion method can be properly chosen to achieve appro-
priate security level. Some examples are:

• Username and password authentication

• Private key authentication

• Token authentication

• Multi-factor authentication (composition of
more than one authentication method)

The literature is also vast regarding how to man-
age the passwords and authentication secrets on a sin-
gle client side [2, 3, 4, 5, 6]. The general idea is to
use different, secure and random passwords for dif-
ferent services however have them all stored in an en-
crypted “password manager” which can be accessed
using a secure but known to the user master password.
Current literature lacks however a good analysis of a

proper method for storing and distributing shared se-
crets among multiple users.

For example, in a heterogeneous environment it
happens frequently that not all the devices are capa-
ble of handling all the required authentication meth-
ods and the use of centralized user store. In such
situation the device has to be configured separately.
This increases the administration burden and can have
a negative impact on security as well. For example,
some network infrastructure hardware or server KVM
(Keyboard Video Mouse) management consoles pro-
vide only single user administration which means all
the potential users have to share the same account [1].
This leads to a problem of sharing or, in other words,
distributing the authentication secrets (usually a pass-
word) securely.

Another example where secret sharing needs to be
employed is non-human authentication. If one com-
puter system, for example an application server, needs
to authenticate against another, for example database
server, it has to provide the right credentials. This cre-
ates a problem of distributing the secrets to the access-
ing systems.

Of course, both the aforementioned problems can
be solved manually by distributing and sharing the se-
crets using different means like emails, shared files,
paper notes etc. Obviously this is not an optimal solu-
tion because it usually lacks appropriate security and
may lead to inconsistencies when the secret changes

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 327 Volume 15, 2016



with time. A better approach is to use a centralized
secret sharing system which is accessed by all the par-
ties and can be used to retrieve an up-to-date secret if
needed. Such secret sharing system can be designed
in numerous ways using different technologies. Cer-
tainly it needs to provide an easy way of accessing
the shared secrets but above all it needs to be secure.
There exists many products on the market (commer-
cial as well as open-sourced) which are supposed to
provide secret sharing capabilities.

It is important to note that the phrase “secret shar-
ing” is used in this paper in the context of multiple
participants being able to retrieve the secret on their
own. It should not be confused with the meaning
of “cryptographic secret sharing” or “secret splitting”
like for example Shamir’s or Blakley’s Secret Sharing
schemes [7, 8] which are used to split the secret into
several shares so that it can only be reconstructed if a
sufficient number of shares is available.

At the beginning this article defines the necessary
requirements for a secret sharing system. Then it com-
pares several existing systems and presents some com-
mon security design issues which affect such prod-
ucts. It also presents a real example of a vulnerability
which allows to exploit such poorly designed system.
Finally the author describes a design pattern which al-
lows to meet all the defined requirements correctly.

2 System description and require-
ments

A model of a secret sharing system is quite simple.
Shared secret data are stored in a common repository.
The repository provides an interface which allows to
access the data. Finally, all the users connect to this
interface using a client as depicted in Figure 1.

Repository
Client

Client

Client

secrets

Figure 1: Secret sharing system model.

Clients are using the provided interface to access
their shared secrets. As it was already stated the sys-
tem should be convenient and secure thus it needs to
meet the requirements classified in the following three
categories: security, manageability and accessibility.

2.1 Security

Of course secrets and passwords are very sensitive in-
formation and thus the most important aspect regard-
ing the described system is its security. The security
high level requirements are as follows:

1. The system provides authentication of clients.
All distinct users should have their own accounts.
An unauthenticated user cannot access any se-
crets.

2. The system performs authorization. A secret can
be accessed only by a user who has an explic-
itly defined rights to do so. No one, not even
repository administrator, can access secrets with-
out having appropriate rights.

3. The system is secure. This general requirement
will be further defined in section 3 where a de-
tailed security and threat analysis is presented.

2.2 Manageability

Besides security there are also manageability require-
ments to be satisfied:

1. A user can add a new secret.

2. A user who added the secret can, at any time,
grant or revoke access to the secret to other users.
She can also delete this secret from the reposi-
tory.

3. The administrator should be able to revoke ac-
cess to the system to a user whose credentials
were compromised.

4. The system should write audit logs of all re-
quested data.

2.3 Accessibility

Finally, the least significant but also important, acces-
sibility requirements:

1. There should be an easy way of accessing the
stored secrets when needed. For example, a Web
application graphical user interface or a com-
mand line interface.

2. The client software should also be secure (again
the security considerations are presented in sec-
tion 3) and trusted by the user.

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 328 Volume 15, 2016



3 Security considerations
In order to define a correct design pattern for a secret
sharing system it is necessary to perform a detailed
threat analysis of the described model. Below author
examines the system from different perspectives in or-
der to define possible attack vectors with appropriate
mitigation strategies.

3.1 Internal threats

The secret sharing system should be trustworthy for
its users. This means that users should feel safe to add
a secret to that system without worrying that anyone
unauthorized has access to it. This includes the system
and database administrators.

3.1.1 Filesystem or database access

Most secret sharing systems available on the mar-
ket encrypts the data before storing it on a persis-
tent storage. Usually a strong symmetric encryption
is employed, like AES-256. This protects the secrets
against an attacker who obtained access to the raw se-
crets data.

Unfortunately the symmetric encryption key has
to be stored somewhere so that the system can decrypt
the data, e.g. after restart. Some system simply sep-
arate the key and the data storage mechanisms - for
example the key is stored in the filesystem and the en-
crypted data in a database. Some systems go a step
further and provide a multi-tenant configuration (e.g.
ManageEngine Password Manager Pro [9]) which dis-
tributes the secret data among multiple servers. There
exists also a product (i.e. Hashicorp Vault [10]) which
distributes the encryption key among several users
using the Shamir’s secret sharing scheme. In order
to “unseal” the vault a configured number of secret
shares needs to be provided.

3.1.2 Process memory access

If only persistent storage encryption is employed the
running repository application is still vulnerable to in-
ternal attacks. System administrators with bad inten-
tions may find appropriate encryption keys on the disk
and decrypt the secrets. If the system does not con-
tain the key itself they can also scan process mem-
ory or simply access administrator account (if such
is available) in the application and retrieve the key
or all stored secrets. Thus in order to protect against
such situation different cryptography methods should
be employed.

In a most secure scenario even the system itself
(with all its files and memory contents) should not

be able to decrypt the stored secrets. Such charac-
teristic is called in cryptography as “zero-knowledge”
[11] and thus this paper calls such system a “zero-
knowledge system”.

There are some products available on the mar-
ket which have the zero-knowledge architecture, e.g.
Keyringer [12], SFLvault [13], Duse [14]. Usually the
“zero-knowledge” server is provided by employing
asymmetric Public Key Encryption (PKE). The secret
is first encrypted using a symmetric cipher. The sym-
metric key and initialization vector are then encrypted
using public keys of each user which should have ac-
cess to this secret. Both encrypted streams are then
stored in the repository. Encryption takes place at the
client machine so the plain-text secret never “leaves”
the authorized client machine.

3.2 External threats

Well designed and secure internal thread protection
should limit the external threat surface and external
attack consequences. Assuming a zero-knowledge
repository, even if an attacker breaks the protection
and takes control of the repository, the secrets are still
safe because they cannot be decrypted. Unfortunately
many products are not zero-knowledge systems (like
the already mentioned Password Manager Pro [9] or
Vault [10]).

Nevertheless, in any case, it is still important to
protect the system against external threats and attacks.
This section describes several attack vectors applica-
ble to the model, explains it consequences and sug-
gests a protection mechanisms.

3.2.1 Authentication bypass

An authentication bypass attack is possible when a
client can access server data without authentication.
Usually these kind of vulnerabilities exists because of
a application configuration error or programmer mis-
take which leads to a situation where an authenticated
only interface is being accessible without authentica-
tion.

Properly designed system should mitigate these
attacks by design and should not provide any inter-
face to unauthenticated users. Additionally consider-
ing a zero-knowledge secret sharing system omitting
the authentication should not allow to reveal any se-
cret because of the employed public key cryptography.
The secrets are decrypted by user private keys at the
client machines thus the attacker can only retrieve the
encrypted secret.

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 329 Volume 15, 2016



3.2.2 Authorization bypass

This kind of attack allows one authenticated user to
access other users data or perform actions as the other
user. Of course, the system should verify the user per-
missions on each client request. Unfortunately it is
not possible to be sure that the system has no security
bugs which would allow for such attack.

Again having a zero-knowledge system mini-
mizes the attack surface and its possibilities. Sim-
ply the secrets cannot be decrypted as it was de-
scribed in the previous subsection. Unfortunately
zero-knowledge system does not protect against attack
where an attacker performs actions as some other user
(e.g. deleting or changing the secret). In such case, if
the authorization control fails, the attacker would be
able to influence the integrity of the system. This is
not very critical but should be mitigated by perform-
ing regular system backups.

In case of a non zero-knowledge system this kind
of attack may have critical consequences including
some or even all secrets disclosure.

3.2.3 Session hijacking

Stealing some authenticated user session information
may allow to use the system as the other user what
leads to the same consequences as in case of autho-
rization bypass. It is however possible to mitigate this
kind of attack by not using sessions at all and veri-
fying the client authenticity on each request (i.e. us-
ing so called stateless mode of operation). This could
be achieved simply, especially in zero-knowledge sys-
tems where PKE is used, by signing each request with
the user private key.

3.2.4 Injection and path traversal

Programmer error may lead to an injection or path
traversal vulnerability. This may allow the attacker to
retrieve some internal system information or to mod-
ify/override it.

The consequences and mitigation strategies are
similar to the ones described in the authorization by-
pass section. However this kind of attack may also
allow the attacker to modify server meta-data like
adding, modifying and deleting users, changing per-
missions etc. In case of a zero-knowledge system this
does not influence the attack surface comparing to the
one described in subsubsection 3.2.2. Unfortunately
in case of non zero-knowledge system this may have
additional consequences like privilege escalation and
all secrets disclosure. Additionally there is a possi-
bility that the attacker could temper the audit logs as
well.

3.2.5 Compromised user machine

A compromised client machine in worst case may al-
low the attacker to authenticate and perform actions in
the system as the user of the machine.

The system by itself can never protect fully
against such an attack however it should provide two
functions which can help identifying recover from
such situation:

1. System should store audit logs for all the re-
quested actions. This allows the administrators
to find what are user actions in the system and
which users behavior seems strange.

2. System should allow to easy reject a user whose
machine or credentials were compromised.

If such situation is detected the administrator
should additionally, as a precaution, change all the se-
crets accessible to the compromised user if possible.

3.3 Network threats

Sometimes the attacker can access the network infras-
tructure. In such a case the communication protocol
should also be evaluated in order to verify and assess
system security.

3.3.1 Communication eavesdropping

First type of network attack is communication eaves-
dropping. The communication protocol should use
encryption in order to mitigate the possibility of
eavesdropping.

3.3.2 Message forging and modification

Additionally a man-in-the-middle attack could be per-
formed by the attacker. Thus the easiest but also
the best solution would be to wrap the communica-
tion with a well known end-to-end encryption proto-
col such as TLS.

The inner communication protocol may introduce
an additional layer of security. For example, in case
of zero-knowledge system, it may force a message
signing on each request which additionally proves the
messages were not forged or modified - this could still
happen if the TLS server certificate would be compro-
mised. The same applies to secrets being transmitted -
as it was already stated in zero-knowledge system the
plain-text secrets do not leave the client machine what
proves that the secret cannot be read even if the TLS
certificate would be compromised.

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 330 Volume 15, 2016



4 Vulnerable design examples

As it was presented in the previous section a non zero-
knowledge system has many potential security issues
which may lead to secrets disclosure. An example of
such system is Password Manager Pro [9]. The system
uses a dual symmetric encryption of the passwords
- first at the level of application and second at the
database level. Unfortunately once loaded the secrets
are known to the server and thus can be disclosed by
an internal threat or even some of the external threats.

The author of this paper has found an SQL injec-
tion vulnerability in this product which allowed an au-
thenticated user to execute arbitrary SQL commands -
see CVE-2015-5459 [15]. Because the product is not
a zero-knowledge system the injection allowed the at-
tacker to change his privileges and assign “superuser”
permissions effectively allowing to download all the
stored secrets with a single click. The product had
other similar issues in the past so this is not an iso-
lated case - see [16, 17, 18, 19].

There are other system examples which do not use
the zero-knowledge approach but in authors opinion it
is better to omit them in the comparison and proceed
to more secure systems. Of course, this does not mean
the non zero-knowledge products are useless - it only
means that they introduce a high disclosure risk.

During his research author has identified only few
products which approach the problem correctly. Un-
fortunately, author was able to find some less critical
design issues for them as well.

First product which deserves attention is
Keyringer [12]. This is an open sourced tool which
underneath uses the well known GPG suite to encrypt
the secrets. Thus the cryptographic functions may
be trusted. Unfortunately the secret distribution
is simple and uses a GIT repository. This is not
a vulnerability by any means, but it unfortunately
brings some potential limitations as it was even
highlighted by its author. This design allows all users
access all encrypted secrets. Additionally the users
can view all repository history. In order to reject a
given compromised private key the whole repository
should be rewritten. Additionally git distributes the
whole repository to every client so in fact there is
no way to rewrite the history of all clients. These
are minor issues because, when some user key is
compromised, all secrets she had access to should be
changed. In some cases, however, this might be hard
or impossible. Additionally the attacker could decrypt
previous passwords and learn some password choice
patterns (if such exists). In summary - Keyringer
is a good quality product available as a package in
some Linux distributions and can be used to share
secrets but with the assumption that all users know

the appropriate good security practices:

• Strongly protect their private keys. With a com-
plex and random passphrase.

• Use strong and random secrets without any pat-
terns.

• The distributed computer system allows for fast
change of all secrets.

Second zero-knowledge system the author has
identified is Duse [14]. This project has been started in
2015 as an academic project at the Cooperative State
University DHBW Karlsruhe, Germany. This project
realizes a zero-knowledge repository which stores the
secret encrypted with symmetric cipher with random
key and initialization vector. Then the key and ini-
tialization vector is split into parts using Shamir’s se-
cret sharing scheme with shares for each approved
user and additionally one share for the “server” user.
The Shamir’s scheme requires at least two shares in
order to decrypt the secret. Finally all the parts are
being encrypted with corresponding user private key
and stored in the repository.

Such design seems secure but there are several is-
sues regarding this product:

• Because the “server” share is always accessible
to the users the whole use of Shamir’s secret
sharing is doubtful.

• The implementation of Shamir’s secret sharing is
not based on an existing library but rather imple-
mented by the author which seems to be a little
academic.

• Even the author states that the product is still in
heavy development and is not intended to be used
in production.

• The product is developed by a single contribu-
tor and looking at the way the cryptography was
used at the early stages seems that the author is
still learning cryptography topics.

In summary Duse seems promising but is still very im-
mature. Probably if more contributors and users start
using the product it can become very interesting.

The last zero-knowledge system described in
this article, available as an open source package is
SFLvault [13]. It is a Python based product which
uses a Public Key Encryption to store the secrets. It
is flexible because the users and services can be orga-
nized in many-to-many groups. The design is quite se-
cure but there seems to be one not critical issue. Each
group has its own private key, the private key is en-
crypted with public key of each user belonging to this

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 331 Volume 15, 2016



group. The symmetric key for the secret is encrypted
with the group’s public key.

The issue is about how the group secrets are man-
aged. Unfortunately when a single user key is com-
promised the attacker can retrieve all group private
keys the user had access to. When the threat is de-
tected the administrator can remove the compromised
key from user lists but unfortunately the group keys
do not change. Even if the administrator changes all
the related secrets the system is still vulnerable be-
cause the attacker can use the gathered group private
keys to decrypt new secrets. Author has verified this
behavior on the latest available version of SFLvault -
i.e. 0.7.8.2. The system deserves however attention
because if contributors would improve the key rejec-
tion mechanisms it would actually follow all the men-
tioned requirements for a secure secret sharing sys-
tem.

5 Secure design
After a detailed analysis of many products created to
solve the problem of distributed shared secrets the au-
thor still sees that a great majority of the systems is
not fully secure introducing a risk of secret disclosure.
Thus, in this section, a compact list of guidelines and
recommendations is presented which should help de-
signing a properly secure system:

• Secrets should be stored using a strong symmet-
ric encryption with a random key and initializa-
tion vector each. This allows to protect the se-
crets against internal database or filesystem ac-
cess.

• The key and initialization vector should be en-
crypted for each approved user with his public
key using PKE and should not be stored in other
forms in the repository. This makes the reposi-
tory a zero-knowledge system.

• Private keys should be secured with a complex
and random passphrase.

• The secret should never leave client machine in
plain-text.

• The system should use existing and proven cryp-
tographic libraries (like OpenSSL or GPG) and
should not create custom cryptography imple-
mentations.

• The system should be able to reject a compro-
mised user key easily by deleting the appropriate
encrypted key and initialization vector.

• Whenever the key was compromised all the se-
crets it had access to should be changed. This
has to be done manually and it is not a sys-
tem function itself but the system could imple-
ment a mechanism to indicate all secrets which
could already be disclosed to remind the creator
to change them as soon as possible.

• The communication with repository should be
encrypted with a commonly used mechanism
like TLS.

• Instead of creating authentication API and ses-
sion, all the request should be signed with user’s
private key and the API should be stateless.

• The secrets itself should be encrypted with ap-
proved users public keys at the creator client ma-
chine and be transmitted in an encrypted form.

• All system actions should be logged. This al-
lows the administrator to know which secrets
have been accessed and when.

• Optionally, the system should allow for a multi-
server architecture where each secret is split us-
ing Shamir’s secret sharing scheme among all the
servers. Each server should be maintained by an
independent administrator.

6 Conclusion
This paper discusses the problem of shared secrets in
distributed computer systems. In order to maintain
the secrets conveniently and securely it is necessary
to employ a secret sharing system. A model of such
system was described and analyzed from security per-
spective. The analysis can be used as a framework
for assessment of other similar products. The paper
additionally compares several secret sharing systems
available at the moment and summarizes their design
issues. Finally, a list of recommendations for a proper
design of a secure secret sharing system is proposed.

This paper brings the following contribution:

• Creates a model of a secret sharing system.

• Presents a threat analysis method for such sys-
tems.

• Presents a recommended approach for a secret
sharing system design.

As of future work, the threat analysis method
should be systematically updated in order to properly
cover the appearing new types of threats as well as
reflect the current state of cryptography.

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 332 Volume 15, 2016



Acknowledgements: The research was supported
by Silesian University of Technology grant No.
BKM/515/RAU-2/2015.

References:

[1] Karen Scarfone and Murugiah Souppaya. Guide
to enterprise password management (draft).
NIST Special Publication, 800:118, 2009.

[2] Michael William Heinz Sr. Password Manage-
ment System over a Communications Network.
Google Patents, September 1998. US Patent
5,812,764.

[3] David Andrews Kerr, David Medina, Mark A.
Peloquin, and Raymond J. Venditti. Universal
Userid and Password Management for Internet
Connected Devices. Google Patents, February
2005. US Patent 6,859,878.

[4] Shirley Gaw and Edward W. Felten. Password
management strategies for online accounts. In
Proceedings of the Second Symposium on Us-
able Privacy and Security, pages 44–55. ACM,
2006.

[5] Ka-Ping Yee and Kragen Sitaker. Passpet:
Convenient password management and phishing
protection. In Proceedings of the Second Sym-
posium on Usable Privacy and Security, pages
32–43. ACM, 2006.

[6] Hristo Bojinov, Elie Bursztein, Xavier Boyen,
and Dan Boneh. Kamouflage: Loss-resistant
password management. In European Symposium
on Research in Computer Security, pages 286–
302. Springer, 2010.

[7] Adi Shamir. How to share a secret. Communi-
cations of the ACM, 22(11):612–613, 1979.

[8] George Robert Blakley. Safeguarding crypto-
graphic keys. Proc. of the National Computer
Conference1979, 48:313–317, 1979.

[9] ManageEngine. Password Manager Pro.
https://www.manageengine.com/
products/passwordmanagerpro/,
October 2016.

[10] HashiCorp. Vault. https://www.
vaultproject.io/, October 2016.

[11] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-
knowledge proofs of identity. Journal of cryp-
tology, 1(2):77–94, 1988.

[12] Silvio Rhatto. Keyringer. https://
keyringer.pw/, October 2016.

[13] Savoir-faire Linux. SFLvault. http://
sflvault.org/, October 2016.

[14] Axel Christ and Frederic Branczyk. Duse.
http://duse-io.github.io/, October
2016.

[15] Blazej Adamczyk. CVE-2015-5459.
https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-5459,
2015.

[16] Pedro Ribeiro. CVE-2014-3996. https:
//cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-3996, 2014.

[17] Pedro Ribeiro. CVE-2014-3997. https:
//cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-3997, 2014.

[18] Pedro Ribeiro. CVE-2014-8498. https:
//cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-8498, 2014.

[19] Pedro Ribeiro. CVE-2014-8499. https:
//cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-8499, 2014.

WSEAS TRANSACTIONS on COMPUTERS Blazej Adamczyk

E-ISSN: 2224-2872 333 Volume 15, 2016




