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Abstract:-In Geographical Information System (GIS), we use principally three features, such as PolyLine, Point 
and loose region to represent the geographic object. The loose region is used to represent the area objects where 
they have a loose shape as building or green area. Loose regions can be seen as an extension of simple regions 
described in Egenhofer model. In this paper, we treat the mutation of the loose topological relations into others 
relations, when we need to change the scale the map. A new topological model is presented based on simple 
regions which are defined in Egenhofer model and also on the assertions of mutation of the topological 
relationships according certain criteria.  
 

Keywords:-Region, generalization, visual acuity, loose topological relations.  

 
1. Introduction  
To represent exactly the reality in GIS, we have to 
use the loose region to represent the area object. We 
can define loose region as the extension of simple 
region represented in the Egenhofer model. In this 
new configuration, the topological relationships 
between the regions can be different.  

In different situations, we need to change the 
scale of certain detailed representation because the 
demanded representation doesn’t exist in the 
geographic Database. When applying this process, 
various changes have been held in the representation 
contents; as geometry, topology, etc. the loose region 
can be mutate to a simple region, to point or will be 
disappear , also the topological relationships can be 
mutate into others relationships according to certain 
measurements and thresholds. So, we will develop 
the mathematical assertions which guide these 
mutations.  

This paper will be organized as follows. First, 
definitions and a state of the art review for 
generalization process will be given (Section 2). 
Also, definitions and a state of the art review for 
topological relations will be given (Section 3). Then, 
loose regions and topology model will be defined 
(Section 4). Finally, we present a conclusion and 
future work (Section 5). 

 

2. Geographic Object Generalization 
The generalization process can be defined as a 
process of abstraction of represented information 
subject to the change of the scale of a map. The 
purpose of generalization is to produce a good-
looking map, balancing the requirements of accuracy, 
information content and legibility [1]. It encompasses 
the modification of the information in such a way 
that it can be represented on smaller surfaces, 
retaining the geometric and descriptive 
characteristics. The essence of the original map 
should be maintained at all smaller scales. Fig 1 
gives an example of generalization of a map at the 
same place: shapes are simplified, some points 
disappear, etc. 
 

Fig 1. Generalization process (left: 1:100,000, 
middle: 1:200,000, right: 1:500,000), Source: 

Swisstopo. 
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2.1. Definition 
Many definitions have been given for the 
generalization process, The International 
Cartographic Association [2] has defined it as “the 
selection and simplified representation of detail 
appropriate to scale and/or the purpose of a map”. 
The geographic object generalization is a very 
complex process. In order to reduce its complexity, 
the overall process is often decomposed into 
individual sub-processes, called operators [3], such 
as simplification, displacement,...etc. Each operator 
defines a transformation that can be applied to a 
single spatial object, or to a group of spatial objects. 
 
2.2.   State of the art for geographic object 
generalization  
Historically speaking, the first algorithm for 
generalizing polylines was published in [4]. Then, 
several variants were published, essentially to 
improve the results of the initial algorithm. However, 
this algorithm does not take into account many 
aspects, such as the topological relationships between 
objects.  

Now, several methods and concepts proposed to 
model and implement the generalization process but 
a framework for their combination into a 
comprehensive generalization process is still missing 
[5]. 

The first generalization process appeared in the 
early of 1990s [6]. It involved only a few geographic 
areas.  

Ruas and Plazanet [7] proposed a framework 
controlled by a set of constraints. The dynamic 
generalization model is based on avoiding constraint 
violations and on the local qualification of a set of 
objects, represented by means of an object situation. 
A situation is described by the geographical objects 
involved, their relationships, and the constraint 
violations. Ruas and Plazanet concentrated only on 
constraints related to objects and not the constraints 
between objects, such as the topological constraints 
[7]. 

Many other works use the least squares 
adjustment theory to solve the generalization 
problems, such as [8], [9], [10], whose works aim to 
globally reduce all spatial conflicts. The idea is to 
solve spatial conflicts by modeling different 
constraints using mathematical expressions. 
Moreover Harrie [8] proposed to formulate the 
geometric and topological constraints as linear 
functions of the object coordinates. The least squares 
adjustment seems to be an interesting technique but 
these constraints are difficult to express by a linear 
equation. 

In the same context and for reducing the spatial 
conflicts in the map, many interesting methods were 
proposed in [11] and [12]. In those approaches, a cost 
function (fitness) must be defined for validating 

statements. However, it is questionable whether it is 
realistic to define such a function that integrates all 
the constraints of generalization, such as the 
topological constraints. 

Then several works model the spatial objects by 
agents such as the works of [13], [14] and [15]. In the 
agent-based model, the spatial objects are modeled 
by the decisional entities in the generalization 
system. These entities are software agents the goal of 
which is to satisfy their cartographic constraints the 
more as possible. The constraints are subdivided into 
four types, metric, topological, structural and 
procedural constraints [14]. The topological 
constraints ensure that any topological relationship 
between objects is maintained or modified 
consistently, for example, self-intersections of an 
object or any intersection between two objects must 
be avoided.  

Also to improve the map generalization process, 
another approach was proposed in [16] which are 
based on a new concept called SGO (Self-
generalizing object). An SGO is able to generalize a 
cartographic object automatically using one or more 
geometric patterns, simple generalization algorithms 
and spatial integrity constraints, but this approach 
does not define a pattern for topological constraints. 

In the EuroSDR project, cartographic experts of 
four NMAs (National Mapping Agencies) were 
called to evaluate the results of the automation 
generalization process according to certain 
constraints [17]. The objective of this project consists 
to illustrate the state of the art of automated 
generalization in practice, exchange of knowledge 
between research community, NMAs and software 
vendor and to contribute to development of 
constraint specification. Four test cases that were 
selected, provided by the participated NMAs. NMAs 
defined their map specifications for automated 
generalization in template which were developed by 
the EuroSDR team [17]. These map specifications 
were formalized as a set of cartographic constraints 
to be followed. They distinguished between two main 
categories of constraints: legibility constraints and 
preservation constraints. After the analysis of 
constraints composition, the EuroSDR project team 
derived a list of generic and specific cartographic 
constraints which must respected in generalization 
process. 

Lejdel and Kazar [18] proposed an approach for 
optimizing the automatic generalization process by 
satisfying cartographic constraints. This approach 
consists in providing agents geographic genetic 
properties to enable them to choose the optimal 
actions, so giving the concept of genetic agent. Each 
geographic agent is equipped with an optimizer, and 
each one executes a genetic algorithm to determine 
the optimal action to be executed according to its 
current state, in order to satisfy cartographic 
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constraints the most possible. The genetic algorithm 
follows the classical steps as selection, crossover and 
mutation. The solution is refined gradually over the 
iterations until to reach convergence to a solution that 
approaches the optimal solution and a certain degree 
of imperfection is acceptable. The solution here is a 
set of algorithms with adapted parameters which 
minimize conflicts. The model of the topological 
constraints of this approach is not addressed in this 
paper. 

In the recent paper, Lejdel et al. [19] define a 
mathematical model of the generalization of 
topological relationships between two rectangular 
ribbons or between ribbons and simple regions. Thus, 
two rectangular ribbons or two simple regions can be 
disjoint or intersect. The disjunction is defined by a 
distance separating the two ribbons. The intersection 
between two simple regions can be Point (0D), Line 
(1D) or area (2D) according to certain criteria. In this 
work, they get formally the mathematical description 
for each topological relationship between objects 
when we use thresholds and metric measurements; as 
area, distance, etc. These topological relationships 
can be: disjoint, meet, merge and crossing. When 
downscaling, these topological relations can be 
mutated into other topological relations according to 
certain criteria. In this paper, we developed a 
topological model to define a good generalization 
process. It based on the Egenhofer model which 
describes the topological relationships between 
simple regions. 

 
3.  Topological Relations 
Topological relationships describe relationships 
between all objects in space, the points, lines and 
areas for all possible kinds of deformation.  

 
3.1.  Definition 
Topology is defined as mathematical study of the 

properties that are preserved through deformations, 
twistings, and stretchings of objects. Topology is 
foremost a branch of mathematics, but some concepts 
are of importance in cartographic generalization, 
such as topological relationships [8]. Several 
researchers have defined topological relationships in 
the context of geographic information [4] ,[20] and 
[21]. 

3.2.  State of the art for topological relations  
From an historical point of view, different 
topological models were proposed. First, Max 
Egenhofer with his colleagues proposed the first 
topological model for two-dimensional objects [22] 
and then a second model family named RCC was 
proposed. Let us examine them rapidly. 

 
3.2.1.  Egenhofer topological relationship 
To define a model of topological relationships, 
Egenhofer and Herring [8] proposed a spatial data 
model based on topological algebra. The algebra 
topological model is based on geometric primitives 
called cells that are defined for different spatial 
dimensions 0-D, 1-D, and 2-D. A variety of 
topological properties between two cells can be 
expressed in terms of the 9-intersection model [23]. 
The 9-intersection model between two cells A and B 
is based on the combination of six topological 
primitives that are interiors, boundaries, and exteriors 

of A ),,(  AAA  and B ),,(  BBB .  

These six topological primitives can be combined 
to form nine possible combinations representing the 
topological relationships between these two cells. 
These 9-intersections are represented as one 33 
matrix [24], see Fig.2. 
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Fig 2. The eight topological relations between two regions A and B. 
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3.2.2. Other models RCC  
Independently developed, the RCC (Region 
Connection Calculus) is an alternative topological 
approach to qualitative spatial representation and 
reasoning where spatial regions are subsets of 
topological space [25]. The RCC model 
distinguishes eight topological relationships 
between two simple regions, which are in fact 
exactly the same as those identified by 9-
intersection (see Fig 2).The RCC-8 uses a set of 
eight pairwise disjoint and mutually exhaustive 
relations, called base relation denoted as EQ, DC, 
EC, PO, TPP, NTPP, TPP-1, NTPP-1, with the 
meaning of EQual, DisConnected, Externally 
Connected, Partial Overlap, Tangential Proper Part, 
Non-Tangential Proper Part, and their converses.  

In this model, sometimes one does not want to 
distinguish between DC and EC, and between TPP 
and NTPP. So, a set of five relations are derived, 
called RCC-5. Other refinements have been 
developed, taking into account the convex hulls of 
region, so twenty-three topological relationships are 
obtained, called RCC-23. Also, [26] presents a 
statistical model for quantitative assessment of 
uncertain topological relations between two 
imprecise regions. This model based on a 
morphologic distance function to determine the type 
of topological relations.  

 
3.3. Mutation of topological Region-Region 
relations  
In this section, the Egenhofer’s relations [23] are 
treated mainly. After generalization, the object 
geometries are adapted to the perceptual limits 
imposed by the new (smaller) scale [27]. We present 
in following the different mutations of topological 
relationships between loose regions.  
 
3.3.1. Mutation  Disjoint-to-Meet 
The relation “Disjoint” mutates to relation “Meet” 
(see Fig 3), according the following assertions. 
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But a smaller object can disappear or be 
eliminated if its area is too small to be well visible. 
So in this case, the initial relation does not hold 
anymore. 
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Fig 3. The mutation of disjoint to meet. 

 
3.3.2. Mutation Overlap-to-Meet 
The relation “overlap” can mutate to “meet” relation 
according to the following condition (see Fig 4):  
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Fig 4. The mutation of Overlap to Meet. 

 
In addition, similarly, the smaller object can 
disappear.  
 
3.3.3.  Mutation Overlap to Cover 
Also, the relation “overlap” may be mutate to 
relation “cover”, to formulate this mutation, one use 
the following assertion, see Fig 5: 
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Fig 5. The mutation of Overlap to Cover. 
 
3.3.4. Mutation Contains to Cover 
The mutation of relation “contains” to “Cover”, was 
expressed by the following assertion (see Fig 6): 
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Fig 6. The mutation of Contains to Cover. 

 

4. Scaling Mutation of Topological 
Relations  
As previously told according to scales, geographic 
objects can mutate according to two rules. As scale 
diminishes: Loose region will mutate to simple 
region, to a point and then will disappear. 

 

4.1.  General Process 
The generalization process is very complex. As we 
treat in this context, the generalization of the 
topological relations during downscaling, we would 
simplify it. So, the complete process can be modeled 
as follows: 

 Step 0: original geographic features only 
modeled as loose region, 

 Step 1: as scale diminishes, loose regions 
will be generalized and possibly can 
mutated into simple region, 

 Step 2: as scale continues to diminish, small 
simple region mutate to point, 

 Step 3: as scale continues to diminish, 
points can be disappear. 

Let us call this process “generalization-
reduction-disappearance” (GRD process). 

 
4.2. Visual acuity applied to geographic objects 
It is well known that “Cartographic representation 
is linked to visual acuity”. Thresholds must be 
defined. In classical cartography, the limit ranges 
from 1 mm to 0.1 mm. If one takes a road and a 
certain scale and if the transformation gives a width 
more that 1 mm, this road is an area, between 1 mm 
and 0.1mm, then a line and if less that 0.1mm the 
road disappears. The same reasoning is valid for 
cities or small countries such as Andorra, 
Liechtenstein, Monaco, etc. In these cases, the 
“holes” in Italy or in France disappear 
cartographically. With the thresholds previously 
defined, we can formally get (in which 2Dmap is a 
function transforming a geographic object to some 
scale possibly with generalization, in the 2-
dimension domain) [19]:  
a/ Disappearance of a geographic object (O) at scale 
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b/ Mutation of an loose region into a point (for 
instance the centroid of the concerned object, for 
instance taken as the center of the minimum 
bounding rectangle): 
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4.3. Granularity of interest 
The previous remarks are not only valid for 
cartography, but also for any type of reasoning. 
Beyond thresholds of visual acuity which is a 
fundamental concept in cartography, let us define 
“granularity of interest”: this is the minimum level 
of interest for a geographic user. For instance a 
nationwide politician will be interested at state level 
whereas an urban will be concerned only at the level 
of the city for which he works. 

In the sequel to simplify the presentation, we will 
continue to use the thresholds for visual acuity 
instead of granularity of interest.  
 

5. Generalizing Loose Topological 
Relations of Region  
The generalization of spatial data implied the 
generalization of the topological relations according 
to certain accurate rules. We considered here the 
GRD process described in section IV.A. The 
objective of this section is to formulate the list of 
these rules, between loose regions.  
 
5.1.  Mutation of loose topological relations  
Often, due to measurement errors and independent 
processing or generalizations, geographic objects do 
not coincide exactly. Eghenhofer (2009) investigate 
the possible connections between the topological 
relationships and metrics [28]. 

When one wants to evaluate the topological 
relations between them, he needs to take this aspect 
into account. Within the context of granularity of 
interest, when downscaling, this characteristic will 
disappear. Let define loose topological relations 
when dealing in such cases. By considering the 
conventional topological relations, let us 
immediately say that the disjoint relation is not 
concerned, except when the regions are very close 
(see Fig 7). 

Fig 7. Loose topological relations. 

5.1.1.  Loose meet 
The criterion to define a loose meet is based on the 
area of the intersection of two regions, A and B. For 
instance, given a threshold εLM: 
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When downscaling from σ1 to σ2, this mutation 

Lmeet-to-meet can be defined: 
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5.1.2.  Loose cover 
Here one has to evaluate the area of the sliver 
polygons. This area is composed of two 

parts, BA and BA  . In other terms, this is a 

symmetric difference defined as follows: 

)()A( BABBA   . Therefore by 

defining another threshold, the corresponding 
criterion can be: 
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So, the mutation Lcover-to-cover when 

downscaling: 
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5.1.3.  Loose equal 
The loose-equal relation can be defined from the 
loose-cover relation, but the area in the intersection 
must not be far from the union. So two criteria must 
be used with another threshold: 
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Similarly, this relation can mutate to an Equal 

relation when downscaling: 
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5.2. Holding topological constraints 
Since certain topological relations must be 
persistent, regardless the scale of representation, 
those relations must hold. See for instance in Fig 8, 
the Mediterranean Coast in the South of France: as 
the coast is generalized (the coast mutate into a 
polyline), some harbors will be in the middle of the 
sea such as Nice, whereas others will be inside the 
country such as Marseilles and Montpellier; in 
addition, the confluent of the Rhone river will be 
badly positioned in the middle of the land. The 
constraints are as follows: 

Covers (France, Nice) 

Covers (France, Marseilles) 

Covers (France, Montpellier) 

Covers (France, Rhone). 

 

 
 

 
 

 
Fig 8. Holding topological constraints for harbors in 

the Mediterranean Sea. (a) Before generalization. 
(b) Only the coastline is generalized. (c) Harbors 

must move. (d) After generalization. 
 

Another example of topological constraint when 
generalizing the Eastern French border is the case of 
Geneva which must hold outside France (see Fig 9). 

The constraint is as follows: 

Meet (France, Geneva). 

To avoid such topological errors due to 
generalization process, one must use more advanced 
geometric algorithms. An algorithm could be 
proposed which will hold this type of topological 
relation. 

 
Fig 9. Holding topological constraints for outside 

border cities. 
 

Therefore one has to move the object (harbor) in 
order to follow the constraints according to a 
distance Dist. Three cases must be considered, in 
which H denotes the harbor and C the country (see 
Fig 10). 

– In case #1 : the harbor (H) is located inside 
the country: Dist min ( C, H) 

– In case #2 , the harbor at the exterior from 
the country: Distmax (C, H). 

– In case #3 , a part of the harbor at the 
exterior of the country: Dist(P(x,y), C)/ 
P(x,y) = Intersect(C’,H). 

For the Meet constraints, cases are reciprocal. 
 

 
Fig 10. The three cases of movement. 

 

5.3. Generalized loose tessellations when 
downscaling 
By irregular tessellation (or tessellation), one means 
the total coverage of an area by subareas. For 
instance the conterminous States in the USA form a 
tessellation to cover the whole country. Generally 
speaking administrative subdivisions form 
tessellations, sometimes as hierarchical tessellations. 
Let us consider a domain D and several polygons Pi; 
they form a tessellation iff (see Fig 11b): 
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- For any point pk, if pk belongs to D then there 
exists Pj, so that pk belongs to Pj 

- For any pk belonging to Pj, then pk belongs to D. 

A tessellation can be also described by 
Egenhofer relations applied to Pi and D, but in 
practical cases, due to measurement errors, this 
definition must be relaxed in order to include sliver 
polygons (see Fig 11a). Those errors are often very 
small, sometimes a few centimeters at scale 1. In 
other words, one has a tessellation from an 
administrative point of view, but not from a 
mathematical point of view. Let’s call them “loose 
tessellation”. When downscaling, those errors will 
be rapidly less than the threshold εlp so that the 
initial slivered or loose tessellation will become a 
good-standing tessellation. 

 

Fig 11. A tessellation with sliver polygons and a 
good standing tessellation. 

 

6. Conclusion and Future Works 
In this paper, we develop a topological model of 
loose regions. This Model principally based on the 
Eghenhofer model. Also, we treat the mutation of 
the topological relations which can hold between the 
loose regions into others relations, when 
downscaling. To assure the topological consistency, 
topological conditions are used to mutate the 
relationships in terms of meeting, overlapping, 
disjunction, and merging between map objects into 
others relationships. 
 

This work can open various future works, such 
as: 

  
 Integration of this topological model in the 

automatic generalization process or on-the-
fly web map generation. 

 Use these basic topological relations to 
model the other relations which can be 
between the complex regions. 

 

       References 

[1] Cecconi, A., Integration of Cartographic 
Generalization and Multi-scale databases 
for Enhanced Web Mapping”, PhD Thesis, 
University of Zurich, 2003. 

[2] ICA, International Cartographic 
Association: Multilingual Dictionary of 
Technical Terms in Cartography, 
Wiesbaden, F. Steiner, 1973. 

[3] McMaster, B., and Shea, S., 
Generalization in Digital Cartography, 
Association of American Geographers, 
Wahington D.C, 1992. 

[4] Douglas D., Peuker T., Algorithms for the 
Reduction of the Number of Points 
Required to Represent a Digitized Line or 
its Caricature, The Canadian Cartographer, 
1973, 10(2): 112-122. 

[5] Galanda, M. , Weibel R., An Agent-Based 
Framework for Polygonal Subdivision 
Generalization”, in Richardson D. and van 
Oosterom P. (eds.), Advances in Spatial 
Data Handling. 10th International 
Symposium on Spatial Data Handling, 
Berlin Heidelberg: Springer, 2002, 121–
136. 

[6] Müller, J., and Wang, Z., Area-Patch 
Generalization: A Competitive Approach. 
The Cartographic Journal, 1992, 29(2) : 
137–144. 

[7] Ruas, A, Plazanet, C.,Strategies for 
Automated Generalization, Proceedings of 
the 7thInternational Symposium on Spatial 
Data Handling, Advances in GIS Research 
II, 1996, 1-6. 

[8] Harrie, L., the Constraint Method for 
Solving Spatial Conflicts in Cartographic 
Generalization”, Cartography and 
Geographic Information Science, 1999, 
26(1), 55-69. 

[9] Sarjakoski, T. , Kilpelainen, T.,Holistic 
Cartographic Generalization by Least 
Squares Adjustment for Large Data Sets, 
Proceedings of 19th International 
Cartographic Conference, Ottawa, 
Canada,1999,1091–1098.  

[10] Sester, M., Generalization Based on Least 
Squares Adjustment”. International 

WSEAS TRANSACTIONS on COMPUTERS Brahim Lejdel, Okba Kazar

E-ISSN: 2224-2872 62 Volume 15, 2016



 

 

Archives of Photogrammetry and Remote 
Sensing, 2000, 33 (B4/3) : 931-938. 

[11] Ware, M., Thomas, N., Jones, C., 
Resolving Graphic Conflicts in Scale 
Reduced Maps: Refining, the Simulated 
Annealing Technique, Proceedings of 11th 
Annual GIS Research UK Conference 
(GISRUK) , City University, 2003, 244-
248.  

[12] Wilson, D., Ware, M., Ware, A., 
Reducing Graphic Conflict in Scale 
Reduced Maps Using a Genetic Algorithm. 
ICA Map Generalization Workshop, Paris, 
2003, 01-11. 

[13] Duchêne, C., Automated Map Generalization 
using Communicating Agents”. Proceedings of 
the 21st International Conference of 
Cartography (ACI/ICA), Durban, Afrique du 
Sud , 2003, 160-169. 

[14] Ruas, A., Modèle de généralisation de 
Données Géographiques à Base de Contraintes 
et d‘Autonomie, PhD thesis, Université de 
Marne-la-Vallée, 1999. 

[15] Ruas, A. , Duchêne C., A Prototype 
Generalisation System Based on the Multi-
Agent System Paradigm. In W.A.Mackaness, 
A.Ruas and L.T. Sarjakoski, editor: 
Generalisation of Geographic Information: 
Cartographic Modelling and Applications, 
Elsevier Ltd, chapter 14, 2007, 269-284. 

[16] Sabo, N., Généralisation et des patrons  
géométriques pour la création des  objets auto-
generalisants (SGO) afin d’améliorer la 
généralisation  cartographique à la volée, PhD 
thesis,  Université de  laval, Quebec, 2007. 

[17] Stoter, J., D. Burghardt, C. Duchêne, B. 
Baella, N. Bakker, C. Blok, M. Pla, N. 
Regnauld, G. Touya, S. Schmid. , Methodology 
for Evaluating Automated Map Generalization 
in Commercial Software, Computers, 
Environment and Urban Systems, 2009, 33 (5) : 
311-324. 

[18] Lejdel, B., Kazar, O., Genetic Agent for 
Optimizing Generalization Process of Spatial 
Data, International Journal of Digital 
Information and Wireless Communications  
(IJDIWC),2012, 1( 3) : 729-737. 

[19] Lejdel, B., Kazar, O., Laurini R., 
Mathematical Framework for Topological 
Relationships between Ribbons and Regions”, 
Journal of Visual Languages and Computing, 
2015, 26(1):66-81. 

[20] Egenhofer, M., and Franzosa, R., Point-Set 
Topological Spatial Relations. International 

Journal of Geographical Information Systems, 
1991, 5(2): 161-174. 

[21] Winter, S., Frank A., Topology in Raster and 
Vector Representation, GeoInformatica, 2000, 
4(1) :35-65. 

[22] Egenhofer, M.,Herring J., A Mathematical 
Framework for the Definition of Topological 
Relationships”. In Proceedings of the 4th 
International Symposium on Spatial Data 
Handling, 1990, 803-813. 

[23] Egenhofer, M., Topology and Reasoning: 
Reasoning about Binary Topological Relations”. 
In Second Symposium on Large Spatial 
Databases, In O. Gunther and H.-J. Schek 
(Eds.), LNCS in Advances in Spatial Databases, 
Springer-Verlag, 1991, 141-160. 

[24] Clementini, E., Sharma J., Egenhofer M. 
Modeling Topological Spatial Relations: 
Strategies for Query Processing, In Journal of 
Computers and Graphics, 1994, 18 (6): 815-822. 

[25] Randell, D., Cui Z., Cohn A., A Spatial Logic 
based on Regions and Connection. In: 3rd 
International Conference on Principles of 
Knowledge Representation and Reasoning, 
Morgan Kaufmann Publisher, 1992, 165–
176. 

[26] Winter, S., Uncertain Topological Relations 
between Imprecise Regions, International 
Journal of Geographical Information Systems, 
2000, 14 (5) : 411- 430. 

[27] Laurini, R., A Conceptual Framework for 
Geographic Knowledge Engineering”, 
Journal of Visual Languages and 
Computing, 2014, 25(1):2-19. 

[28] Egenhofer M., and Dube M., Topological 
Relations from Metric Refinements, ACM 
SIGSPATIAL GIS, 17TH ACM 
SIGSPATIAL International Conference on 
Advances in Geographic Information 
Systems, Seattle, WA D. Agrawal, W. Aref, 
C. Lu, M. Mokbel, P. Scheuermann, C. 
Shahabi and O. Wolfson (eds.), 2009, 158-
167. 

 

 

WSEAS TRANSACTIONS on COMPUTERS Brahim Lejdel, Okba Kazar

E-ISSN: 2224-2872 63 Volume 15, 2016




