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Abstract: The process of identifying the optimal parameters for an optimization algorithm or a machine learning
one is a costly combinatorial problem because it involves the search of a large, possibly infinite, space of candidate
parameter sets. Our work compares grid search with a simple genetic algorithm when used to find the optimal
parameter setting for an ID3 like learner operating on given datasets.

Key—Words: Machine Learning, Evolutionary Algorithms, Parameter Optimization

1 Introduction

This study would like to stress the necessity for stud-
ies about optimization methods and machine learning
systems to provide detailed accounts about how the
parameters of the systems have been determined be-
cause the experimental results may vary significantly
when different values for the parameters are employed
[1,2,3,4,5,6,7,8].

We also believe that it is important to stress the
fact that good parameter values are learning system
and problem dependent. Thus, methodologies used
to determine optimal parameter settings given a ma-
chine learning algorithm and a specific dataset, as in
[9], deserve more attention from the research commu-
nity. The No Free Lunch Theorems [10] states that if
a certain algorithm performs well on a certain class of
problem it pays for that with a degraded performance
on the set of the remaining problems. This result is at
the core of the experimentation in our study and it is
the reason why we are considering metaoptimization
as a task has to be done considering both a machine
learning system and a dataset.

In the experimental part of this paper, which ex-
tends our work in [11, 12, 13] we show how the per-
formances of a decision tree learner vary on a given
dataset when its parameters change. We then inves-
tigate the capability of a simple Genetic Algorithm
(SGA) [2], used as a meta-optimizer, of finding good
parameters for an ID3 like decision tree learner [14].
The choice of SGA as the metaoptimizer is based on
the fact that it is well documented and understood
[15, 16, 17]
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The long term goals of our research are to un-
derstand the relationships, if any, between a good
set of parameter values and a given machine learn-
ing system for a given data set and to explore effi-
cient ways to discover a good enough parameter set,
if it exists, by exploiting the relationship. This pa-
per presents a graphical method to explore these mul-
tidimensional relationships through Accuracy Land-
scape graphs. These type of charts present the varia-
tion of the machine learner’s performance over more
than two parameters. The metaoptimization approach
to parameter selection of machine learning algorithms
using the ’black box’ approach will enable the appli-
cation of the method to a much wider set of algorithms
than other metaoptimizers which are adapted to spe-
cific algorithm types. This approach will provide a
generally applicable tool which would be easy to use
on any machine learner especially novel techniques
still in development and whose behaviour and gen-
eral performance is still to be discovered. Such an ap-
proach will contribute to provide a tool by which de-
velopers of new algorithms can document clearly the
parameters selected for the algorithms and the method
used to select them. This makes the parameter selec-
tion process more transparent and reproducible.

Our research does not aim to invalidate previous
experimental work because we are well aware that re-
searchers usually have been going through the pro-
cess of manually discovering a good enough set of
values for their parameters may be not realizing that
they themselves have acted as “human optimizers”.
We instead believe that our work merit is in direct-
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ing some light on the important facet of parameter se-
lection for the learning algorithm which is an integral
part of solving learning problems.

Previous works on parameter optimization as well
as results from those studies confirm that learning
performances vary widely if the parameter settings
changes even on the same dataset. For instance, in
[18, 19] the authors discuss the effect that parameters
have on the performance of the Evolutionary Algo-
rithms like the population size, the selection method,
the crossover, and mutation operators.

Researchers have tried to classify research studies
in meta optimization of learning parameters prepar-
ing several abstract classifications of ideal methods
[18] whose concrete implementation is left to future
research.

Our approach extends past approaches in an or-
thogonal way because it is a concrete methodology
and because we make explicit that the dataset under
study will influence the performances of the learning
algorithms as well as the values of the learning param-
eters.

META OPTIMIZATION FRAMEWORK

Meta-Optimization algorithm
(Genetic Algorithm)

Meta-Optimization Problem
(find the best parameter setting for the Base learning algorithm)

Base Learning alogrithm
(Decision Tree Learning algorithm)

Base Level Problem
(classification problem)

Figure 1: The meta-optimization framework.

An example of the current interest in the meta op-
timization of the learning parameter is a paper just
published in the Machine Learning journal where the
authors try to use case based reasoning applied among
datasets to preselect good parameter settings for a ma-
chine learning system [4]. We do not agree how-
ever with the underlying philosophy of their work
because we believe that each datset requires specific
parameter optimization for a given learning systems.
Also the work in [4] is impractical as it would re-
quire the existence of a database of several optimized
< datasets, parametersettings > pairs to allow the
case based reasoning approach to be applied to select
a promising parameter settings for a novel dataset.

In [9], a metaoptimization approach which starts
off with a candidate parameter set and makes single
stepwise changes to individual parameters is reported.
Our approach, on the other hand, starts off with a pop-
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ulation of candidate solutions. Overall improvement
in their methodology happens sequentially, whilst in
our methodology, optimization happens in parallel.

In [20, 21, 22, 23], a family of optimization ap-
proaches which are based on an initially large set
of parameter sets. In [20, 22, 23] a Student T-
test/Friedman’s test is used to eliminate the signifi-
cantly worse candidates. The method searches the pa-
rameter space of an algorithm by doing a broad sweep
as possible in the first step. This process of evalua-
tion and elimination is repeated until one candidate,
the best, remains. Our methodology based on evolu-
tionary computation uses a set of candidate parameter
sets whose size is kept constant through the process.

In [24] the authors compare the effectiveness of
optimization using manual, Grid Search and Random
Search. The main point of the study was that Random
Search can be better than Grid Search on problems
with low effective dimensionality. Learning problems
with low effective dimensionality have some of their
parameters which may not have an affect on the algo-
rithm’s performance when varied. We are not intro-
ducing any restrictions on our metaoptimization prob-
lem and we aim to develop a methodology which is
applicable to any Machine Learning system and learn-
ing problem.

The terminology that we will use through the
paper to refer to the main elements of a meta-
optimization task is: the given learning prob-
lem/dataset is called the Base learning problem, the
given learning algorithm L1 will be identified by Base
learning algorithm. The meta-optimization problem
consists of finding the best possible parameter setting
for L1. The meta learning optimisation algorithm is a
machine learning algorithm L2 whose task is to solve
the meta-optimisation problem. Fig. 1 is a graphical
representation of the meta-optimization task [25]. In
the paper, L1 will be a decision tree learner and L2
will be a simple GA.

2 Our Meta-optimization Methodol-
ogy

In our approach to the meta-optimization task, a num-
ber of classification problems were selected together
with a learning algorithm (a decision tree learner for
this study). We then faced the task of determining the
parameter setting for the learning algorithm that will
produce models (decision trees in this case) with the
lowest error rate or highest accuracy on unseen data.
The decision tree learner that we used was based
on ID3 [14]. One of the parameters chosen for opti-
mizaiton was the Maximum Depth the tree can grow
to, as it was shown to affect ID3 tree performance
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[26]. The two other ID3 parameters were the Mini-
mum Gain and Minimum Cases at which to allow a
split to a node. The algorithm used as metaoptimizer
was a simple GA [2]. The SGA evolves a population
of individuals each of them codifying for a candidate
parameter set for the decision tree learner. The fit-
ness value of each chromosome is given by the accu-
racy value obtained by models generated by the deci-
sion tree when run with that specific parameter set. A
statistically valid accuracy value is obtained by aver-
aging the performances obtained from 10 runs of the
decision tree learner on different partitions (learning
set, testing set) of the dataset maintaining constant the
parameter set. The experimental work in this paper
complements that of [11].

3 Datasets used

The datasets chosen for the experimentation were
the Adult dataset (Adult), the Mushroom dataset
(Mushroom), the Diabetes dataset (Diabetes) and
the(Australian) Credit Card Approval dataset. All the
data sets are available directly or indirectly from the
UClI repository [27]

The Adult dataset (Adult) contains 48842 in-
stances extracted from the census bureau with a mix
of discrete and continuous variables. The target vari-
able classifies each instance as to whether the indi-
vidual earns more than 50K or less than 50K. The
classification problem is to learn from the available
attributes whether an unseen individual earns more or
less than 50K. The original dataset had 14 attributes
and the target class. One of the attributes, labelled fnl-
wgt (final weight), had 21468 different values. This
attribute caused the ID3 to generate very large trees
which rendered the evaluation process unfeasible in
the time available. The field was removed from the
data set in order to carry out the study. The accuracy
of the resulting experiments still remained relatively
high as will be shown later in the paper. So the final
number of attributes used in all the experiments on the
Adult dataset was 13.

The Mushroom data set consists of 8124 hy-
pothetical mushroom samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lep-
iota Family. Each instance is described by 22 discrete
attributes. The target attribute classifies the mushroom
instance into definitely edible, definitely poisonous or
of unknown edibility. The cases of unknown edibil-
itgy were re-classified as non-edible. The classifica-
tion problem was thus reduced to the classification of
a previously unseen instance into an edible or non-
edible type.

The Diabetes dataset contains 768 medical
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records for patients some of them affected by dia-
betes. The classification problem is to learn from
the available 8 attributes when to classify an un-
seen patient as suffering of diabetes or not. The
dataset was sourced from the WEKA repository at
http://www.cs.waikato.ac.nz/ml/weka/ [28]. How-
ever it had been originally sourced from the UCI
repository [27].

4 The Experiments

The experimental study was carried out in two parts:

The first part was an exploration of how the ac-
curacy of the decision tree learner (ID3 for short)
changes when different parameter values are used on
each of the three datasets. A Grid Search algorithm
was used to generate a broad range of value combina-
tions for three selected ID3 parameters. Each set of
parameter values thus generated were input to the ID3
algorithm to generate a classification tree based on a
set of training data. Each tree was then tested on test
set and the accuracy obtained was recorded together
with the parameter values that generated it. The ac-
curacy values were plotted against the parameter set
values in the form of a 3-D charts in order to gain in-
sight into the relationship between them.

A broad range of ID3 parameter set values were
applied to the Grid Search algorithm to explore as
large an area of the parameter space as possible whilst
keeping processing cost down by using relatively
large step sizes. In the same part of the study the same
parameter range/step values were applied to the SGA
to examine the ability of the SGA to explore the same
ID3 parameter set space at a lower processing cost.

The second part of the study was an attempt to
see how the process of searching for the optimimal
ID3 parameter set using SGA can vary by modifying
one of the SGA’s parameters, the Crossover rate that
may be one of the main parameters affecting the ex-
ploration power of the SGA and performance [17]. In
this part of the study the Mushroom and the Diabetes
datasets were explored using the SGA with Crossover
rates of 25%, 35%, 50% and 70%.

We also point out that all the accuracy values ob-
tained in the following experiments have been ob-
tained by running the decision tree learner (ID3) on
10 different random partitions of the dataset and aver-
aging the accuracy as measured on the test set. Every
data point in the following graphs respects this prop-
erty for both meta optimization algorithms.

In order to explore further the changes in accuracy
due to the varying amount of information provided to
the learner, each experiment described below was car-
ried out with three training/test partition percentages
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of the dataset: a) 30% training set and 70% test set; b)
50% training set and 50% test set; and c) 70% training
set and 30% test set.

S Part 1: Initial exploration of Accu-
racy landscape

For baseline purposes, each experimentation session
was started by running Grid Search (as the meta op-
timization algorithm) over the parameter space of the
decision tree learner to try and assess the overall shape
of the accuracy function for any point in the space.
The Grid Search algorithm performed a uniform cov-
erage of the parameter space by sampling the param-
eter space with a given incremental step that we se-
lected to be small enough to cover most of the values
in each attributes. The size of step results from a com-
promise between covering all the possible values for
an attribute and dealing with the combinatorial explo-
sion of parameter sets resulting from exploring every
combination of parameter values. Therefore the step
size is determined by the amount of computational
time and resources that we have available for cover-
ing the parameter space.

The Grid Search algorithm was set with the fol-
lowing range and step sizes for each of the selected
ID3 parameters:

o Maximum tree depth: for the Adult data set from
0 to 13 (14 values), for the Mushroom dataset
from 0 to 22 (23 values), both with step size 1,
for the Diabetes data set from O to 9 (9 values).

o Minimum information gain for split: 11 differ-
ent values, from 0 to 1, step of 0.1 for all three
datasets

o Minimum number of examples for split: 11 dif-
ferent values, from 1 to 101, in steps of 10 for all
three datasets.

These settings resulted in a uniform point cover of
1694 different parameter sets for the Adult dataset ex-
periments, 2783 for the Mushroom dataset and 1210
for the Diabetes dataset. The evaluation of each pa-
rameter set, consisted of the generation and testing
of trees by the ID3 algorithm on each of the 10 ran-
domly selected training/test data sets resulting in a to-
tal 50820, 83490 and 36300 individual ID3 train and
test operations for the three datasets respectively.

As already said the objectives of the reported ex-
periments are twofold: first we want to provide a base-
line for the meta optimization algorithm, second we
want to convey the view of how rugged is the accu-
racy function produced by the parameter space when
input into the decision tree learner.
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Figure 2: D3 Accuracy function on Adult over the pa-
rameter space with a 70%-30% (Learning - Test) split
of the datase obtained by using a grid search meta op-
timizer. The vertical axis report the accuracy value,
whilst the left horizontal axis reports two parameter
ranges, the Minimum Gain for Split (left outer) and
the Minimum Examples for Split (left inner). The
right horizontal axis represents the Maximum Tree
Depth ID3 was allowed to grow.

6 Results of experiments with SGA

7 Results of Part 1 experiments with
Grid Search

Fig. 3, fig. 4 and fig. 5 show the accuracy obtained
by running ID3 is reported for each point of the pa-
rameter space that have been evaluated. It is important
to bear in mind that while the grid search algorithm
may allow for a uniform coverage of the parameter
space, not all the possible combinations of the param-
eters can be tested, for reasons previously discussed,
thus we have no way to know how the accuracy func-
tion behaves in for parameter sets in the unevaluated
region.

Sometimes the assumptions of continuity and of
linear/planar interpolability among points is made for
the accuracy function. Thus research works report the
accuracy function as a rugged landscape like the one
that can be seen in fig. 2.

We have however to keep in mind that even
though the continuous landscape style of graphs may
be aesthetically appealing and may provide an easy
way for the reader to appreciate the overall behavior of
the accuracy function. Those latter type of graphs are
analytically incorrect. The correct style to be used for
reporting the accuracy function is one that accounts
for gaps in the region of the parameter space such is
done in fig. 3.

The Adult experiments showed that low values
(0.0-0.2) of the Minimum Gain for Split parame-
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Figure 3: ID3 Accuracy function on Adult over the pa-
rameter space with a 70%-30% (Learning - Test) split
of the dataset obtained by using a grid search meta
optimizer. The vertical axis report the accuracy value,
whilst the left horizontal axis reports two parameter
ranges, the Minimum Gain for Split (left outer) and
the Minimum Examples for Split (left inner). The
right horizontal axis represents the Maximum Tree
Depth ID3 was allowed to grow.

Figure 4: ID3 Accuracy function on Mushroom over
the parameter space with a 70%-30% (Learning - Test)
split of the datase obtained by using a grid search meta
optimizer. The axis report the same parameters as be-
fore.
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Figure 5: ID3 Accuracy function on Diabetes over the
parameter space with a 70%-30% (Learning - Test)
split of the datase obtained by using a grid search meta
optimizer. The axis report the same parameters as be-
fore.

Figure 6: Exploration of the accuracy function for ID3
on the Adult dataset by using a SGA as meta optimizer
with a 70%-30% (Learning - Test) data partition.

Figure 7: Exploration of the accuracy function for ID3
on the Mushroom dataset by using a SGA as meta op-
timizer with a 70%-30% (Learning - Test) data parti-
tion.
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Figure 8: Exploration of the accuracy function for ID3
on the Diabetes dataset by using a SGA as meta op-
timizer with a 70%-30% (Learning - Test) data parti-
tion.

ter yielded the higher performance parameter sets.
Within this subgroup of parameter sets, a minor varia-
tion was registered across the values for the Max Tree
Depth parameter but is not clearly visible in the chart.
A set of local maxima was registered in the values of
2 to 4 for Max Tree Depth. The minimum number of
examples does not seem to have an effect across the
range chosen.

The resulting accuracy landscape shows a max-
imum around the low values for Minimum Gain for
Split and Maximum Depth followed by a long plain
in the regions of higher values for Minimum Gain for
Split.

The same Part 1 experiment for the Mushroom
dataset showed a different behaviour, refer fig. 4.
The highest value of accuracy corresponded to low
values (0.0-0.2) of the Minimum Gain for Split pa-
rameter similar to the Adult data set. The resulting
landscape appears to be rugged with stepped decrease
from low to high Minimum Gain for Split values.

The accuracy is also higher for the lower values
of the Minimum Examples for Split parameter and
the accuracy does not vary much with changes in the
Maximum Depth parameter except for a low at value
0.

The Diabetes experiments showed that low val-
ues (0.0-0.2) of the Minimum Gain for Split parame-
ter yielded the higher performance parameter sets as
in the Adult dataset. Within this subgroup of param-
eter sets, there is a variation across the values for the
Max Tree Depth parameter. A set of local maxima
was registered in the 2 - 4 values. The minimum num-
ber of examples does not seem to have an effect across
the range chosen.

The resulting accuracy landscape shows a max-
imum around the low values for Minimum Gain for
Split and Maximum Depth followed by a long plain
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in the regions of higher values for Minimum Gain for
Split.

The maxima discovered using the larger training
set to train set ratios similar but tend to be marginally
higher on average thus supporting the hypothesis that
more information available in the training set the bet-
ter will be the accuracy measured over the test set. The
difference in accuracy behaviour between the datasets
is similar across experiments.

We selected the SGA as meta optimizer for this
group of experiments as it is known that genetic al-
gorithms are very good as function optimizer [2, 29].
Thus we want to explore how much a simple heuristic
like a SGA can improve the search of the parameter
space over the grid search heuristic.

The reported results have been obtained running
the SGA in the same experimental setups as those
described for the grid search in the previous section
and on the two datasets. The SGA was run for both
datasets with the following values for its main param-
eters: population size set at 40, crossover rate set at
0.25, mutation rate set at 0.01, stopping rate set at 100.

Each individual of the population is a binary
string that codes for the input parameter of the ID3
algorithm represented with the same ranges and dis-
cretizations (steps) used for the grid search in order to
make meaningful the comparison of the experiments
between grid search and SGA. Each parameter set that
was generated was used to generate and test ID3 trees
using the same 10 random sample partitions of train
and test data.

Fig. 6, fig. 7 and fig. 8 show the typical land-
scape (pattern of exploration ) of the SGA the results
of the exploration of the parameter space of the Adult,
Mushroom and Diabetes using the 70%-30% split. At
a first glance we can observe that in all three datasets,
the SGA is more effective in exploring the parame-
ter space as not all the points (the missing columns in
the graphs) in the parameter space have been explored
while still discovering parameter sets in the optimal
regions of the parameter space. Although the SGA
executed more operations than the Grid Search due
to the stopping rate of 100 and population of 40, it
was, as we hoped, efficient in exploring the parameter
space, discovering "near’ optimal parameter sets in the
early epochs. this means that lower stopping rates can
be set resulting in significant savings of computational
power.

As can be seen from the results in Table 1 the
SGA discovered the same regions of optimal parame-
ter space as the Grid Search for all of the experiments.
It is to be noted that for the Mushroom and Diabetes
experiments these results were obtained in the ear-
lier cycles of the evolutionary search. However in the
Adult dataset experiments the optimal parameter sets
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Dataset Optimizer | 30%/70% split | 50%/50% split | 70%/30% split
Adult Grid Search 83.72% 83.99% 84.34%
SGA 83.72% 83.99% 84.34%
Mushroom | Grid Search 99.89% 99.99% 100%
SGA 99.89% 99.99% 100%
Diabetes Grid Search 72.77% 72.58% 73.51%
SGA 72.77% 72.58% 73.51%

Table 2: Maximum Parameter Set Accuracy per Epoch using SGA search with different Crossover rates

Dataset Crossover rate | 30%/70% split | 50%/50% split | 70%/30% split
Mushroom 25% 99.89% 99.99% 100%
35% 99.89% 99.99% 100%
50% 99.89% 99.99% 100%
70% 99.89% 99.99% 100%
Diabetes 25% 72.77% 72.58% 73.51%
35% 72.77% 72.58% 73.51%
50% 72.77% 72.58% 73.51%
70% 72.77% 72.58% 73.51%

were discovered at later epochs, i.e. epochs 76, 15 and
55 for the three train/test set ratios respectively.

8 Part 2: Effect of varying Crossover
rate on SGA Performance

The objective for this part of the experimentation was
to examine the effect of changing the crossover rate
had on the performance of the SGA on the Mush-
room and Diabetes datasets. The SGA was run for
both datasets with crossover rates of 25%, 35%, 50%
and 70%, whilst other parameters were kept as in
the Part 1 experiments. Table 2 shows that the same
maximum accuracy was discovered by the SGA with
same train/test partitions but different Crossover rates
e.g. for the Mushroom dataset with the 30% training/
70% test partition the maximal accuracy discovered
was 99.89% for all four Crossover rates. This was
the same as the maximal accuracy discovered by Grid
Search.

9 Comparison with other classifiers

Table 3 shows the accuracy results of classification by
other studies on the same datasets as the ones used for
this study.

The UCI library documentation accompanying
the Adult data reported the accuracy values in Table
3 which were obtained after the removal of unknowns
from the train/test sets. The NBTree shows the highest
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performance with 85.90% +-0.28 compared with the
84.34% with the 70%/30% train test split discovered
by SGA meta-optimizer for the ID3 used in this study.

The documentation accompanying the Mushroom
dataset reported a set of logical rules developed
for benchmark purposes which gave an accuracy of
99.41%. The best accuracy obtained by this study us-
ing the SGA on the same dataset was 100% with the
70%/30% train/test split.

In [30] a number of classifiers including Discrim,
C4.5,k-NN and Naivebay were applied to the Diabetes
dataset using 12-fold cross-validation. The error rates
reported were 0.225, 0.27, 0.324 and 0.262 respec-
tively. These results are equivalent to an accuracy of
77.5%, 73% , 67.6% and 73.8% respectively as listed
in Table 3. The best accuracy obtained by this study
using the SGA on the same dataset was 73.51% us-
ing the 70%/30% training /test split compared with
the highest obtained by Discrim at 77.5% accuracy.

10 Conclusion

In the paper, we have compared Grid Search and SGA
as meta optimizers used to find the optimal parame-
ter sets for a ID3 learner used to solve a classification
problem.

Grid Search has been used as a base line method
to provide coarse but uniform exploration of the pa-
rameter space. The SGA heuristic has also been used
to solve the problem of finding the optimal parameter
sets and points to an efficient and effective alternative.
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Table 3: Comparison of ID3 (with SGA optimizer) results with other Classifiers

Dataset SGA optimized ID3 Other
with 70%/30% split Classifier Accuracy
C4.5 84.46% +-0.30
Adult 84.34% Naive-Bayes  83.88% +-0.30
NBTree 85.90% +-0.28
Mushroom 100% Benchmark 99.41%
Discrim 77.5%
Diabetes 73.51% C4.5 73%
k-NN 67.6%
Naivebay 73.8%

The differences in the ID3 Accuracy landscapes
for the Adult, Mushroom and Diabetes datasets evi-
dences that for different datasets the optimal ID3 pa-
rameter sets can be found in regions of the parameter
space which are particular to each dataset. This would
imply that a single optimal parameter set should not be
generalized for different datasets.

The number of datasets and algorithms was how-
ever limited so far and can only be used to draw con-
clusions of an indicative nature. In order to draw more
robust inferences the behaviour and performance of
the SGA metaoptimizer has to be examined across a
wider base of algorithms and datasets in order to draw
out any differences and problematics related to algo-
rithm approach and dataset characteristics. Moroever
large parameter spaces provide harder challenges to
the search problems and so more work should be di-
rected in this area in order to evaluate the SGA’s po-
tential in this regard.

Another limitation is that the stochastic element
of the SGA leads to different performance results
with every run, due to different initial populations
and other random effects in the crossover and muta-
tion operations. Thus multiple SGA experiments with
the same conditions should be run in order to be able
to generalise the SGA’s performance on a particular
algorithm-dataset experiment.

The results however still show that researchers in
machine learning or optimization methods that are in-
terested in determining a suitable parameter set for
their system could use a SGA heuristic for dealing
with the problem in both a formal, structured and effi-
cient way.
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11 Future Work

Our forthcoming experimental research efforts will be
directed towards testing the robustness of the SGA
based metaoptimization approach over wider variety
of machine learner algorithms and datasets in order to
evaluate its general applicability. We also intend to
apply more rigorous statistical evaluation of the per-
formances of both the parameter set configurations of
the machine learner algorithms and the metaoptimizer
itself. It is also planned to study of the effect of chang-
ing SGA parameters on the wider experimental base.
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