
Declarative Implementations of Search Strategies for Solving CSPs in 
Control Network Programming 

 
EMILIA GOLEMANOVA 

Department of Computer Systems and Technologies 
Ruse University 

8 Studentska Street, Ruse 
BULGARIA 

EGolemanova@ecs.uni-ruse.bg 
 
 
Abstract: - The paper describes one of the most researched techniques in solving Constraint Satisfaction 
Problems (CSPs) - searching which is well-suited for declarative (non-procedural) implementation in a new 
programming paradigm named Control Network Programming, and how this can be achieved using the tools 
for dynamic computation control. Some heuristics for variable and value ordering in backtracking algorithm, 
lookahead strategies, stochastic strategies and local search strategies are subjects of interest. The 8-queens 
problem is used to help in illustrating how these algorithms work, and how they can be implemented in Control 
Network Programming. 
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1 Introduction 
Control Network Programming (CNP) is a 
relatively new programming paradigm developed by 
a team in which the author is involved in and is 
especially effective for solving problems with 
natural graph-like representation. There are two 
major CNP implementation techniques. In the first 
approach, the classical algorithms are essentially 
simulated in CNP – we refer to such 
implementations as procedural implementations. 
The other approach makes use of the built-in in 
CNP search mechanism which is an extended 
version of backtracking and the CN program has a 
descriptive not an algorithmic character. These are 
non-procedural or declarative implementations. 
The resulting programs are easier to read, modify, 
and extend, which is important in AI, where 
efficient algorithms are, in general, difficult to 
implement and require considerable 
experimentation. 

In addition to the built-in search mechanism, 
CNP and more specifically, the SPIDER language 
supports powerful means for its dynamic control [1]. 
They turn out to be very a convenient tool for 
realization of various heuristic strategies in Problem 
Solving [2, 3, 4]. This paper expands the application 
area of these tools describing their usage for solving 
Constraint Satisfaction Problems (CSPs). On 
another point of view (the CSPs researcher’s view), 
the aim of this work is to promote a new 
programming paradigm - CNP, as a convenient tool 

for illustration of the basic techniques in constraint 
satisfaction. The question of how to easily model 
various types of heuristics in a declarative way is 
addressed. The result is non-procedural 
implementations which are “natural”, i.e. similar to 
the manner in which people think of and specify 
problems. Being so intuitive, these implementations 
and respectively WinSpider IDE (which is the last 
CNP IDE), can be used as an excellent approach for 
teaching and learning search in constraint 
satisfaction. 

The 8-queens problem will be used as the 
illustrative example in this paper. Finding all 
solutions to the 8-queens puzzle is a good example 
of a simple but nontrivial problem. For this reason, 
it is often used as an example problem for various 
programming techniques, including nontraditional 
approaches such as constraint programming [5], 
logic programming or genetic algorithms. But, while 
the n-queens problem is a wonderful problem to 
study backtracking systems and is intensively used 
in benchmarks to test these systems, there are real 
problems that can be modeled and solved as n-
queens problems. For instance, it has been used for 
parallel memory storage schemes, VLSI testing, 
traffic control and deadlock prevention [6]. 
 
 
2 CNP 
Programming through control networks, or 
Control Network Programming, or just CNP, is a 
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style of high-level programming that has been 
inspired by the idea to create a convenient and 
effective way for solving problems that can be 
naturally visualized using graphs. In CNP, what 
corresponds to a program in a conventional 
programming language is a description of the 
problem in the form of a graph, called Control 
Network (CN). The CN is a finite set of subnets, 
one of which is the main subnet. The subnets can 
call each other, potentially recursively. Each subnet 
consists of labeled nodes (also routinely called 
states), and arrows between nodes. A chain of 
primitives is assigned to each arrow. The primitives 
are elementary actions, and if a parallel is to be 
drawn with the traditional languages, they 
correspond to user-defined functions in some 
imperative language. The complete program 
consists of two main components - the CN and the 
definitions of the primitives. The CN may actually 
be nondeterministic. The system “executes” the CN 
by implementing a backtracking-like search strategy 
for traversing the CN. Similarly to Prolog and other 
declarative languages, SPIDER provides means for 
static and dynamic control of the search process. 
Two groups of tools for dynamic search control 
(which is a subject of interest here) are available: 
system options and control states. 

For more details on the structure and syntax of a 
CN program the reader is referred to [7], as well as 
to the web site [8] especially devoted to CNP. 
Representative examples of using CNP for solving 
various types of problems have been considered in 
[9]. CN programs and their behavior were more 
formally defined in [10], and the basics of their 
execution introduced. 
 
 
3 8-Queens problem as a Constraint 
Satisfaction Problem 
At first, we need to model the 8-queens problem as 
a CSP problem. To formalize a problem as a CSP, 
we must identify a set of variables, a set of domains 
and a set of constraints [11, 12, 16, 19]. For the 8 
queens problem let : 

• variables {Q1, Q2, …, Q8} represent 
the queens, 
• domains Qi∈{1, 2, …, 8}, ∀i∈{1, 2, …, 8},  

where equality Qi=j determines the i-th queen is 
placed on the i-th row and j-th column (note, that 
each queen strictly determines the row where it is 
placed), 

• constraints 
Qi ≠Qj, ∀i, j∈{1, 2, …, 8}, i≠j condition 
for columns, 

|Qi-Qj|≠|i-j|,  ∀i, j∈{1, 2, …, 8}, i≠j  condition 
for diagonals. 
As it is well known CSPs are commutative [12, 

16]. This means that the order of any given set of 
actions has no effect on the outcome. As the 
consequence all CSP systematic search algorithms 
can generate successors by considering assignments 
for only a single variable at each node in the search 
tree. 

There are two basic approaches how to solve 
problems defined by means of constraints: 
backtracking based search that extends a partial 
solution to a complete solution and local search that 
decreases the number of violations in a complete 
solution. These two approaches and their 
corresponding heuristics are implemented and 
discussed in the paper. 
 
 
4 Backtracking approach: General-
purpose heuristics for solving CSPs 
efficiently 
The classic approach to solve CSPs is to use a 
backtracking search algorithm [5, 11, 12, 16]. This 
is a depth-first search that picks one variable at a 
time and chooses a value for this variable. The 
choice for a variable or value is called a choice 
point and the assignment of a value to a variable is 
called labeling [11]. 

Plain backtracking is an uninformed algorithm, 
so it is not very effective for large problems [12]. 
Informed search algorithms, such as A*, have better 
performance due to exploitation of domain-specific 
heuristics derived from the knowledge of the 
problem. But it turns out that CSPs can be 
efficiently solved without such domain-specific 
knowledge. Instead, there are general-purpose 
heuristics that do with the choice points and answer 
the following questions: 

1. Which variable should be labeled next, and 
in what order should its values be tried? 

2. What are the implications of the current 
variable assignments for the other 
unassigned variables? 

3. Can we detect inevitable failure early? 
One important technique is the propagation of 

the consequences of an assignment on the other 
variables through the constraints (lookahead 
strategies [5, 11]). Forward Checking (FC) is the 
improved backtracking by lookahead technique. 
Another method of enhancing the search is by using 
heuristics that involve the variable and value 
order. Instead of doing this at random the 
sequences of variables and their instantiations can 
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be ordered. This can either be done globally (static 
ordering) before the search starts or locally 
(dynamic ordering) at every node [13-17]. The 
popular variable ordering heuristics - Minimum 
Remaining Values (MRV) and degree [12, 16], 
and a value ordering heuristic - Least-
Constraining-Value (LCV) [12, 16] are the subject 
of the following CNP implementations. 
 
 
4.1 CNP implementation of the general-
purpose heuristics 
We start with a discussion of a CNP implementation 
of the FC algorithm with MRV, degree and LCV 
heuristics on the example of the 8-queens problem 
(see Fig.1). Based on this solution we can easily 
simulate other strategies (simple and stochastic 
variant of FC) which will be described in Section 6. 
Figure 1 and all other figures depicting CNP 
implementations are generated from the WinSpider 
IDE. 
 
main MainNet; 

 
 
Sub QueenAtRowH; 

 
 

Fig.1 CNP implementation of the general-purpose 
heuristics for 8-queens problem 

 
The control network consists of two subnetworks 

- main (MainNet) and subnet QueenAtRowH. 
MainNet invokes QueenAtRowH (CALL 
QueenAtRowH) and prints the found solution 
(primitive PrintSolution). The main job is 
accomplished by the recursive subnet 
QueenAtRowH. A recursive level corresponds to a 
search tree level (picks one variable and chooses a 
value for this variable). The two choice points 

(variable and value choices) are modeled by system 
control states of type RANGE (Rows, Cols). 
 
4.2 Variable ordering 
The definition of 8-queens problem as a CSP in 
Section 3 makes it quite clear that the variable 
choice corresponds to a choice of a row. 
 
 
4.2.1 MRV heuristic 
One of the most popular dynamic heuristic that 
decides how to choose the next variable is MRV, 
which comes from the fail-first principle. The MRV 
heuristic selects from the set of unassigned variables 
the variable with the fewest remaining values in its 
domain [16]. That’s why it also has been called the 
“most constrained variable” heuristic [12]. It allows 
discovering a dead end sooner and thereby prunes 
the search tree. 

This idea can be simulated in CNP using the 
control state Rows and primitive MRV. Primitive 
MRV calculates the heuristic evaluations Ri, i∈{1, 
2, …, 8} of all the 8 variables, i.e. the number of 
legal positions on the rows. They are used as 
evaluations of the outgoing arrows from Rows. 
State Rows is a RANGE type control state with low 
selector 1 and high selector 8, determining which 
emanating arrows will be attempted - only those 
whose evaluations are in the range [1; 8]. Already 
assigned variables will have zero remaining values 
in its domain, because there are no permitted 
positions on the rows with already placed queens. 
Therefore their corresponding arrows will be cut off. 
System option [RANGEORDER=LOWFIRST] 
states that the “survived” emanating arrows will be 
attempted in ascending order of their evaluations 
which means that the row with minimum remaining 
legal positions is chosen first. The other system 
option [NUMBEROFARROWS=1] is used because, 
as it was mentioned in Section 3, CSPs are 
commutative, i.e. it’s only needed to consider 
assignments to a single variable at each step [12]. 
Primitive SetRow(Row, Number) assigns the 
parameter Number to the subnetwork variable 
Row. 
 
 
4.2.2 Degree heuristic 
Another heuristic is to choose the variable that is 
involved in the largest number of constraints, 
causing the largest reduction in the domains of the 
remaining variables [12, 16]. It attempts to reduce 
the branching factor on future choices. This is called 
the degree heuristic. The MRV heuristic is usually 
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a more powerful guide, but the degree heuristic can 
be useful as a tie-breaker [12, 16, 17]. 

The MRV heuristic for the 8-queens problem 
doesn’t help at all in choosing the first row, because 
initially every row has 8 legal columns [12]. In this 
case, a static version of the degree heuristic comes 
in handy. It would lead to an ordering from the 
middle rows outward, since a queen in the middle 
row restricts the search more than one on the top or 
bottom of the board [13, 14, 18]. This can be done 
globally before the search, ordering rows from 
“inside out”. In the CNP implementation this idea is 
realized setting the order of definition of outgoing 
arrows from state Rows as follows: 4, 5, 3, 6, 2, 7, 
1, 8. Therefore, when the control is in the control 
state Rows the row with the smallest number of 
unthreatened squares is chosen due to the system 
option [RANGEORDER=LOWFIRST], but in case 
of more than one row have equal results, the row 
closer to the middle of the board is preferred.  

The result of incorporating these two heuristics 
(MRV and degree) is definitely positive for n-
queens problem and according to Cheadle [14] for 
example, for the 16-queens instance, the number of 
backtracks goes down to zero, and more difficult 
instances become solvable. 
 
 
4.3 Lookahead technique 
Analyzing the situation after placing a queen on the 
board, it’s possible to detect the failure early, i.e. 
some values can be rejected at earlier stages [5, 11]. 
FC algorithm improves chronological backtracking 
by incorporating such a lookahead strategy. When 
the variable is labeled to a value L it checks the 
remaining domains of unassigned variables. If there 
is a domain reduced to an empty set, then L will be 
rejected. 

The MRV primitive implements this idea 
detecting the rows still without a queen, but with all 
beaten squares. In this case the primitive is 
unsuccessfully executed and backtrack is forced. 
This causes a new value choice which is 
accomplished in the previous recursive level of the 
subnetwork QueenAtRowH. 
 
 
4.4 Value ordering (LCV) 
Once a variable has been selected, the algorithm 
must decide on the order in which to examine its 
values [12]. The way in which we choose values is 
important in case of looking for just one solution 
(other way all the values must be tried). The most 
popular heuristic for choosing a value is LCV. The 
idea is to choose the value that would eliminate the 

fewest values in the domains of other variables and 
thus leaving the most choices open for subsequent 
assignments to unassigned variables. Again it can be 
realized globally (static version) or locally (dynamic 
version). 

The dynamic ordering is implemented by the 
primitive LCV and the control state Cols, which is 
of the type RANGE again. Primitive Cols calculates 
the heuristic evaluations Ci, i∈{1, 2, …, 8} of all 
values of the already chosen variable, i.e. the 
heuristic evaluations of the positions (columns) in 
the chosen row. The attacked positions have the 
evaluation 0. The heuristic evaluation of an 
unattacked position is the number of attacked 
squares on the board after placing the queen on that 
square. The minimum number of attacked squares 
positions is 22 and the maximum - 64. These are the 
selectors of the control state Cols, therefore the 
illegal variable values (those with heuristic value 0) 
are rejected for examination. Option 
[RANGEORDER=LOWFIRST] must be used for 
that control state, too – as a result, the column 
causing the minimum attacks will be attempted first. 
Placing a queen on the board is performed by the 
primitive Place(Row, Col) on the attempted arrow. 

In case of equal heuristic evaluations the static 
version of LCV heuristic is used as tie-breaker. The 
outer columns are preferred because they defeat the 
board less than the inside ones. Consequently the 
default order of the outgoing arrows from Cols is 1, 
8, 2, 7, 3, 6, 4, 5.  

The combination of FC algorithm, general 
purpose heuristics - MRV and LCV and problem-
dependant heuristics as tie-breakers is turn out to be 
very effective approach. In [18] Wallac claims that 
70-queens problem is solved within a second, and 
the algorithm scales up easily to 200 queens. The 
presented above CNP implementation finds the first 
solution of 8-queens problem in 8 steps which 
corroborates the result of Kalé in [22] that these 
heuristics appear to be almost perfect in the sense 
that they finds a first solution without any 
backtracks in most cases of n-queens problem for n 
from 4 to 1000. 
 
 
5 Local Search approach: Constraint-
Based Local Search 
Local Search (LS) algorithms turn out to be very 
effective in solving many CSPs [12]. For example, 
they solve even the million-queens problem in an 
average of 50 steps. Local search also works well 
for real problems. It has been used to solve 
scheduling problems (observations for the Hubble 
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Space Telescope) even when these problems are 
dynamically changeable (airline schedules).  

Local search takes a fundamentally different 
approach to solving CSPs than the systematic tree 
search of constraint programming (i.e. backtracking 
approach), whose main ideas were described above. 
In essence it uses a complete-state problem 
formulation and explores a graph, moving from 
solution to neighboring solution in the hope of 
improving it. Local search is, in contrast to 
constraint programming, not complete. There is no 
guarantee that an optimal solution will be found. 

Constraint-Based Local Search (CBLS) uses 
constraints to describe and control local search. 
Although the constraints are the same as in 
constraint programming, the way in which they are 
used is not. They are not used to prune the search 
space, but to maintain a number of properties which 
can be used to guide the local search. 
 

 
 
Fig. 2 The MIN-CONFLICTS algorithm for solving 

CSPs by local search from [12] 
 

The presented at Fig. 3 CNP implementation 
uses a slightly modified variant of the search 
procedure from Fig.2 as it is defined in [12]. It 
iterates max_steps number of times (failure) or 
until all constraints are satisfied (success). Checks 
for these two situations in the CNP implementation 
are performed by the primitives GetToMaxIter and 
NoSol. The initial state of local search assigns a 
value (randomly or greedy generated) to every 
variable. As it has been mentioned, the main 
operation is moving from one solution to a 
neighboring solution. Typically a move in CBLS 
consists of a simple reassignment of a value to a 
variable, but other moves are possible, such as 
multiple reassignments, swapping the value of two 
or more variables [12]. For example, in the 8-queens 
problem, the initial state might be a random 
configuration of 8 queens in 8 rows, and the 
successor function picks one queen and considers 
moving it elsewhere in its row. Another possibility 
would be start with the 8 queens, one per row in a 
permutation of the 8 columns, and to generate a 
successor by having two queens swap columns. In 

the presented CNP solution the first approach is 
adopted. 
 
main MainNet; 

 
 
Sub QueenAtRowLS; 

 
 
Fig. 3 CNP implementation of CBLS for 8-queens 

problem 
 

At each iteration the queen for rearrangement 
must be chosen. Unlike the algorithm from Fig. 2 
where the queen is randomly chosen from all the 
attacked queens, the CNP implementation (see Fig. 
3) selects the queen which contributes to the most 
violations [19]. This is determined using the control 
state Rows of type SELECT with selector 7 
(maximum number of conflicts which a queen is 
involved in) and the system option 
[PROXIMITY=NEAREST]. The control state uses 
as arrow evaluations (Q1, …, Q8) the number of 
violations that queens are involved in, calculated by 
the primitive QueenConflicts.  

When a variable (queen) is selected, the 
algorithm selects a new value (column) for this 
variable. In choosing it, the most obvious and 
popular heuristic is to select the value that results in 
the minimum number of conflicts with other 
variables - the min-conflicts heuristic [12]. The 
primitive ColConflicts(Row, C1, C2, C3, C4, C5, 
C6, C7, C8) evaluates the effect of the placement of 
the selected queen (at Row) on the 8 columns. The 
control state Cols of type SELECT with selector 0 
and the system option [PROXIMITY=NEAREST] 
causes the column with minimum number of 
conflicts to be chosen. As a tie-breaker in both 
control states the random choice is used. When both 
a queen and a value have been selected, the 
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primitive Place performs the assignment and 
thereby executes the actual move. 

Figure 4 reports the experimental results for the 
CBLS model with SPIDER. It compares the 
performance of this algorithm according to the 
maximum allowed iterations (max_steps ). The 
algorithm was run 1000 times (because of 
randomness) for a bound of 20 iterations, 50 
iterations and 100 iterations. At max_steps=20 it 
found a solution on 37% of the runs in an average of 
10 steps. Using max_steps=100 raises success to 
75% in an average of 30 steps. But amazingly more 
than half of the successful runs required fewer than 
20 iterations to find the solution and this is true for 
all the cases of the parameter max_steps. This 
means, firstly, that the frequency of occurrence of a 
solution with a small number of iterations is bigger. 
And secondly, the distribution of the successful runs 
over to the number of iterations required to obtain 
the solution is roughly independent of the bound of 
number of iterations. Another interesting 
characteristic of the graph of Fig. 4 are the spikes 
near the 6 iteration mark, i.e. CBLS delivers 
maximum number of successful runs in 5-8 
improvements. 
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Fig. 4 Distribution of the successful runs over to 
number of required iterations 

 
 
6 Other CNP implementations for 
solving CSPs 
Using the CNP implementations presented in Fig. 1 
and Fig. 3 and another type of dynamic control 
(system options and control states) we can easily 
model other CSP solving algorithms. Table 1 
presents their performance on the 8-queens problem 
and the performance of the already discussed in the 
previous sections two algorithms (columns 2 and 5). 

 
Table 1 

1 2 3 4 5 6 

FC FCs&d FCs FCrnd CBLSmc CBLSrnd 
88 8 8 (25) (10) (13) 

The algorithms from left to right, are simple 
forward checking algorithm (FC), forward checking 
with static and dynamic variable and value ordering 
heuristics (FCs&d), forward checking with only 
static variable and value ordering heuristics (FCs), 
forward checking with random variable and value 
ordering (FCrnd), CBLS with most conflicted 
variable chosen (CBLSmc) and CBLS with 
randomly chosen conflicted variable (CBLSrnd). 
Each cell is the number of consistency checks 
required to solve the problem. For the algorithms 
with elements of randomness (the last three in the 
table) this is the mean number of checks (marked in 
parentheses) over 1000 runs with a bound of the 
number of iterations 20.  
 
 
6.1 Forward Checking algorithm with only 
static variable and value ordering heuristics 
(degree and static LCV; Table 1, column 3) 
Static versions of the discussed heuristics require 
variable and value pre-ordering (before the search). 
With our model from Fig.1, that can only be 
achieved by deleting the rearranging arrows option 
RANGEORDER. This way the default order of the 
outgoing arrows from Rows and Cols states is only 
meaningful which lead to ordering rows from 
“inside out” and columns from “outside-in”. The 
segment of the modified CN that corresponds to 
Rows and Cols is shown in the Fig.5. The 
experiments show that this implementation finds the 
solution in 8 steps, i.e. without any backtracks. This 
result proves the thesis that a dynamic ordering is 
not necessarily better than a static ordering [13]. In 
8-queens problem the static heuristics work a lot 
better than the dynamic ones because the dynamic 
heuristics return the same values in most cases. 
 

 
 

Fig. 5 CNP implementation of FCs for 8-queens 
problem 

 
 
6.2 Forward Checking algorithm with 
random variable and value ordering (Table 
1, column 4) 
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Sometimes it is useful to randomize the variable and 
value selection procedure [17, 19]. The importance 
of introducing randomness generally in computation 
theory is discussed in [20]. The CNP 
implementation of stochastic variable and value 
choice could be easily achieved if we modify the 
CN from Fig.1 replacing the option 
[RANGEORDER=LOWFIRST] with 
[RANGEORDER=RANDOM] for both Rows and 
Cols control states (see Fig.6). Generated heuristic 
evaluations won’t be used in ordering rows and 
columns and the outgoing arrows from the 
corresponding control states will be attempted in 
random order. The performance of this algorithm is 
worse than the performance of the previous ones. It 
finds the solution in an average of 25 steps. 
 

 
 
Fig. 6 CNP implementation of FCrnd for 8-queens 

problem 
 
 
6.3 Forward Checking algorithm (Table 1, 
column 1) 
A simple backtracking strategy for solving the 8-
queens problem can be performed in the following 
way. Rows and columns are looked at one at a time 
in numerical order. This algorithm with 
incorporated lookahead technique (forward 
checking algorithm) could be simulated in CNP 
using CN from Fig.1 and deleting the rearranging 
arrows option RANGEORDER. The outgoing 
arrows from the control states Rows and Cols must 
be set in numerical order, i.e. from 1 to 8. The 
modified Rows and Cols are shown in the Fig.7. 
This algorithm finds the first solution in 88 steps. 
 

 
 

Fig. 7 CNP implementation of FC for 8-queens 
problem 

 

6.4 CBLS algorithm with randomization 
(Table 1, column 6) 
The algorithm of Fig. 2 where the variable is 
randomly chosen from all the conflicted variables 
could be implemented in SPIDER easily using the 
CNP implementation from Fig.3 which simulates a 
LS algorithm with most conflicted variable chosen. 
The only change that must be performed concerns 
the control state Rows of type SELECT. Now it 
should be stated of type RANGE with low selector 1 
and high selector 7, determining minimum and 
maximum number of conflicts which a queen is 
involved in. This way the unattacked queens (those 
with value 0) are rejected for examination. Random 
choice from the conflicted queens is performed by 
the system option [RANGEORDER=RANDOM]. 
As the search process in LS is determined another 
system option must be used - 
[NUMBEROFARROWS=1]. These changes are 
depicted on Fig.8. 
 

 
 

Fig. 8 CNP implementation of CBLSrnd for 8-
queens problem 
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Fig. 9 Distribution of the successful runs over to 
number of required iterations for the CBLS model 

with random chosen conflicted variable 
 

The same experiment like that for the previous 
CBLS model (Section 5) was performed - the 
algorithm was run 1000 times with a bound of the 
number of iterations 20, 50 and 100. At 
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max_steps=20 the successful runs are 19% (in an 
average of 10 steps), at max_steps=50 they are 
44%, and at max_steps=100 - 59%. Again, the 
frequency of occurrence of the successful runs 
decreases with the increment of the number of 
required iterations (see the Fig.9). But the successful 
runs for the algorithm discussed are more evenly 
distributed as it could be seen at Fig.10 which 
compares the performance of the two algorithms for 
max_steps=20.  
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Fig. 10 Comparison of the distributions of the 
successful runs for the presented CBLS models 

 
 
6.5 Number of solutions 
SPIDER system option - SOLUTIONS is used for 
setting the solution scope. The value of the option 
determines the number of solutions that are looked 
for. The presented FC implementations find just the 
first one solution to the 8-queens problem, setting 
the [SOLUTIONS=1]. If we are trying to find all the 
92 solutions the [SOLUTIONS=ALL] must be 
specified. This will cause a full traversing of the 
control network. 
 
 
7 CNP (SPIDER language) and 
Constraint Programming Languages 
CNP and constraint programming are fundamentally 
different but at the same time they have interesting 
similarities. This section explores (not in depth) the 
differences and comparing the features the two 
approaches offer. 

1) Constraint satisfaction programming 
languages are used to encode and solve only 
constraint satisfaction/optimization problems. 

On the other side CNP is a universal 
programming paradigm and this was illustrated in 
[9] through solutions to selected representative 
applications, but it is a style of high-level 

programming created to be especially convenient for 
solving problems with natural graph-like 
representation. 

2) The computational model of constraint-
programming languages and platforms typically 
employs the various constraint propagation 
techniques and handles the backtracking, while the 
choice for variables and values is left to a user 
specified search procedure. 

SPIDER search engine is based on backtracking 
too, but it provides a lot of static and dynamic tools 
to control the search and this way to incorporate 
various heuristics. As it was shown the choice for 
variables and values in solving CSPs are easily 
implemented by the wide set of system options and 
control states. 

3) Constraint programming is a form of 
declarative programming, because constraints don’t 
specify a step or sequence of steps to execute, but 
rather the properties of a solution to be found. 

CNP is a declarative style of programming too, 
because the problem is specified in the form of 
graph and there is a built-in inference, searching a 
path (solution of a problem) in the graph. 

4) Constraint programming is an embedding of 
constraints in a host language. It has been 
established that constraints can be mixed with the 
following programming paradigms: logic 
programming, functional programming and 
imperative programming. Constraints are usually 
integrated into a programming language or provided 
via separate software libraries. The first approach is 
implemented in program systems (Prolog III, 
ECLiPSe, Oz, Kaleidoscope, Comet) which 
unfortunately aren’t in the top 50 of the most usable 
tools for software development, according to The 
TIOBE Programming Community Index [23] for 
example. They have insufficiently good 
maintenance and outdated versions. The second 
approach (libraries) supposes limited functionality 
and difficult communication between both 
paradigms.  

Technically, the SPIDER program is integrated 
in the imperative programming language project 
even at the level of source code. Hereby, a two-way 
connection between paradigms and an access to all 
common recourses are achieved.  

5) In many cases, the innate structure of a 
problem to handle is not linear. For example, the 
primary, natural description of a problem might take 
the form of a tree, a graph (network), or a recursive 
set of networks. It would be a great advantage if 
there was no need for the ‘programmer' to try to 
translate an inherently graph-like, possibly 
nondeterministic, possibly declarative description 
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into a much more complicated and difficult to 
understand sequential algorithmic model of this 
description. In fact, because of its naturalness, the 
human form will be most probably the most 
consistent and easily verifiable representation. This 
imposes the requirement that a programming 
language to be natural, i.e. similar to the manner in 
which people think of problems and the style in 
which they specify them informally. As a matter of 
fact, CNP has been created with exactly that goal in 
mind. Furthermore, being a declarative description 
of the problem, the CN is a graphical specification 
of that declarative representation, which is more 
natural and intuitive than the declarative 
representation implemented by instructions. 

In solving CSPs, the natural description of choice 
points is graphical, specifying a limited number of 
alternatives, but the program must later choose 
between them. According to this a shortcoming of 
specifications in constraint programming languages 
like COMET is that they are less natural than those 
in CNP. To observe this, compare the equivalent 
specifications of the 8-queens problem in the two 
languages. Figure 11 shows part of that COMET 
specification, which is equivalent to the choice 
points of variables and its values. While these 
choice points are specified in CNP graphically 
through control states with outgoing arrows, in 
COMET they are implemented as instructions 
(forall and tryall) 
 

forall(i in Size) by (queen[i].getSize()) 
tryall<m>(v in Size : queen[i].memberOf(v)) 
label(queen[i], v); 

 
Fig. 11 The search procedure of n-Queens problem 

in COMET 
 

 
8 Conclusion 
As a new programming paradigm, CNP builds on 
fundamental research in programming paradigms [7, 
10]. It integrates ideas from imperative 
programming, declarative programming, rule-based 
systems, nondeterministic programming and 
graphical programming. 

The most prominent usage of the tools for 
dynamic search control in CNP is for automatic, 
declarative implementation of various heuristics in 
search algorithms. A wider view at the approaches 
to implementing various search strategies in CNP is 
the subject of [21]. The questions of what search 
techniques for solving CSPs are well suited for such 
an elegant declarative CNP implementation and how 

to specify (to program) such a strategy have been 
targeted in this paper. 

The resulting programs are intuitive and natural 
and can be used as an illustration of the main 
concepts and techniques in solving CSPs. Another 
important benefit of the proposed approach is its 
flexibility. It is easy to modify an existing 
implementation, thus to experiment with different 
heuristics obtaining a wide variety of search 
algorithms without affecting the problem modeling. 
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