
A Comparative Study of Crossover Operators for Genetic Algorithms to

Solve the Job Shop Scheduling Problem

JORGE MAGALHÃES-MENDES

Department of Civil Engineering

CIDEM

School of Engineering – Polytechnic of Porto

Rua Dr. António Bernardino de Almeida, 431 – 4200-072 Porto

PORTUGAL

jjm@isep.ipp.pt

Abstract: - Genetic algorithms (GA) are wide class of global optimization methods. Many genetic algorithms

have been applied to solve combinatorial optimization problems. One of the problems in using genetic

algorithms is the choice of crossover operator. The aim of this paper is to show the influence of genetic

crossover operators on the performance of a genetic algorithm. The GA is applied to the job shop scheduling

problem (JSSP). To achieve this aim an experimental study of a set of crossover operators is presented. The

experimental study is based on a decision support system (DSS). To compare the abilities of different crossover

operators, the DSS was designed giving all the operators the same opportunities. The genetic crossover operators

are tested on a set of standard instances taken from the literature. The makespan is the measure used to evaluate

the genetic crossover operators. The main conclusion is that there is a crossover operator having the best average

performance on a specific set of solved instances.

Key-Words: - Scheduling, Genetic Algorithms, Crossover Operators, Optimization, Operations Research, JSSP.

1 Introduction and Background
Scheduling is one of the most critical issues in the

planning and managing of manufacturing process.

The difficulty of finding the optimal schedule

depends on the shop environment, the process

constrainsts and the performance indicator. One of

the most difficult problems in this area is the job shop

scheduling problem (JSSP), Qing-dao-er-ji and Wang

[38].

The JSSP may be described as follows: given n

jobs, each job must be processed on m machines.

Each operation uses one of the m machines for a

fixed duration. Each machine can process at most one

operation at a time and once an operation initiates

processing on a given machine it must complete

processing on that machine without interruption. A

schedule is a complete set of operations (n x m), to be

processed on different machines, in a given order.

The problem is to find a schedule of minimal time to

complete all jobs.

The JSSP is considered as a particularly hard

combinatorial optimization problem, Lawler et al.

[10].

Exact methods (Giffler and Thompson [21],

Carlier and Pinson [22, 23], Brucker et al. [24],

Williamson et al. [25]) have been successful in

solving small instances. Problems of dimension

1515 are still considered to be beyond the reach of

today's exact methods.

Many approximate methods have been developed

in the last two decades to solve the JSSP, such as:

1. Simulated annealing (SA) - Lourenço [12];

2. Tabu search (TS) (Nowicki and Smutnicki

[9, 31], Pezzela and Merelli [7], Zhang et al.

[11, 35]),

3. Evolutionary algorithm (EA) techniques like

genetic algorithms (GA) - Aarts et al. [15],

Croce et al. [17], Dorndorf et al. [18], Wang

and Zheng [19], Essafi et al. [3], Gonçalves

et al. [4], Hasan et al. [27], Mendes [30],

Qing-dao-er-ji and Wang [38], Choi and Park

[39], Chiu et al. [40, 41]);

4. EA related techniques like particle swarm

optimization (PSO) - Sha and Hsu [6];

5. Greedy randomized adaptive search

procedure (GRASP) - Aiex et al. [16] and

Binato et al. [20];

6. Others metaheuristics - Rego and Duarte [8]

proposed a filter-and-fan approach based on

the shifting bottleneck procedure (SBP) and

Pardalos et al. [32].

Evolutionary algorithms often perform well

approximating solutions to all types of problems. The

most popular type of EA is the GA.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 164 Issue 4, Volume 12, April 2013

The GA seeks the solution of a problem in the

form of strings of numbers (traditionally binary,

although the best representations are usually those

that reflect something about the problem being

solved), by applying operators such as crossover and

mutation.

The performance of a GA is dependent on the

genetic operators in general and on the type of

crossover operator, in particular. During the evolution

process by a GA, if the selected chromosomes are

identical, some of the crossover operators have failed

to create offspring that are different from their

parents. Effective crossover in a GA is achieved

through establishing the optimum relationship

between the crossover and the search problem itself

[28].

Some literature focuses on the genetic operators,

e.g., Sywerda [33] and De Jong and Spears [34]

compared the various crossover operators,

particularly the numbers of crossover points. A

relevant result is that sometimes the final output

would be better if the number of crossover points was

increased.

Besides empirical analysis, substantial efforts

have been invested in comparing, from theoretical

perspectives, between mutation and crossover as well

as between the various crossover operators [34].

However, these theories are not general enough to

allow for predicting when to apply or what type of

crossover operator to employ [28].

Given the current state of knowledge is justified,

therefore, additional research work that allows to

obtain new results.

This paper describes an experimental study of a

set of genetic crossover operators. These crossover

operators are applied on a hybrid genetic algorithm.

This hybrid genetic algorithm works with a local

search using the Monte Carlo method [30]. The aim

of this study was to validate empirically the most

appropriate crossover operator for solving the job

shop scheduling problem.

The remainder of the paper is organized as

follows. In section 2 is defined the problem. In

section 3 is referred the decision support system. In

section 4 we refer the advantages of using genetic

algorithms in combinatorial nature problems.

In section 5 is described the genetic algorithm. In

section 6 are presented and discussed the results of

the experimental study. Finally, conclusion and

remarks for further works are given in Section 7.

2 Problem Definition
There are a set of jobs J = {1,…, n}, a set of

machines M = {1,..., m}, and a set of operations O =

{o0, o1, …, oji,… onm, onm+1}. Set O contains all the

operations of each job. Each job has m operations.

Each machine can process at most one operation at

time.
The JSSP is to find a schedule which minimizes

the makespan (Cmax), that is, the finish time of the last

operation completed in the schedule, taking into

account the precedence constraints.

Let O = {o0, o1, …, oji,… onm, onm+1}denote the

set of all operations (n x m) to be scheduled and M =

{1,..., m} the set of machines. The operations o0 and

onm+1 are dummy, have no duration and represent the

initial and final operations. The operations are

interrelated by two kinds of constraints:

 First, the precedence constraints, which force

each operation oji to be scheduled after all

predecessor operations are completed Pji;

 Second, operation oji can only be scheduled if

the machine it requires is idle. Further, let dji

denote the (fixed) duration (processing time)

of operation oji.

Let Fji represent the finish time of operation oji. A

schedule can be represented by a vector of finish

times (F11, , Fji, ... , Fnm+1).

Let A(t) be the set of operations being processed

at time t, and let rji = 1 if operation oji requires

machine m to be processed and rji = 0 otherwise.
The conceptual model of the JSSP can be described

the following way:

1 (1)Min nmF

subject to:
1,..., ; 1,..., ; (2)    kl ji ji jiF F d j n i m kl P

 

1 ; 0 (3)


   ji

ji A t

r i M t

0 1,..., ; 1,..., (4)  jiF j n i m

The objective function (1) minimizes the finish

time of operation onm+1 (the last operation), and

therefore minimizes the makespan. Constraints (2)

impose the precedence relations between operations

and constraints (3) state that one machine can only

process one operation at a time. Finally (4) forces the

finish times to be non-negative.

3 A decision support system (DSS)
A DSS combines a genetic algorithm, a schedule

generator scheme (SGS) and a local search

procedure, consisting in the following steps, see

Figure 1:

 Step1: Combines a genetic algorithm

with a schedule generation scheme

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 165 Issue 4, Volume 12, April 2013

(SGS). This SGS generates

parameterized active schedules. This step

allows to obtain a schedule for each

chromosome;

 Step2: This step makes use of a local

search procedure that attempts to

improve the solution obtained previously.

SGS – Schedule generation scheme

Local search improvement

GA – decoding

Step 1

Step 2

Schedule

Improved schedule

Fig.1 – Architecture of the approach.

The DSS allows the user choose the crossover

operator:

 GA-MC-SPc: Single-Point crossover or

simple crossover;

 GA-MC-TPc: Two-Point crossover;

 GA-MC-Uc: Uniform crossover or discrete

crossover;

 GA-MC-Fc: Flat crossover.

The DSS was developed using the Visual Basic

for Applications (VBA) from Microsoft and the Gantt

Time Package V3.21 [30].

4 Real-coded evolutionary algorithms
The evolutionary algorithms are an interdisciplinary

research area comprising several paradigms inspired

by Darwinian principle of evolution.

The current stage of research considers, among

others, the following paradigms: genetic algorithms,

genetic programming, evolutionary strategies,

neuroevolution and differential evolution.

The genetic algorithms have been applied

successfully in several areas, such as bioinformatics,

computational science, engineering, economics,

chemistry, manufacturing, mathematics and physics.

A real-coded GA is adopted in this article.

Compared with the binary-code GA, the real-coded

GA has several distinct advantages, which can be

summarized as follows, Y.-Z. Luo et al. [36]:

 It is more convenient for the real-coded GA

to denote large scale numbers and search in

large scope, and thus the computation

complexity is amended and the computation

efficiency is improved;

 The solution precision of the real-coded GA

is much higher than that of the binary-coded

GA;

 As the design variables are coded by floating

numbers in classical optimization algorithms,

the real-coded GA is more convenient for

combination with classical optimization

algorithms.

5 Genetic Algorithms
Genetic algorithms (GA) are search algorithms based

on the mechanics of natural selection and natural

genetics. They combine survival of the fittest among

string structures with a structured yet randomized

information exchange to form a search algorithm with

some of the innovative flair of human search [1].

The general schema of GA may be illustrated as

follows (Fig. 2).

procedure GENETIC-ALGORITHM

Generate initial population P0;

 Evaluate population P0;
 Initialize generation counter g 0;

 While stopping criteria not satisfied repeat
 Select some elements from Pg to copy into Pg+1;

 Crossover some elements of Pg and put into Pg+1;

 Mutate some elements of Pg and put into Pg+1;
 Evaluate some elements of Pg and put into Pg+1;

 Increment generation counter: g  g+1;

 End while

End GENETIC-ALGORITHM;

Fig.2 - Pseudo-code of a genetic algorithm.

First of all, an initial population of potential

solutions (individuals) is generated randomly. A

selection procedure based on a fitness function

enables to choose the individuals candidate for

reproduction. The reproduction consists in

recombining two individuals by the crossover

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 166 Issue 4, Volume 12, April 2013

http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Population

operator, possibly followed by a mutation of the

offspring. Therefore, from the initial population a

new generation is obtained. From this new

generation, a second new generation is produced by

the same process and so on. The stop criterion is

normally based on the number of generations.

5.1 Decoding
The genetic algorithm uses a random key alphabet

which is comprised of real random numbers between

0 and 1.

A chromosome represents a solution to the

problem and is encoded as a vector of random keys

(random numbers).

Each solution chromosome is made of 2n genes

where n is the number of operations:

Chromosome = (genel , .., genen , gene n+1 , ... , gene 2n)

The first half (genel, .., genen) corresponds to the

potential solution to the optimization problem, that is, one

gene for each activity. The second half (genen+1, .., gene2n)

defines the vector where each gene has an associated delay

time.
The priority decoding expression used the

following expression:

 (1)

1.5 , 1,..., .



   

j j

j n j

PRIORITY gene

Delay gene mdur j n

where mdur is the maximum duration of all

operations. The factor 1.5 was chosen as a result of a

careful fine-tuning experimental phase.

5.2 Initial population
The initial populations are generated randomly. The

quality of this population is poor and one way to

improve it is to incorporate some chromosomes

generated by priority rules.

In this paper are selected the priority rules GRPW

(greatest rank positional weight) and SPT (shortest

processing time) to improve some chromosomes of

the initial population.

5.3 Crossover operators
The genetic algorithms typically use the following

types of operators:

 Selection: Operator for selecting individuals

for reproduction according to their fitness;

 Crossover (Sexual Recombination):

Operator of merging the genetic information

of two individuals. In many respects the

effectiveness of crossover is depended on

coding;

 Mutation (Asexual): In real evolution, the

genetic material can by changed randomly by

erroneous reproduction or other deformations

of genes, e.g. by gamma radiation. In genetic

algorithms, mutation realized as a random

deformation of alleles with a certain

probability, Shaparov [37].

Usually, there are two means of modifying

genetic material: a recombination operation that

could be understood as some kind of crossover and

mutation.

In this study we compared the following

crossover operators:

 Single-point Crossover or simple crossover;

 Two-point Crossover;

 Uniform Crossover or discrete crossover;

 Flat Crossover.

The reasons by which these crossover operators

were chosen are:

 Single-point crossover: is a simple and often-

used method for genetic algorithms;

 N-point crossover. Instead of only one, N

breaking points are chosen randomly. Every

second section is swapped. Among this class,

two-point crossover is particularly important;

 Usually flat or discrete crossovers are applied

in real-coded genetic algorithm (Shaparov

[37]).

5.3.1 Single-point crossover

After reproduction, crossover may proceed in two

steps. First, members of the newly reproduced

chromosomes in the mating pool are mated at

random. Second, each pair of chromosomes

undergoes crossover as follows: an integer position k

along the chromosome is selected uniformly at

random between 1 and the chromosome length l. Two

new chromosomes are created swapping all the genes

between k+1 and l [1], see Fig. 3.

Fig.3 – Single-point crossover operator example.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 167 Issue 4, Volume 12, April 2013

5.3.2 Two-point crossover

Two-point crossover is very similar to single-point

crossover except that two cut-points are randomly

generated instead of one, see Fig. 4.

Fig.4 – Two-point crossover operator example.

5.3.3 Uniform crossover

In uniform crossover, a value of the first parent’s

gene is assigned to the first offspring and the value of

the second parent’s gene is to the second offspring

with a probability value pc.

With probability pc the value of the first parent’s

gene is assigned to the second offspring and the value

of the second parent’s gene is assigned to the first

offspring, see Fig. 5.

Fig.5 – Uniform crossover operator example.

This work used a probability pc of 0.7. An

example of this operator has been used successfully

in Gonçalves et al. [4].

5.3.4 Flat crossover

Consider the following parents:

Parent1 = (x1,1, …, x1,n)

Parent2 = (x2,1, …, x2,n)

and a vector of random values r = (r1, …, rn).

The offspring 1 = (x
1
1, …, x

1
n) is computed as a

vector of linear combinations in the following way

(for all i = 1, …, n):

1

1, 2,(1) , 1,..., (5)   i i i i ix r x r x i n

Second offspring is computed analogously, see Fig.6.

Fig.6 – Flat crossover operator example.

5.4 Random mutation
The mutation operator preserves diversification in the

search. The mutation operator chosen was the

random mutation. This operator is applied to each

offspring in the population with a predetermined

probability. For a randomly chosen gene i of an

individual (genel , .., genen , gene n+1 , ... , gene 2n), the

allele genei is replaced by a randomly chosen value

from a interval]0, 1[.

We assume that the probability of the mutation in

this work is 0.1%. With 1000 genes positions we

should expect 1000 x 0.001 = 1 genes to undergo

mutation for this probability value.

5.5 Configuration of the experiments
All results reported for GA-MC were obtained with

the same parameters. Though there is no

straightforward way to configure the parameters of a

genetic algorithm, we obtained good results with

values:

 Population size: 2 × number of operations

for each problem;

 Initial population: 1% chromosomes

calculated by priority rules GRPW and SPT;

 Top (best): 1% from the previous population

chromosomes are copied to the next

generation;

 Mutation rate: 0.1%;

 Termination criterion: Maximum number

of generations.

5.6 Evolutionary strategy
To breed good solutions, the random key vector

population is operated upon by a genetic algorithm.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 168 Issue 4, Volume 12, April 2013

There are many variations of genetic algorithms
obtained by altering the reproduction, crossover, and

mutation operators.

Reproduction is a process in which individual

(chromosome) is copied according to their fitness

values (makespan).

Reproduction is accomplished by first copying

some of the best individuals from one generation to

the next, in what is called an elitist strategy.

In this paper the fitness proportionate selection,

also known as roulette-wheel selection, is the genetic

operator for selecting potentially useful solutions for

reproduction. The characteristic of the roulette wheel

selection is stochastic sampling.

The fitness value is used to associate a

probability of selection with each individual

chromosome. If fi is the fitness of individual i in the

population, its probability of being selected is,

1

, 1,..., (6)



 



i
i N

i

i

f
p i n

f

A roulette wheel model is established to represent

the survival probabilities for all the individuals in the

population.

Fig. 7 shows this evolutionary strategy with the

operators selection, recombination (or crossover) and

mutation.

Fig.7 – Evolutionary strategy.

This evolutionary strategy was applied to the

resource constrained project scheduling problem with

a good performance, see Mendes [2, 26].

6 Numerical experiments
To evaluate the performance of each crossover

operator, we considered the following classes of

problems, taken from the literature:

 ABZ5, ABZ6, ABZ7, ABZ8 and ABZ9

proposed by Adams et al. [10];

 FT6, FT 10 and FT20 originally proposed by

Fisher and Thompson [13];

 LA1-LA40 proposed by Lawrence [14];

 ORB1-ORB10, proposed by Applegate and

Cook [29].

Tables 1, 2, 3 and 4 summarize the experimental

results. It lists number of jobs, number of operations,

instance, best known solution (BKS), GA-MC-SPc,

GA-MC-TPc, GA-MC-Uc and GA-MC-Fc. The last

row of each table shows the value of the Average

Relative Deviation (ARD).

The ARD is calculated in the following way:

max

1

(7)



 i

NIS
i

i i

C BKS
RE

BKS

(8)
RE

ARD
NIS

where NIS is number of instances solved.

Table 1: Experimental results for

instances ABZ5-ABZ9.

Table 2: Experimental results for

instances FT06, FT10 and FT20.

In most of the problems, the single crossover

operator performs better than the others and is the

operator with lowest ARD, see Tables 1, 2, 3, 4 and

5.

Unlike the algorithm GA-MC-SPc that always

has the best ARD, the algorithm GA-MC-SPc has not

always the second best (lowest) ARD. Indeed, the

algorithm GA-MC-Fc for ABZ problems (Table 1)

obtains the second lowest ARD.

This result can lead to considerer that the

operator Fc is second best for larger problems, i.e.,

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 169 Issue 4, Volume 12, April 2013

problems greater than 10x10. For problems larger

than 10x10, we obtain the following values of ARD:

1.51% (GA-MC-SPc), 1.89% (GA-MC-TPc), 1.84%

(GA-MC-Uc) and 2.13% (GA-MC-Fc), see Table 5.

Globally the second best value for the ARD is

obtained by algorithm GA-MC-Uc and the third best

value by the algorithm GA-MC-TPc, see Table 6.

With these results, for these types of problems,

the single-crossover performed the best results,

followed by the uniform crossover operator.

Table 3: Experimental results for

instances LA01-LA40.

Tables 1, 2, 3 and 4 shows that the GA-MC-SPc

is able to find the best know solution for 2 instances

in the set ABZ (40%), 3 instances in the set FT

(100%), 28 in the set LA (70%) and 9 in the set of

ORB (90%).

We must think why the SPc operator shows better

results. A strong possibility relates to the theory of

building blocks (Goldberg [1]). This operator has

only a cut, so it is more likely to not destroy blocks.

Instead, the operator of two points cut large blocks

and operator’s uniform and flat ignores its existence.

This can be a very important result in choosing

the crossover operator when using genetic algorithms,

particularly in job shop.

Table 4: Experimental results for

instances ORB1-ORB10.

Table 5: Average relative deviation

for problems greater than 10x10.

Additionally, the GA-MC-SPc results are

compared against the most recent work in the

literature.

The performance of GA-MC-SPc was evaluated

on a standard set of 50 benchmark instances

belonging to two classical sets known LA from

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 170 Issue 4, Volume 12, April 2013

Lawrence [14] and ORB from Applegate and Cook

[29].

Table 6: Average relative deviation

with all problems.

As different authors used different number of

problems, the comparison is based only on those

problems that authors considered. Note that the

authors have different approaches to solve the JSSP

problem.

We compare the obtained results with the

aforementioned state of art approaches:

 Qing-dao-er-ji and Wang [38];

 Rego and Duarte [8];

 Hasan et al. [27];

 Gonçalves et al. [4];

 Aarts et al. [15];

 Dorndorf et al. [18];

 Binato et al. [20];

 Nowicki and Smutnicki [31];

 Sha and Hsu [6];

 Pardalos et al. [32];

 Adams et al. [10];

 Zhang et al. [35].

The result is showed in Table 7.

The algorithm GA-MC-SPc gives good results

when compared to the state of art. In Table 7 we can

see that the algorithm proposed is among the top ten

best performing.

This study limited the number of generations for

all operators tested. The number of generations was

limited to 400. A higher number of generations for all

operators would increase the computational time.

Although there is convergence of the algorithms close

to 400 generations, an increase of generations in the

proposed algorithm can improve its global

performance.

The experiments were performed on an Intel

Core 2 Duo CPU T7250 @2.00 GHz. The

computational times dispended are in the range [7,

3100] seconds.

Table 7: Comparison of the %

deviations for the different number of

problems authors considered.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 171 Issue 4, Volume 12, April 2013

7 Conclusions and remarks
This paper presents an experimental study of a set of

crossover operators, namely single-crossover, two-

point crossover, uniform crossover and flat crossover.

The single-crossover has the best results, followed by

the uniform crossover operator.

This can be a very important result in choosing

the crossover operator when using genetic algorithms,

particularly in job shop.

Additionally, the best crossover operator was

tested on a set of 50 standard instances taken from the

literature and compared with the best state-of-the-art

approaches. The algorithm produced good results

when compared with other approaches.

Although there is convergence of the algorithms

close to 400 generations, an increase of generations in

the proposed algorithm (GA-MC-SPc) can improve

its global performance.

Further work could be conducted to explore the

possibility of genetically correct the chromosomes

supplied by the genetic algorithm to reflect the

solutions obtained by the local search heuristic.

Acknowledgements

This work has been partially supported by the

CIDEM - Centre for Research & Development in

Mechanical Engineering. CIDEM is a unit of FCT –

Portuguese Foundation for the Science and

Technology.

References:

[1]D. E. Goldberg. Genetic Algorithms in Search,

Optimization & Machine Learning, Addison-Wesley,

1989.
[2] J. Magalhães-Mendes, Project scheduling under

multiple resources constraints using a genetic

algorithm, WSEAS TRANSACTIONS on BUSINESS

and ECONOMICS, Issue 11, Volume 5, November

2008, pp. 487-496.

[3] I. Essafi, Y. Mati and S.D. Pérès, A genetic local

search algorithm for minimizing total weighted

tardiness in the job-shop scheduling problem,

Computers & Operations Research,

Vol. 35, Issue 8, 2008, pp. 2599-2616.

[4] J.F. Gonçalves, J.M. Mendes, and M.C.G. Resende. A

hybrid genetic algorithm for the job shop scheduling

problem. European Journal of Operational Research,

Vol. 167, 2005, pp. 77-95.

[5] J.J.M. Mendes, J.F. Gonçalves and M.G.C. Resende,

A random key based genetic algorithm for the resource

constrained project scheduling problem. Comput.

Oper. Res. 36, 1, 2009, pp. 92-109.

[6] D. Y. Sha and C. Hsu, A hybrid particle swarm

optimization for job shop scheduling problem.

Computers & Industrial Engineering, 51, 4, 2006, pp.

791-808.

[7] F. Pezzela and E. Merelli, A tabu search method

guided by shifting bottleneck for the job shop

scheduling problem, European Journal of Operational

Research, Vol. 120, 2000, pp. 297-310.

[8] C. Rego and R. Duarte, A filter-and-fan approach to

the job shop scheduling problem, European Journal of

Operational Research, Vol. 194, 2009, pp. 650–662.

[9] E. Nowicki and C. Smutnicki, A Fast Taboo Search

Algorithm for the Job-Shop Problem, Management

Science, Vol. 42, No. 6, 1996, pp. 797-813.

[10]J. Adams, E. Balas and Z. Zawack, The shifting

bottleneck procedure for job shop scheduling,

Management Science, Vol. 34, 1988, pp. 391-401.

[11] C. Y. Zhang, P. Li. and Z. Guan, A very fast TS/SA

algorithm for the job shop scheduling problem,

Computers & Operations Research, Vol. 35, 2008, pp.

282-294.

[12]H.R. Lourenço, Local optimization and the job-shop

scheduling problem, European Journal of Operational

Research, Vol. 83, 1995, pp. 347-364.

[13]H. Fisher and G.L. Thompson, Probabilistic Learning

Combinations of Local Job-Shop Scheduling Rules, in:

Industrial Scheduling, J.F. Muth and G.L. Thompson

(eds.), Prentice-Hall, Englewood Cliffs, NJ, 1963, pp.

225-251.

[14]S. Lawrence, Resource Constrained Project

Scheduling: An Experimental Investigation of Heuristic

Scheduling Techniques, GSIA, Carnegie Mellon

University, Pittsburgh, PA, 1984.

[15]E.H.L.Aarts, P.J.M.Van Laarhoven, J.K. Lenstra and

N.L.J.Ulder, A computational study of local search

algorithms for job shop scheduling, ORSA Journal on

Computing, 6, 1994, pp. 118-125.

[16]R.M.Aiex, S.Binato and M.G.C. Resende, Parallel

GRASP with Path-Relinking for Job Shop Scheduling,

Parallel Computing, Vol. 29, Issue 4, 2003, pp. 393 -

430.

[17]F. Croce, R. Tadei, and G. Volta, A Genetic

Algorithm for the Job Shop Problem, Computers and

Operations Research, Vol. 22(1), 1995, pp. 15-24.

[18]U. Dorndorf, and E. Pesch, Evolution Based Learning

in a Job Shop Environment, Computers and

Operations Research, Vol. 22, 1995, pp. 25-40.

[19]L. Wang, and D. Zheng, An effective hybrid

optimisation strategy for job-shop scheduling

problems, Computers & Operations Research, Vol. 28,

2001, pp. 585-596.

[20]S. Binato, W.J.Hery, D.M. Loewenstern and

M.G.C.Resende, A GRASP for Job Shop Scheduling.

In: Essays and Surveys in Metaheuristics, Ribeiro,

Celso C., Hansen, Pierre (Eds.), Kluwer Academic

Publishers, 2002.

[21]B. Giffler and G.L. Thompson, Algorithms for

Solving Production Scheduling Problems, Operations

Research, Vol. 8(4), 1960, pp. 487-503.

[22]J. Carlier and E. Pinson, An Algorithm for Solving the

Job Shop Problem. Management Science, Feb, 35(29),

1989, pp.164-176.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 172 Issue 4, Volume 12, April 2013

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235945%232008%23999649991%23676593%23FLA%23&_cdi=5945&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8c4d7137884be3e8bc8b15afb8db7aa5

[23]J. Carlier and E. Pinson, A practical use of Jackson’s

preemptive schedule for solving the job-shop problem.

Annals of Operations Research, Vol. 26, 1990, pp.

269-287.

[24]P. Brucker, B. Jurisch and B. Sievers, A Branch and

Bound Algorithm for Job-Shop Scheduling Problem,

Discrete Applied Mathematics, Vol. 49, 1994, pp. 105-

127.

[25]D. P.Williamson, L.A. Hall, J.A. Hoogeveen, , C. A.

J.Hurkens, J. K. Lenstra, S. V. Sevastjanov and D. B.

Shmoys, Short Shop Schedules, Operations Research,

45(2), 1997, pp. 288-294.

[26]J. Magalhães-Mendes, Project scheduling using a

competitive genetic algorithm. In Proceedings of the

8th WSEAS Conference on Simulation, Modelling and

Optimization (Santander, Cantabria, Spain). J. M. de la

Maza and P. L. Espí, Eds. Mathematics And

Computers In Science And Engineering. WSEAS,

Stevens Point, Wisconsin, 2008, pp. 39-42.

[27]S.M.K. Hasan, R. Sarker and D. Cornforth, GA with

Priority Rules for Solving Job-Shop Scheduling

Problems. In Proceedings of the IEEE Congress on

Evolutionary Computation CEC(2008), 2008, pp.

1913-1920.

[28]M. J. Varnamkhasti, L. S. Lee, M. R. Bakar, and W. J.

Leong, A Genetic Algorithm with Fuzzy Crossover

Operator and Probability, Advances in Operations

Research, vol. 2012, Article ID 956498, 16 pages,

2012. doi:10.1155/2012/956498

[29]D. Applegate and W. Cook, A computational study of

the job-shop scheduling problem. ORSA Journal on

Computing, 3(2), 1991, pp. 149-156.

[30]J. Magalhães-Mendes, A genetic algorithm for the job

shop scheduling with a new local search using Monte

Carlo method, In Proceedings of the 10th WSEAS

international conference on Artificial intelligence,

knowledge engineering and data bases (AIKED'11),

Cambridge, UK, 2011, pp. 26-31.

[31]E. Nowicki and C. Smutnicki, An Advanced Tabu

Search Algorithm for the Job Shop Problem, Journal

of Scheduling, 8, 2005, pp.145–159.

[32]P. Pardalos, O. Shylo and A. Vazacopoulos, Solving

job shop scheduling problems utilizing the properties

of backbone and big valley, Computational

Optimization and Applications, 47(1), 2010, pp.1-16.

[33]G. Sywerda, Uniform crossover in genetic algorithms,

in Proceedings of the 3rd International Conference on

Genetic Algorithms, 1989, pp. 2-9.

[34]K. A. De Jong and W. M. Spears, A formal analysis of

the role of multi-point crossover in genetic algorithms,

Annals of Mathematics and Artificial Intelligence, vol.

5, no. 1, 1992, pp. 1–26.

[35]C.Y. Zhang, P.G. Li, Z.L. Guan, and Y.Q. Rao. A tabu

search algorithm with a new neighborhood structure

for the job shop scheduling problem. Computers &

Operations Research, 34(11), 2007, pp. 3229-3242.

[36]Y.-Z. Luo, G.-J. Tang, Z.G. Wang and H.Y. Li.

Optimization of perturbed and constrained fuel-optimal

impulsive rendezvous using a hybrid approach.

Engineering Optimization, 38(8), 2006, pp. 959-973.

[37]R. R. Sharapov. Genetic Algorithms: Basic Ideas,

Variants and Analysis, Vision Systems: Segmentation

and Pattern Recognition, Goro Obinata and Ashish

Dutta (Ed.), 2007, pp. 407-422, ISBN: 978-3-902613-

05-9.

[38]R. Qing-doa-er-ji and Y. Wang. A new hybrid genetic

algorithm for job shop scheduling problem. Computers

& Operations Research, 39(10), 2012, pp. 2291-2299.

[39]H.R. Choi and B.J. Park, Genetic Algorithm for the

Integration of Process Planning and Scheduling in a

Job Shop, WSEAS TRANSACTIONS on

INFORMATION SCIENCE & APPLICATIONS, Issue

12, Volume 3, December 2006, pp. 2498-2504.

[40]H. Chiu, K. Hsieh, Y.T. Tang and W. Chien,

Employing a Genetic Algorithm Based on Knowledge

to Address the Job Shop Scheduling Problem, WSEAS

TRANSACTIONS on COMPUTER RESEARCH, Issue

2, Volume 2, February 2007, pp. 327-333.

[41]H. Chiu, K. Hsieh, Y.T. Tang and C.Y. Wang, A

Novel Approach to Address the Job-Shop Scheduling

Problem by using a Tabu Genetic Algorithm, WSEAS

TRANSACTIONS on COMPUTER RESEARCH, Issue

2, Volume 2, February 2007, pp. 339-345.

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 173 Issue 4, Volume 12, April 2013

http://www.tandfonline.com/doi/abs/10.1080/03052150600880425
http://www.tandfonline.com/doi/abs/10.1080/03052150600880425
http://www.tandfonline.com/toc/geno20/38/8
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548

