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Abstract: - Genetic algorithms (GA) are wide class of global optimization methods. Many genetic algorithms 

have been applied to solve combinatorial optimization problems. One of the problems in using genetic 

algorithms is the choice of crossover operator. The aim of this paper is to show the influence of genetic 

crossover operators on the performance of a genetic algorithm. The GA is applied to the job shop scheduling 

problem (JSSP). To achieve this aim an experimental study of a set of crossover operators is presented. The 

experimental study is based on a decision support system (DSS). To compare the abilities of different crossover 

operators, the DSS was designed giving all the operators the same opportunities. The genetic crossover operators 

are tested on a set of standard instances taken from the literature. The makespan is the measure used to evaluate 

the genetic crossover operators. The main conclusion is that there is a crossover operator having the best average 

performance on a specific set of solved instances. 
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1   Introduction and Background 
Scheduling is one of the most critical issues in the 

planning and managing of manufacturing process. 

The difficulty of finding the optimal schedule 

depends on the shop environment, the process 

constrainsts and the performance indicator. One of 

the most difficult problems in this area is the job shop 

scheduling problem (JSSP), Qing-dao-er-ji and Wang 

[38]. 

The JSSP may be described as follows: given n 

jobs, each job must be processed on m machines. 

Each operation uses one of the m machines for a 

fixed duration. Each machine can process at most one 

operation at a time and once an operation initiates 

processing on a given machine it must complete 

processing on that machine without interruption. A 

schedule is a complete set of operations (n x m), to be 

processed on different machines, in a given order. 

The problem is to find a schedule of minimal time to 

complete all jobs. 

The JSSP is considered as a particularly hard 

combinatorial optimization problem, Lawler et al. 

[10].  

Exact methods (Giffler and Thompson [21], 

Carlier and Pinson [22, 23], Brucker et al. [24], 

Williamson et al. [25]) have been successful in 

solving small instances. Problems of dimension 

1515 are still considered to be beyond the reach of 

today's exact methods. 

Many approximate methods have been developed 

in the last two decades to solve the JSSP, such as:  

1. Simulated annealing (SA) - Lourenço [12];  

2. Tabu search (TS) (Nowicki and Smutnicki 

[9, 31], Pezzela and Merelli [7], Zhang et al. 

[11, 35]),  

3. Evolutionary algorithm (EA) techniques like 

genetic algorithms (GA) - Aarts et al. [15], 

Croce et al. [17], Dorndorf et al. [18], Wang 

and Zheng [19], Essafi et al. [3], Gonçalves 

et al. [4], Hasan et al. [27], Mendes [30], 

Qing-dao-er-ji and Wang [38], Choi and Park 

[39], Chiu et al. [40, 41]);  

4. EA related techniques like particle swarm 

optimization (PSO) - Sha and Hsu [6]; 

5. Greedy randomized adaptive search 

procedure (GRASP) - Aiex et al. [16] and 

Binato et al. [20]; 

6. Others metaheuristics - Rego and Duarte [8] 

proposed a filter-and-fan approach based on 

the shifting bottleneck procedure (SBP) and 

Pardalos et al. [32]. 

 

Evolutionary algorithms often perform well 

approximating solutions to all types of problems. The 

most popular type of EA is the GA.  
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The GA seeks the solution of a problem in the 

form of strings of numbers (traditionally binary, 

although the best representations are usually those 

that reflect something about the problem being 

solved), by applying operators such as crossover and 

mutation. 

The performance of a GA is dependent on the 

genetic operators in general and on the type of 

crossover operator, in particular. During the evolution 

process by a GA, if the selected chromosomes are 

identical, some of the crossover operators have failed 

to create offspring that are different from their 

parents. Effective crossover in a GA is achieved 

through establishing the optimum relationship 

between the crossover and the search problem itself 

[28]. 

Some literature focuses on the genetic operators, 

e.g., Sywerda [33] and De Jong and Spears [34] 

compared the various crossover operators, 

particularly the numbers of crossover points. A 

relevant result is that sometimes the final output 

would be better if the number of crossover points was 

increased.  

Besides empirical analysis, substantial efforts 

have been invested in comparing, from theoretical 

perspectives, between mutation and crossover as well 

as between the various crossover operators [34]. 

However, these theories are not general enough to 

allow for predicting when to apply or what type of 

crossover operator to employ [28].  

Given the current state of knowledge is justified, 

therefore, additional research work that allows to 

obtain new results. 

This paper describes an experimental study of a 

set of genetic crossover operators. These crossover 

operators are applied on a hybrid genetic algorithm. 

This hybrid genetic algorithm works with a local 

search using the Monte Carlo method [30]. The aim 

of this study was to validate empirically the most 

appropriate crossover operator for solving the job 

shop scheduling problem. 

The remainder of the paper is organized as 

follows. In section 2 is defined the problem. In 

section 3 is referred the decision support system. In 

section 4 we refer the advantages of using genetic 

algorithms in combinatorial nature problems. 

In section 5 is described the genetic algorithm. In 

section 6 are presented and discussed the results of 

the experimental study. Finally, conclusion and 

remarks for further works are given in Section 7. 

 

 

2   Problem Definition 
There are a set of jobs J = {1,…, n}, a set of 

machines M = {1,..., m}, and a set of operations O = 

{o0, o1, …, oji,… onm, onm+1}. Set O contains all the 

operations of each job. Each job has m operations. 

Each machine can process at most one operation at 

time.  
The JSSP is to find a schedule which minimizes 

the makespan (Cmax), that is, the finish time of the last 

operation completed in the schedule, taking into 

account the precedence constraints. 

Let O = {o0, o1, …, oji,… onm, onm+1}denote the 

set of all operations (n x m) to be scheduled and M = 

{1,..., m} the set of machines. The operations o0 and 

onm+1 are dummy, have no duration and represent the 

initial and final operations. The operations are 

interrelated by two kinds of constraints: 

 First, the precedence constraints, which force 

each operation oji to be scheduled after all 

predecessor operations are completed Pji;  

 Second, operation oji can only be scheduled if 

the machine it requires is idle. Further, let dji 

denote the (fixed) duration (processing time) 

of operation oji.  

 

Let Fji represent the finish time of operation oji. A 

schedule can be represented by a vector of finish 

times (F11, , Fji, ... , Fnm+1).  

Let A(t) be the set of operations being processed 

at time t, and let rji = 1 if operation oji requires 

machine m to be processed and rji = 0 otherwise. 
The conceptual model of the JSSP can be described 

the following way: 

 

1 (1)Min nmF

 

subject to: 
1,..., ; 1,..., ; (2)    kl ji ji jiF F d j n i m kl P

 

1 ; 0 (3)


   ji

ji A t

r i M t

0 1,..., ; 1,..., (4)  jiF j n i m

 

The objective function (1) minimizes the finish 

time of operation onm+1 (the last operation), and 

therefore minimizes the makespan. Constraints (2) 

impose the precedence relations between operations 

and constraints (3) state that one machine can only 

process one operation at a time. Finally (4) forces the 

finish times to be non-negative. 

 

 

3   A decision support system (DSS) 
A DSS combines a genetic algorithm, a schedule 

generator scheme (SGS) and a local search 

procedure, consisting in the following steps, see 

Figure 1: 

 Step1: Combines a genetic algorithm 

with a schedule generation scheme 
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(SGS). This SGS generates 

parameterized active schedules. This step 

allows to obtain a schedule for each 

chromosome; 

 Step2: This step makes use of a local 

search procedure that attempts to 

improve the solution obtained previously.  

 

 

SGS – Schedule generation scheme

Local search improvement

GA – decoding

Step 1

Step 2

Schedule

Improved schedule

 
Fig.1 – Architecture of the approach. 

 

 

The DSS allows the user choose the crossover 

operator: 

 GA-MC-SPc: Single-Point crossover or 

simple crossover; 

 GA-MC-TPc: Two-Point crossover; 

 GA-MC-Uc: Uniform crossover or discrete 

crossover; 

 GA-MC-Fc: Flat crossover. 

 

The DSS was developed using the Visual Basic 

for Applications (VBA) from Microsoft and the Gantt 

Time Package V3.21 [30]. 

 

 

4   Real-coded evolutionary algorithms 
The evolutionary algorithms are an interdisciplinary 

research area comprising several paradigms inspired 

by Darwinian principle of evolution. 

The current stage of research considers, among 

others, the following paradigms: genetic algorithms, 

genetic programming, evolutionary strategies, 

neuroevolution and differential evolution. 

The genetic algorithms have been applied 

successfully in several areas, such as bioinformatics, 

computational science, engineering, economics, 

chemistry, manufacturing, mathematics and physics. 

A real-coded GA is adopted in this article. 

Compared with the binary-code GA, the real-coded 

GA has several distinct advantages, which can be 

summarized as follows, Y.-Z. Luo et al. [36]: 

 It is more convenient for the real-coded GA 

to denote large scale numbers and search in 

large scope, and thus the computation 

complexity is amended and the computation 

efficiency is improved; 

 The solution precision of the real-coded GA 

is much higher than that of the binary-coded 

GA; 

 As the design variables are coded by floating 

numbers in classical optimization algorithms, 

the real-coded GA is more convenient for 

combination with classical optimization 

algorithms. 

 

 

5   Genetic Algorithms 
Genetic algorithms (GA) are search algorithms based 

on the mechanics of natural selection and natural 

genetics. They combine survival of the fittest among 

string structures with a structured yet randomized 

information exchange to form a search algorithm with 

some of the innovative flair of human search [1].  

The general schema of GA may be illustrated as 

follows (Fig. 2).  

    
procedure GENETIC-ALGORITHM 
   

Generate initial population P0; 

  Evaluate population P0; 
  Initialize generation counter g 0; 

 

  While stopping criteria not satisfied repeat 
       Select some elements from Pg to copy into Pg+1; 

      Crossover some elements of Pg and put into Pg+1; 

      Mutate some elements of Pg and put into Pg+1; 
      Evaluate some elements of Pg and put into Pg+1; 

      Increment generation counter: g  g+1; 

   End while 
 

End GENETIC-ALGORITHM; 

Fig.2 - Pseudo-code of a genetic algorithm. 

 

First of all, an initial population of potential 

solutions (individuals) is generated randomly. A 

selection procedure based on a fitness function 

enables to choose the individuals candidate for 

reproduction. The reproduction consists in 

recombining two individuals by the crossover 
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operator, possibly followed by a mutation of the 

offspring. Therefore, from the initial population a 

new generation is obtained. From this new 

generation, a second new generation is produced by 

the same process and so on. The stop criterion is 

normally based on the number of generations. 

 

 

5.1   Decoding  
The genetic algorithm uses a random key alphabet 

which is comprised of real random numbers between 

0 and 1.  

A chromosome represents a solution to the 

problem and is encoded as a vector of random keys 

(random numbers).  

Each solution chromosome is made of 2n genes 

where n is the number of operations: 

 
Chromosome = (genel , .., genen ,  gene n+1 , ... , gene 2n ) 

 

The first half (genel, .., genen) corresponds to the 

potential solution to the optimization problem, that is, one 

gene for each activity. The second half (genen+1, .., gene2n) 

defines the vector where each gene has an associated delay 

time. 
The priority decoding expression used the 

following expression:  

 (1) 

1.5 , 1,..., .



   

j j

j n j

PRIORITY gene

Delay gene mdur j n
 

 

where mdur is the maximum duration of all 

operations. The factor 1.5 was chosen as a result of a 

careful fine-tuning experimental phase. 

 

5.2   Initial population 
The initial populations are generated randomly. The 

quality of this population is poor and one way to 

improve it is to incorporate some chromosomes 

generated by priority rules. 

In this paper are selected the priority rules GRPW 

(greatest rank positional weight) and SPT (shortest 

processing time) to improve some chromosomes of 

the initial population. 

 

5.3   Crossover operators 
The genetic algorithms typically use the following 

types of operators: 

 Selection: Operator for selecting individuals 

for reproduction according to their fitness; 

 Crossover (Sexual Recombination): 

Operator of merging the genetic information 

of two individuals. In many respects the 

effectiveness of crossover is depended on 

coding; 

 Mutation (Asexual): In real evolution, the 

genetic material can by changed randomly by 

erroneous reproduction or other deformations 

of genes, e.g. by gamma radiation. In genetic 

algorithms, mutation realized as a random 

deformation of alleles with a certain 

probability, Shaparov [37]. 

 

Usually, there are two means of modifying 

genetic material: a recombination operation that 

could be understood as some kind of crossover and 

mutation. 

In this study we compared the following 

crossover operators: 

 Single-point Crossover or simple crossover; 

 Two-point Crossover; 

 Uniform Crossover or discrete crossover; 

 Flat Crossover. 

 

The reasons by which these crossover operators 

were chosen are: 

 Single-point crossover: is a simple and often-

used method for genetic algorithms; 

 N-point crossover. Instead of only one, N 

breaking points are chosen randomly. Every 

second section is swapped. Among this class, 

two-point crossover is particularly important; 

 Usually flat or discrete crossovers are applied 

in real-coded genetic algorithm (Shaparov 

[37]). 

 

5.3.1 Single-point crossover  

After reproduction, crossover may proceed in two 

steps. First, members of the newly reproduced 

chromosomes in the mating pool are mated at 

random. Second, each pair of chromosomes 

undergoes crossover as follows: an integer position k 

along the chromosome is selected uniformly at 

random between 1 and the chromosome length l. Two 

new chromosomes are created swapping all the genes 

between k+1 and l [1], see Fig. 3. 

 

 
Fig.3 – Single-point crossover operator example. 
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5.3.2 Two-point crossover  

Two-point crossover is very similar to single-point 

crossover except that two cut-points are randomly 

generated instead of one, see Fig. 4. 

 

 
Fig.4 – Two-point crossover operator example. 

 

5.3.3 Uniform crossover  

In uniform crossover, a value of the first parent’s 

gene is assigned to the first offspring and the value of 

the second parent’s gene is to the second offspring 

with a probability value pc. 

With probability pc the value of the first parent’s 

gene is assigned to the second offspring and the value 

of the second parent’s gene is assigned to the first 

offspring, see Fig. 5. 

 

 
Fig.5 – Uniform crossover operator example. 

 

This work used a probability pc of 0.7. An 

example of this operator has been used successfully 

in Gonçalves et al. [4]. 

 

 
5.3.4 Flat crossover  

Consider the following parents:  

 

Parent1 = (x1,1, …, x1,n)  

Parent2 = (x2,1, …, x2,n)  

 

and a vector of random values r = (r1, …, rn). 

 

The offspring 1 = (x
1
1, …, x

1
n) is computed as a 

vector of linear combinations in the following way 

(for all i = 1, …, n): 

 
1

1, 2,(1 ) , 1,..., (5)   i i i i ix r x r x i n  

 

Second offspring is computed analogously, see Fig.6. 

 

 
Fig.6 – Flat crossover operator example. 

 

 

5.4   Random mutation 
The mutation operator preserves diversification in the 

search.  The mutation operator chosen was the 

random mutation. This operator is applied to each 

offspring in the population with a predetermined 

probability. For a randomly chosen gene i of an 

individual (genel , .., genen ,  gene n+1 , ... , gene 2n ), the 

allele genei is replaced by a randomly chosen value 

from a interval ]0, 1[.  

We assume that the probability of the mutation in 

this work is 0.1%. With 1000 genes positions we 

should expect 1000 x 0.001 = 1 genes to undergo 

mutation for this probability value. 

 

5.5   Configuration of the experiments 
All results reported for GA-MC were obtained with 

the same parameters. Though there is no 

straightforward way to configure the parameters of a 

genetic algorithm, we obtained good results with 

values:  

 Population size: 2 × number of operations 

for each problem;  

 Initial population: 1% chromosomes 

calculated by priority rules GRPW and SPT; 

 Top (best): 1% from the previous population 

chromosomes are copied to the next 

generation;  

 Mutation rate: 0.1%;  

 Termination criterion: Maximum number 

of generations. 

 

5.6   Evolutionary strategy  
To breed good solutions, the random key vector 

population is operated upon by a genetic algorithm. 

WSEAS TRANSACTIONS on COMPUTERS Jorge Magalhães-Mendes

E-ISSN: 2224-2872 168 Issue 4, Volume 12, April 2013



There are many variations of genetic algorithms 
obtained by altering the reproduction, crossover, and 

mutation operators.  

Reproduction is a process in which individual 

(chromosome) is copied according to their fitness 

values (makespan).  

Reproduction is accomplished by first copying 

some of the best individuals from one generation to 

the next, in what is called an elitist strategy.  

In this paper the fitness proportionate selection, 

also known as roulette-wheel selection, is the genetic 

operator for selecting potentially useful solutions for 

reproduction. The characteristic of the roulette wheel 

selection is stochastic sampling. 

The fitness value is used to associate a 

probability of selection with each individual 

chromosome. If fi is the fitness of individual i in the 

population, its probability of being selected is,    

 

1

, 1,..., (6)



 



i
i N

i

i

f
p i n

f

  

 

A roulette wheel model is established to represent 

the survival probabilities for all the individuals in the 

population. 

Fig. 7 shows this evolutionary strategy with the 

operators selection, recombination (or crossover) and 

mutation. 

 

 
Fig.7 – Evolutionary strategy. 

 

This evolutionary strategy was applied to the 

resource constrained project scheduling problem with 

a good performance, see Mendes [2, 26]. 

 

 

6   Numerical experiments 
To evaluate the performance of each crossover 

operator, we considered the following classes of 

problems, taken from the literature: 

 ABZ5, ABZ6, ABZ7, ABZ8 and ABZ9 

proposed by Adams et al. [10]; 

 FT6, FT 10 and FT20 originally proposed by 

Fisher and Thompson [13]; 

 LA1-LA40 proposed by Lawrence [14]; 

 ORB1-ORB10, proposed by Applegate and 

Cook [29]. 

 

Tables 1, 2, 3 and 4 summarize the experimental 

results. It lists number of jobs, number of operations, 

instance, best known solution (BKS), GA-MC-SPc, 

GA-MC-TPc,  GA-MC-Uc and GA-MC-Fc. The last 

row of each table shows the value of the Average 

Relative Deviation (ARD). 

The ARD is calculated in the following way: 

 

max

1

(7)



 i

NIS
i

i i

C BKS
RE

BKS  
 

(8)
RE

ARD
NIS

 
 

where NIS is number of instances solved. 

 

 

Table 1: Experimental results for 

instances ABZ5-ABZ9. 

 

 

Table 2: Experimental results for 

instances FT06, FT10 and FT20. 

In most of the problems, the single crossover 

operator performs better than the others and is the 

operator with lowest ARD, see Tables 1, 2, 3, 4 and 

5. 

Unlike the algorithm GA-MC-SPc that always 

has the best ARD, the algorithm GA-MC-SPc has not 

always the second best (lowest) ARD. Indeed, the 

algorithm GA-MC-Fc for ABZ problems (Table 1) 

obtains the second lowest ARD. 

This result can lead to considerer that the 

operator Fc is second best for larger problems, i.e., 
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problems greater than 10x10. For problems larger 

than 10x10, we obtain the following values of ARD: 

1.51% (GA-MC-SPc), 1.89% (GA-MC-TPc), 1.84% 

(GA-MC-Uc) and 2.13% (GA-MC-Fc), see Table 5. 

Globally the second best value for the ARD is 

obtained by algorithm GA-MC-Uc and the third best 

value by the algorithm GA-MC-TPc, see Table 6. 

With these results, for these types of problems, 

the single-crossover performed the best results, 

followed by the uniform crossover operator. 

 

 

 

Table 3: Experimental results for 

instances LA01-LA40. 

 

Tables 1, 2, 3 and 4 shows that the GA-MC-SPc 

is able to find the best know solution for 2 instances 

in the set ABZ (40%), 3 instances in the set FT 

(100%), 28 in the set LA (70%) and 9 in the set of 

ORB (90%).  

We must think why the SPc operator shows better 

results. A strong possibility relates to the theory of 

building blocks (Goldberg [1]). This operator has 

only a cut, so it is more likely to not destroy blocks. 

Instead, the operator of two points cut large blocks 

and operator’s uniform and flat ignores its existence. 

This can be a very important result in choosing 

the crossover operator when using genetic algorithms, 

particularly in job shop. 

 

 

Table 4: Experimental results for 

instances ORB1-ORB10. 

 
Table 5: Average relative deviation 

for problems greater than 10x10. 

 

Additionally, the GA-MC-SPc results are 

compared against the most recent work in the 

literature. 

The performance of GA-MC-SPc was evaluated 

on a standard set of 50 benchmark instances 

belonging to two classical sets known LA from 
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Lawrence [14] and ORB from Applegate and Cook 

[29]. 

 

 
Table 6: Average relative deviation 

with all problems. 

 

As different authors used different number of 

problems, the comparison is based only on those 

problems that authors considered. Note that the 

authors have different approaches to solve the JSSP 

problem.  

We compare the obtained results with the 

aforementioned state of art approaches: 

 

 Qing-dao-er-ji and Wang [38]; 

 Rego and Duarte [8]; 

 Hasan et al. [27]; 

 Gonçalves et al. [4]; 

 Aarts et al. [15]; 

 Dorndorf et al. [18]; 

 Binato et al. [20]; 

 Nowicki and Smutnicki [31]; 

 Sha and Hsu [6]; 

 Pardalos et al. [32]; 

 Adams et al. [10]; 

 Zhang et al. [35]. 

The result is showed in Table 7. 

The algorithm GA-MC-SPc gives good results 

when compared to the state of art. In Table 7 we can 

see that the algorithm proposed is among the top ten 

best performing. 

This study limited the number of generations for 

all operators tested. The number of generations was 

limited to 400. A higher number of generations for all 

operators would increase the computational time. 

Although there is convergence of the algorithms close 

to 400 generations, an increase of generations in the 

proposed algorithm can improve its global 

performance. 

The experiments were performed on an Intel 

Core 2 Duo CPU T7250 @2.00 GHz. The 

computational times dispended are in the range [7, 

3100] seconds. 

 

 

Table 7: Comparison of the % 

deviations for the different number of 

problems authors considered. 
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7   Conclusions and remarks 
This paper presents an experimental study of a set of 

crossover operators, namely single-crossover, two-

point crossover, uniform crossover and flat crossover. 

The single-crossover has the best results, followed by 

the uniform crossover operator. 

This can be a very important result in choosing 

the crossover operator when using genetic algorithms, 

particularly in job shop. 

Additionally, the best crossover operator was 

tested on a set of 50 standard instances taken from the 

literature and compared with the best state-of-the-art 

approaches. The algorithm produced good results 

when compared with other approaches. 

Although there is convergence of the algorithms 

close to 400 generations, an increase of generations in 

the proposed algorithm (GA-MC-SPc) can improve 

its global performance. 

Further work could be conducted to explore the 

possibility of genetically correct the chromosomes 

supplied by the genetic algorithm to reflect the 

solutions obtained by the local search heuristic. 
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