
Hybridizing Genetic Algorithms and Particle Swarm Optimization
Transplanted into a Hyper-Heuristic System for Solving University

Course Timetabling Problem

Morteza Alinia Ahandani*
Department of Electrical Engineering

Langaroud Branch, Islamic Azad University
Langaroud

Iran
* alinia@iaul.ac.ir

Mohammad Taghi Vakil Baghmisheh
Department of Control Engineering

University of Tabriz
Tabriz
Iran

mvakil@tabrizu.ac.ir

Abstract: - In this paper, we use genetic algorithms (GAs), particle swarm optimization (PSO) and hybrid
versions of them to solve university course timetabling problem (UCTP). A new crossover method called 2-
staged n-point crossover by combining classic n-point crossover method and graph colouring heuristics is
introduced which aims to generate free-conflict offspring. The hybrid algorithms are generated by adding a
local search (LS), based on hill climbing (HC) method, on three global search algorithms i.e. the GA, the PSO
and a combination of them called GAPSO. The proposed algorithms such as hyper-heuristic systems, manage a
set of graph colouring heuristics as low-level heuristics in a hyper-heuristic strategy. The proposed algorithms
are examined by 11 well-known benchmark problems. Experimental results demonstrate that the GA
outperforms the PSO and the GAPSO algorithms, but the hybrid GAPSO algorithm has a better performance
than the hybrid GA and hybrid PSO. Also all hybrid algorithms obtain a better performance than their non-
hybrid competitors. However the GA has been widely applied to UCTP, to the best our knowledge the obtained
results of GA in this paper are the first reported results on these databases which are competitive than results of
other approaches. In a later part of the comparative experiments, a comparison of our proposed algorithms and
14 other approaches reported in the literature confirms that by considering the hybrid GAPSO as a hybrid
hyper-heuristic, it is one of the best strategies for the hyper-heuristic systems on the UCTP proposed so far.
Also results of the hybrid GAPSO in comparison of other hybrid algorithms proposed in the literature are
completely comparable.

Key-Words: - Crossover, Genetic algorithm; Hybrid algorithm; Particle swarm optimization; University course
timetabling; Hyper-Heuristic

1 Introduction

1.1 Course timetabling
The timetabling problems are a subclass of
scheduling problems, which usually are highly
constrained, thus difficult to solve. Indeed, due to
complexity of the real-world problems it is
impossible to satisfy all of the constraints.
Therefore, to find a practical solution, it is necessary
to relax some of the constraints, which are called

soft constraints. Hence constraints are divided into
two classes: hard constraints and soft constraints.
Satisfaction of all hard constraints is compulsory,
otherwise the obtained solution is considered
infeasible. On the other hand, satisfaction of soft
constraints is desirable but not mandatory. In a
university course timetabling problem (UCTP), a
number of events (lectures, laboratories, exercises,
etc) are assigned into a limited number of resources,
i.e. locations (classrooms, laboratories, meeting
halls), and timeslots within a week. The distinctive

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 128 Issue 3, Volume 12, March 2013

features of this class of timetabling problems are
that lectures have common students and that
availability and size of rooms plays an important
role.

1.2 Literature review
Timetabling are problems of time-based planning
and combinatorial optimization which tend to be
solved with a cooperation of stochastic search such
as evolutionary algorithms (EAs) and heuristic
methods such as sequential graph colouring
heuristics. Conventional computer-based automated
timetabling methods concern themselves simply to
find the shortest timetable that satisfies all the hard
constraints, commonly using a sequential graph
colouring heuristics, and less navigate toward
optimizing over a collection of soft constraints. This
research concerns on combining two different
approaches. The first approach is a heuristic
approach involving graph coloring methods which
usually lead to satisfactory and feasible solutions.
The second approach is known as the EAs which
usually lead to near optimal solutions and can be
used as an optimization approach on soft
constraints.
Qu [1] divided the artificial intelligence approach
applied on educational timetabling problem into six
categories: traditional approaches, meta-heuristic
methods, constraint logic techniques, knowledge-
based techniques, hyper-heuristic methods, and
decomposition methods. Also Abdullah 2) divided
the approaches applied on the UCTP into seven
categories: constraint-based methods, graph-based
approaches, population-based approaches, meta-
heuristic methods, case-based reasoning (CBR),
knowledge-based and fuzzy-based approaches,
multi-criteria approaches, and hyper-heuristic
approaches. This research by considering recently
applied methods on educational timetabling problem
classifies approaches used to solve various
components of the UCTP into eight categories:

1.2.1 Clustering or decomposition methods
The clustering methods usually solve timetabling
problems in three phases. In the first phase, the set
of events are divided into groups which collect
events that will be scheduled into the same
resources. In each group, events do not conflict with
each other. The second phase attempts to reduce
second-order conflicts, i.e. number of violations
from soft constraints, by finding the optimal
sequence of groups. Finally, the third stage is
employed with the aim of improving the solution
quality further. This is done by moving a particular

event between resources such as by employing a HC
[2]. [3-5] employed different clustering methods to
solve the UCTP.

1.2.2 Constraint-based approaches
In a constraint-based approach, a set of variables
with a given domain represents a problem. These
approaches insert values to variables in such a way
that all constraints of problem are fulfilled.
Constraints are relations that are assumed to hold
over variables and define the solutions space.
Different variations of the logic programming
language have been employed in the wide variety of
constraint-based methods that have appeared in the
literature (for example see [6-8]).

1.2.3 Graph-based approaches
Graph-colouring heuristics are often called
sequential heuristics. The main idea is to assign
events to resources, one by one, based on a
sequencing strategy [9]. Timetabling problems,
without considering of soft constraints, can be
modeled as graph coloring problems. Graph
coloring heuristics were widely used to solve the
timetabling problems Burke et al. [10] reviewed the
application of graph coloring methods to
timetabling. The authors discussed various
timetabling problems i.e. class/teacher, course,
exam and sports timetabling. Their probe included
the role that graph coloring methods have played in
the timetabling literature over the last 40 years or so.
The reported results in Carter et al. [11]
demonstrated that sequential heuristics were very
efficient when incorporating a backtracking
procedure. Burke et al. [12] employed a heuristic
procedure without backtracking but incorporated a
random element and Asmuni et al. [13] proposed a
fuzzy heuristic ordering. Burke and Newall [14]
presented a method for solving examination
timetabling problems through adaption of heuristic
orderings as an alternative to existing forms of
backtracking. Also some of literature used the graph
coloring methods as low level heuristics in a hyper-
heuristic structure. Burke et al. [15] investigated a
tabu search (TS) hyper-heuristic approach upon a
set of graph colouring heuristics for university
timetabling. Pillay et al. [16] proposed an alternative
representation for heuristic combinations, namely, a
hierarchical combination of heuristics. Those,
meantime introducing of a new low-level heuristic
called highest cost, combined the low-level
heuristics hierarchically and applied simultaneously
rather than sequentially.
The graph colouring technique adapts well to small-
scale problems, however they fail to scale up for

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 129 Issue 3, Volume 12, March 2013

larger ones [17]. Normally the real timetabling
problem is a large-scale problem, so the timetabling
problem solved by the graph colouring approach is
still far from the real situations encountered in
timetabling.

1.2.4 Metaheuristics and EAs
Compared to other approaches, the EAs, particularly
hybrid versions of them, can be very successful in
dealing with a variety of soft constraints and thus
can generate high quality solutions. The EAs can
mainly be divided to two distinct groups: point-
based or local search (LS) algorithms and
population-based or global search algorithms. The
LS algorithms explore the solution space by a
gradual improvement of the current solution.
Classical examples are hill climbing (HC),
simulated annealing (SA), TS, variable
neighbourhood search (VNS) and great deluge (GD)
algorithm. In addition, global search EAs, such as
genetic algorithms (GAs), ant colony algorithm
(ACS) and memetic algorithms (MAs) perform the
search by maintaining a population of candidate
solutions.
During the recent years, the various EAs have been
intensively applied to solve timetabling problems.
Burke et al. [18] described the use of a GA to solve
timetabling problems and Ergül [19] implemented a
university examination timetabling method based on
a GA for the Middle East Technical University.
Pillay and Banzhaf [20] presented the results of a
study conducted to investigate the use of GAs as a
means of inducing solutions to the examination
timetabling problem. This method firstly took a two-
phased approach to the problem which focused on
producing timetables that met the hard constraints
during the first phase, while improvements were
made to these timetables in the second phase so as
to reduce the soft constraint costs. Secondly, domain
specific knowledge in the form of heuristics was
used to guide the evolutionary process.
One of the most utilized algorithms for solving of
the university timetabling problem is the TS
algorithm. Hertz [21] and White et al. [22]
independently applied the TS algorithm to this
problem. In Aladag et al. [23] two new
neighborhood structures were proposed by using the
moves called simple and swap and the effects of
these moves on the operation of TS were examined
based on defined neighborhood structures. Also
among of other EAs, [24-28] used SA and [29-31]
applied ACS to the university timetabling problems.
A comparison among five metaheuristic approaches
for the same eleven datasets was presented in Rossi-
Doria et al. [32]. These approaches include the

ACS, the SA, random restart LS, the GA and the
TS. A stochastic optimization timetabling tool
(SOTT) has been developed for the UCTP in
Pongcharoena et al. [33]. The GAs, the SA and
random search were embedded in the SOTT. Landa-
Silva and Obit [34] proposed a modeled GD
algorithm called Nonlinear Great Deluge (NLGD)
by using a nonlinear decay of water level. In the
original GD, the water level decreases steadily in a
linear fashion but they proposed a modified version
of the GD algorithm in which the decay rate of the
water level was non-linear They successfully
improved the performance of the GD algorithm on
medium UCTP instances.
Also Lewis [35]presented a survey of metaheuristic-
based techniques for university timetabling
problems. Those subdivided the metaheuristic
algorithms proposed for timetabling into three
categories: One-stage optimization algorithms
where a satisfaction of both the hard and soft
constraints is attempted simultaneously. Two-stage
optimization algorithms where a satisfaction of the
soft constraints is attempted only once a feasible
timetable has been found. Algorithms that allow
relaxations where violations of the hard constraints
are disallowed from the outset by relaxing some
other feature of the problem, and attempts are then
made to try and satisfy the soft constraints, whilst
also giving consideration to the task of eliminating
these relaxations.

1.2.5 Knowledge-Based techniques and CBR
The overall objective of using knowledge-based
techniques for timetabling is to model the human
knowledge for timetabling. Kong and Kwok [36]
implemented a conceptual model of a knowledge-
based timetabling system for high school
timetabling. Foulds and Johnson [37] developed a
database decision support system for a real world
course timetabling problem.
All the existing knowledge-based techniques on
timetabling use expert system, which models the
knowledge of timetabling as rules, to generate
course timetables. One possible problem with this is
that usually the knowledge within the scheduling is
implicit thus difficult to be modeled. This may be
resolved by either the careful design of specific
problems, or by employing techniques that can use
the knowledge and avoid large amounts of work in
modeling it. The CBR can be considered one of the
solutions for this problem [1]. The CBR is an
artificial intelligence technique that is supported by
the study of cognitive science. It is motivated by the
observation that humans use past experience to
solve similar problems and reuse that experience

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 130 Issue 3, Volume 12, March 2013

with some modification to suit different
requirements [38]. [39] and [40] used the CBR to
solve timetabling problems.

1.2.6 Hyper-Heuristics techniques
Burke et al. [41] defined a hyper-heuristic as ‘the
process of using (meta-) heuristics to choose (meta)
heuristics to solve the problem in hand’. Unlike
most implementation of meta-heuristics that modify
solutions directly, a hyper-heuristic modifies
solutions indirectly by employing the selected low-
level heuristics. A hyper-heuristic operates on the
search space of heuristics rather than on the search
space of candidate solutions (see 15) and 16)). Qu
and Burke [42] investigated the effect of employing
different high-level search algorithms (i.e. steepest
descent, TS, iterated LS and VNS) in the unified
graph based hyper-heuristic framework.
Experimental results demonstrated that the method
of search by different high-level heuristics within
the search space of graph heuristics was not crucial.
The characteristics of the neighbourhood structures
and search space were analyzed. It was shown that
the exploration over the large solution space enabled
the approach to obtain good results on both the
exam and course timetabling problems.

1.2.7 Fuzzy-based approaches
Asmuni et al. [13], [43] and [44] investigated the
fuzzy-based approaches on timetabling problems.
Asmuni et al. [43] and [44] discussed how fuzzy
techniques could be used to combine multiple
standard heuristics to construct educational
timetables. Petrovic et al. [45] considered fuzzy
constraint satisfaction in timetabling problems.
Chaudhuri and De [46] presented a fuzzy genetic
heuristic algorithm to solve the UCTP.

1.2.8 Artificial neural networks
Artificial neural networks have recently proven to
be relatively successful in solving complex
combinatorial optimization problems (see [47] and
[48]).
In addition to these methods, some approaches have
been applied for the educational timetabling
problems which rarely utilized in other literature.
These include integer programming [49] and [50],
VNS [51] and randomized iterative improvement
[52]. For more details about applied approaches on
timetabling problems see [53-56].

1.3 The hybrid EAs vs timetabling
The reported results of applying the GA on
timetabling problem show that the original GA can

not find a solution with good quality [57] and [58].
Thus a combination of GA with other algorithms
usually has been used to improve the quality of
obtained timetables. On the other part, the
hybridizing with a LS technique is an efficient
approach to improve the quality of original EA.
Burke et al. [59] employed a MA that was combined
a GA and a HC for university examination
timetabling. Merlot et al. [60] implemented the
hybridization between constraint programming to
obtain a feasible initial timetable and LS to improve
those of initial solutions. Azimi [61] presented three
hybrid combinations of the TS and the ACS for a
classical examination timetabling problem. In each
hybrid algorithm, the TS or the ACS was considered
as main algorithm and another algorithm was used
in the LS part of it. Chiarandini et al. [62] presented
a hybrid algorithm for the UCTP by combining
various construction heuristics, the TS, variable
neighbourhood descent and the SA. The LS and TS
procedures were used for solving the hard
constraints, while a timetable was improved in terms
of soft constraints by means of variable
neighbourhood descent and SA.
Yang, and Jat [63] investigated the GAs with a
guided search strategy and LS techniques for the
UCTP. The guided search strategy was used to
create offspring into the population based on a data
structure that stored information extracted from
good individuals of previous generations. The LS
techniques used their exploitive search ability to
improve the search efficiency of the proposed GAs
and the quality of individuals. The experimental
results showed that the proposed GAs were able to
produce promising results for the UCTP. Abdullah
and Turabieh [64] proposed a GA with sequential
LS, called GAWLS. They tested a GA with a repair
function and LS on the UCTP. Since combinations
of evolutionary based approaches with LS have
provided very good results for a variety of
scheduling problems, Abdullh et al [65] proposed
such an algorithm for the UCTP. Their evolutionary
method did not use a crossover operator. After
applying the mutation operator on %20 of the
courses from each selected individual, the LS
component was employed. This hybrid evolutionary
approach was tested over established datasets and
compared against state-of-the-art techniques from
the literature. The results obtained confirmed that
the approach was able to produce solutions to the
UCTP which exhibited some of the lowest penalty
values in the literature on benchmark problems. It
was therefore concluded that the hybrid
evolutionary approach represented a particularly

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 131 Issue 3, Volume 12, March 2013

effective methodology for producing high quality
solutions to the UCTP.
Rossi-Doria et al. [32] proposed a hybrid GA. They
used a LS method with the GA to solve the UCTP
and also compared several meta-heuristics methods
i.e. EAs, ant colony optimization, iterated LS, SA,
and TS on the UCTP. To attempt fairness, the
implementations of all the algorithms used a
common solution representation, and a common
neighbourhood structure or LS. The results showed
that no meta-heuristic was best on all the
timetabling instances considered. Jat and Yang [66]
presented a MA that integrated two LS methods into
the GA for solving the UCTP. These two LS
methods used their exploitive search ability to
improve the explorative search ability of GAs. The
first LS worked on all events by supposing that each
event was involved in soft and hard constraint
violations. When the first LS finished, they got a
possibly improved and feasible individual. After
that, they applied the second LS on the current
individual. The second LS could enhance the
individuals of the population and increase the
quality of the feasible timetable by reducing the
number of constraint violations. The experimental
results indicated that the proposed MA was efficient
for solving the UCTP.
In this research, the GA, particle swarm
optimization (PSO) and a combination of them are
used as global search optimization algorithms to
solve the UCTP. In order to use beneficiary of
hybrid schemes, the aforementioned EAs are
combined with a LS i.e. HC method. Also a new
crossover operator which enhances with graph-
based heuristics is proposed. The algorithms
proposed in this research, because of employing the
EAs to arrange the graph-based heuristics, as well as
can be considered as hyper-heuristics systems. The
rest of the paper is organized as follows. In section
2, course timetabling problem are briefly explained.
In section 3, the graph colouring heuristics are
described. In section 4, the GA, the PSO, the
utilized LS and the method of hybridizing are
explained. The simulation results are presented and
analyzed in section 5. Section 6 concludes the paper.

2 The UCTP
UCTP consists of a set of courses to be assigned in a
set of timeslots and a set of rooms in which courses
can take place within a week. The solution of this
problem must satisfy all of hard constraints without
any violation, whereas it can necessarily violate
from some of soft constraints. Proportion of

violation of soft constraints in this problem,
measures the solution quality.
Because several university course timetabling
papers proposed in the literature applied their
approach to the problem instances described in
Socha et al. [29], this paper also is focused on this
proposed UCTP. [29] proposed the following hard
constraints:

I.No student can be assigned to more than one
course at the same time.

II.The room should satisfy the features required
by the course.

III.The number of students attending the course
should be less than or equal to the capacity of
the room.

IV.No more than one course is allowed at a
timeslot in each room.

Also the following soft constraints were presented:
I.A student has a course scheduled in the last

timeslot of the day.
II.A student has more than 2 consecutive

courses.
III.A student has a single course on a day.

The problem consists of a set of N courses,
1 2 3{ , , ,..., }NC c c c c= , T timeslots,

1 2 3{ , , ,..., }TTS t t t t= (a given number of work days
and a given number of timeslots in every day), a set
of R rooms in which events can take place, a set of
F room features satisfied by rooms and required by
events and a set of M students who attend the
events. Thus the objective function of this problem
can be considered as (1). This cost function simply
counts the number of violations of the obtained
solution from hard and soft constraints. It is a
penalty function of weighted sum of violations.

4 3

1 1
. * *i i j j

i j
C F w HC w SC

= =

= +∑ ∑ (1)

where iHC and jSC denote number of violations
from i th hard constraint and j th soft constraint,
respectively. iw and jw are penalty weighting
associated with i th hard constraints and j th soft
constraints, respectively. Also to satisfy the requests
of hard constraints, values of iw and jw are set
equal to 10 and 1 for all hard and soft constraints,
respectively. Lewis [35] mentioned two main
advantages for this sort of linear weighted cost
function. First, because the aim is to simply search
for a candidate solution that minimizes a single cost
function, it can, of course, be used with any
reasonable optimization technique. Second, this
approach is, in general, very flexible and easy to
implement, because any sensible constraint can be
incorporated into the problem provided that an

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 132 Issue 3, Volume 12, March 2013

appropriate penalty weighting (which indicates its
relative importance compared to others) is
stipulated. In particular, this second factor is highly
convenient for timetabling problems where we can
often encounter an abundance of different constraint
combinations in practice.

3 Graph Colouring Heuristics
Graph colouring is concerned with colouring the
vertices of a given graph using a given number of
colors. The relationship of graph colouring problem
and timetabling is widely discussed in the literature
(see [15], [67] and [68]). In the graph-based
structure for the timetabling problem, events,
timeslots, and conflicts are modeled by vertices,
colors, and edges, respectively. The difficulty of
events called as the degree of vertices, is
represented by the number of conflicts those have
with the others. A conflict between two events in
timetabling problem exhibits at least existence of a
same student. So these two events must not be
scheduled in a same timeslot. The graph colouring
heuristics can be used to construct a new timetable
or to perfect incomplete timetables.
The principle idea behind using graph colouring
heuristics in the timetabling problems is to order the
events, one by one, based on their difficulties of
scheduling and to assign consecutively them into
feasible timeslot and room. It is obvious, in the early
stages of scheduling there are more feasible
timeslots to assign those of difficult events. Various
graph colouring heuristics assign different difficulty
degree for a same event in a considered timetable.
Some sequential graph colouring heuristics are as
follow:
Largest degree (LD): courses with the largest
number of conflict with other courses are scheduled
first.
Largest enrolment (LE): courses with the largest
number of student enrolment are scheduled first.
Largest weighted degree (LWD): in this heuristic,
priority is given to the course that has the largest
weighted conflict. Each conflict is weighted based
on the number of students involved in two
conflicting courses.
Random ordering (RO): the courses that are not
yet scheduled are selected randomly.
Color degree (CD): in this heuristic that is a
dynamic heuristic, the courses are ordered in terms
of the number of conflict that they have with those
already scheduled in the timetable.
Saturation degree (SD): in this dynamic heuristic,
the next selected course to be scheduled is based on
the number of available feasible timeslots. The

course with the least number of available feasible
timeslots will be scheduled first.

4 The Utilized Algorithms
4.1 The GAs
A GA starts by creating a random population of
chromosomes, called initial population, and then
these chromosomes are evaluated by the cost
function and sorted in a decreasing order. Percent of
chromosomes which are inferior to others are
eliminated. Now two of remaining chromosomes are
selected randomly to produce the offspring using
crossover operator to replace the eliminated
chromosomes. This reproduction (selection and
crossover) continues, until the population reaches to
its original size. The mutation operator is applied to
the whole population of chromosomes with a
mutation rate, commonly excluding the elite one.
The resultant population is called the first
generation. Again the cycle of evaluation, sorting,
elimination, reproduction, and mutation continues
until fulfilling one of stopping conditions. The
different utilized operators in the GA for the course
timetabling problem are as follow:
Initialization: coding of a chromosome as a
problem solution is the first step of applying the GA
to a problem. In the UCTP, each solution must be
simultaneously assign the associated timeslot and
room of each course. Thus, in a direct
representation, with assumption of N courses, each
chromosome will own a length equal to 2* N genes
that N first-genes will assign timeslot of each
course and N second-genes will assign room of
each course. Fig. 1 shows an example of such a
chromosome with 10 courses, 5 timeslots and 4
rooms. For example this chromosome represents
that 1st course must occur at 1st timeslot in 3rd
room, 2nd course must occur at 2nd timeslot in 2nd
room and so on. Also every generated chromosome
is evaluated using (1).
Selection: for the selection operator, we use the
roulette wheel method with reverse linear rank
weighting probability proposed in [69].
Crossover: in the crossover stage, two selected
chromosomes in the selection stage are combined
together to generate a new offspring. Each offspring
has two sets of genes: those of genes are exactly
copied from its parents and those of genes are
exclusively generated for it. So each crossover
method must present a strategy to copy genes from
parents and an operator to generate new independent
genes. The classic crossover operators, such as
uniform and n-point crossover, can easily lead to

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 133 Issue 3, Volume 12, March 2013

t5 t2 t2 t4 t4 t3 r3 r2 r2 r4 r1 r1

Timeslot Room

t1 t2 t1 t3 r4 r3 r4 r1

Fig 1. An example of chromosome coding for course timetabling problem.

Parent 1

Parent 2

Unperfect
Offspring

Perfect
Offspring

unscheduled courses
to schedule

unscheduled courses

t5 t2 t2 t4 t4 t3 r3 r2 r2 r4 r1 r1t1 t2 t1 t3 r4 r3 r4 r1

t2 t5 t2 t3 t2 t1 r1 r4 r3 r2 r3 r1t3 t4 t4 t3 r4 r3 r2 r2

unscheduled courses

t4 t3 r3 r2t1 t2 r4 r1

t1 t3 t3 t4 t4 t3 r3 r2 r2 r1 r1 r4t1 t2 t5 t2 r3 r2 r4 r1

Fig 2. An example of 2 staged n-point crossover.

infeasible timetables. On the other word, the classic
crossover methods are applied on feasible solutions
but generate infeasible solutions. In order to avoid
infeasible solutions, some of literature did not use
the crossover and employed only the mutation
operator to generate new solutions (see [70] and
[71]). Some of other literature to preserve the
feasibility of the timetables and to guarantee
feasible timetables used a repair mechanism. This
mechanism must be applied on infeasible solutions
to reintroduce all the necessary courses (see [72]
and [73]). This research, as a third approach,
proposes a new crossover method called 2-staged n-
point crossover (2SNPC) by combination of n-point
crossover and graph colouring heuristics. This
crossover method by applying to feasible solutions,
with a high probability, leads to a feasible offspring.
In the 2SNPC crossover method, the n-point
crossover is used to copy genes from parents and
graph colouring heuristics are employed to generate
new independent genes. Fig. 2 shows an example of
2SNPC. In the first stage of 2SNPC method, the
first set of genes (both timeslots and rooms) are
copied from first parent to the offspring and to copy
second set of genes from second parent to the
offspring, feasibility of this assignment is checked.
If assignment of a gene (timeslot or room) from
every parent generates a conflict, this set of genes in
this stage is not assigned any value (no timeslot and
no room) and will be scheduled in second stage.
These unscheduled genes are denoted with value of
zero in Fig. 2. In the second stage of 2SNPC
method, to schedule the unscheduled courses, the
graph colouring heuristics will be used. First the

unscheduled courses will be ordered decreasingly in
terms of difficulty degree of scheduling which is
defined by graph colouring heuristic. Then
scheduling is begun from course with highest
priority and a random feasible timeslot and room are
assigned to unscheduled courses. For each course, if
any feasible timeslot or room is not found, a random
value will be assigned to it.
Mutation: the mutation operator also uses graph
colouring heuristics. Firstly a chromosome is
selected with a probability of chr prob− and then a
set of genes from this selected chromosome will be
selected with a probability of gene prob− . These
unscheduled courses will be ordered decreasingly by
graph colouring heuristics and the scheduling is
begun from course with highest priority. Then a
random feasible timeslot and room are assigned to
unscheduled courses. Also, if any feasible timeslot
or room was not found then a random value will be
assigned.
Termination criterion: the GA continues until
fulfils a given number of function evaluations.

4.2 The PSO
In contrast to the GAs which used evolutionary
operators (selection, crossover and mutation) to
generate and improve new candidate solutions, the
PSO simply assigns a velocity vector to each
member of population called particle, and updates
the velocity of the members without generation of a
completely new member. In the PSO each particle
based on its previous position, its best position

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 134 Issue 3, Volume 12, March 2013

achieved so far and the best position achieved by all
particles adjusts its flying.
According to above discussion, the PSO is
formulated as follow: denote attributes of each
particle i (, 2,...,i = 1 Npop and Npop is population
size) in the D-dimensional search space and
iteration t is represented as follow: the current
position of particle represented as

t t t t
i i1 i2 iDX = (x , x ,... , x) , the current velocity of

particle represented as t t t t
i i1 i2 iDV = (v ,v ,... ,v) , the

current personal best position of particle represented
as t t t t

i i1 i2 iDP = (p , p ,... , p) and the global best
position represented as t t t t

1 2 DG = (g , g ,... , g) . Thus
the particle i at dimension j and iteration t
updates its velocity and position based on its
cognition part and the social part according to Eqs.
(2) and (3) respectively.

1 1 1 1 1 1
1 1 2 2() ()t t t t t t t

ij ij ij ij j ijv v c r p x c r g xω − − − − − −= + − + − (2
1t t t

ij ij ijx x v−= + (3)
where ω is the inertia weight factor that adjusts the
weighting of previous velocity in the current
velocity; 1r and 2r are two random values with
uniform distribution in the interval [0,1], 1c and 2c
are learning factors. These two parameters specify
tendency of particle to its own experiences or
collective consequences.
The UCTP is a discrete optimization problem but
standard PSO equations (Eqs. (2) and (3)) are suited
for continuous optimization. To apply the PSO to
the course timetabling problem, we used a structure
proposed in Pan et al. [74]). They to apply the PSO
on no-wait flowshop scheduling problem, proposed
a new position update method for particles based on
discrete permutations. They generated a new
particle in three stages: one mutation and two
crossover stages. Thus the position of particle i at
iteration t can be updated as follow:

1 1
2 3 1 2 1((() ,) ,)t t t

i i i iX c F c F F X P Gω − −= ⊗ ⊗ ⊗ (4)
The update equation consists of three components:
the first component is 1()1

t tF Xi iλ ω −= ⊗ , 1F
represents the mutation operator with the probability
of ω . The second component is

1
1 2 (,)t t t

i i ic F Pδ λ −= ⊗ , 2F represents the crossover
operator with the probability of 1c . The third
component is 3 3(,)t t t

i iX c F Gδ= ⊗ , 3F represents
the crossover operator with the probability of 2c . So
the position of a particle is updated by using a
mutation with the probability of ω , a crossover with

the probability of 1c and a another crossover with
the probability of 2c . This strategy is used to apply
the PSO to UCTP.

4.3 The GAPSO
We combine the GA with the PSO and produce a
new global search algorithm called GAPSO. This
proposed hybrid algorithm has a simple structure.
The GAPSO serially applies two global search
methods on a population. Each algorithm will be
applied on improved members of another algorithm.
The steps of GAPSO are as follow:
Step1: Generate initial population of size popN .
Step2: Apply the GA to population for (Max1)
iterations.
Step3: Apply the PSO to population for (Max2)
iterations.
Step4: Check the stopping criteria, if are not met go
to Step2 and repeat the algorithm.
The hybrid algorithms start by generation of an
initial random population. Then the GA is applied to
them with a predefined number of iterations (Max1).
In simple words, in each iteration of algorithm, the
GA receives the population, improves them and
renders them to the PSO as its initial population.
Later, the PSO method is applied to the population
with a predefined maximum iteration number
(Max2). Finally the termination criteria are checked
and the algorithm is repeated until fulfilling one of
the termination criteria.

4.4 The Hybridizing Global Search
Algorithms and LS Method
In order to improve the performance of global
search algorithms, a LS method is applied on
obtained solutions of them. The steps of hybrid
algorithms are as follow:
Step1: Generate initial population of size popN .
Step2: Apply the global search algorithm to
population for (Max3) iterations.
Step3: Apply the LS to population for (Max4)
iterations.
Step4: Check the stopping criteria, if are not met go
to Step2 and repeat the algorithm.
This hybridizing method is applied to the GA, PSO
and GAPSO global search algorithms and three
hybrid algorithms are obtained which are called
HGA, HPSO and HGAPSO, respectively. All
hybrid algorithms follow the aforementioned steps.
Their single difference is in the Step2. The HGA
uses the GA as global search algorithm in this step.

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 135 Issue 3, Volume 12, March 2013

1. Select a gene with a probability of local prob ;
2. Assign a feasible value for selected gene

and generate new chromosome (Xnew);
3. if f (Xnew) f (X)

replace X with Xnew ;
else

do not change X ;
4.Go to step1 and repeat steps (1 3)

for other ge

−

<

−
nes of chromosome (X);

Fig. 3. The stages of proposed local search method for each
chromosome.

The PSO is used in the HPSO as a global search
algorithm in this step. The HGAPSO employs the
GAPSO as global search algorithm.
Also for the LS, we use a simple method similar to
HC. The HC algorithm iteratively evaluates some of
neighbouring solutions and replaces the current
solution by the candidate solution which results in
the largest increase in the solution quality. The
stages of this proposed LS method for each member
are shown in Fig. 3.

5 Experimental Results
The proposed algorithms are tested on eleven
benchmark course timetabling problems, proposed
by the Metaheuristic Network1. The problems2 need
to schedule 100–400 courses into a timetable with
45 timeslots (5 work days and 9 timeslots a day),
while satisfying room features and capacity
constraints. These databases are divided into three
groups: Small, Medium and Large. Specifications of
these databases are shown in Table 1. Every
algorithm was run 10 times and 1000000 function
evolutions for Small databases, 1200000 function
evolutions for Medium and Large databases was
considered as stopping criterion, respectively. The
performance of different algorithms was compared
using two criteria: (i) the average value of the
solution obtained in all trial runs (mean), (ii) the
minimum value of the solutions obtained in all trial
runs (min). The considered values for different
parameters of algorithms are as follow:
• size of initial population equal to 60;

• number of crossover points equal to N
3

 that N is

number of courses;

1 http://www.metaheuristics.net/.
2 http://iridia.ulb.ac.be/~msampels/ttmn.data/.

• the GA parameters (ω ,chr prob− , gene prob−)
equal to 0.1and 0.2, respectively;

• the PSO parameters (ω , 1c , 2c) equal to 0.3, 0.8
and 0.8, respectively;

• the GAPSO parameters (Max1, Max2) equal to 20
and 20, respectively;

• the LS parameters (local prob− , Max4) equal to
0.4 and 3, respectively;

• the value of Max3 in the HGA, HPSO and
HGAPSO equal to 5, 5 and 1, respectively.

To generate the initial population, we used a
feasible assignment by starting from an empty
timetable. In this initializing method, for each
course, a random timeslot and room is selected and
if theses assigned values were feasible, those will be
accepted. Also if any feasible timeslot and room
were not found, a random assignment will be
considered. The experiments on 1000 random
members generated using this initializing method
show that this method on Small databases generates
completely feasible solutions. But on Medium1,
Medium2, Medium3, Medium4, Medium5 and Large
databases averagely leads to 43, 46, 109, 35, 262
and 491 infeasible assignments, respectively. Also
the term ‘‘x% Inf’’ in some of this section tables
indicates the percentage of runs which associated
algorithm failed to obtain feasible solutions.

5.1 Decision on proposed algorithms
The proposed evolutionary operators, i.e. crossover
and mutation, use the graph colouring heuristics to
order unscheduled courses. Table 2 shows a
comparison among performance of different
heuristics in the GA on 4 databases. From results of
Table 2 we can observe that on Small1, the LWD
and LD heuristics obtain the best minimum and
mean cost, respectively. On this problem, the RO
has the worst performance. On Small2, the LE and
CD heuristics have the best minimum and mean
cost, respectively. Also the RO obtains the worst
performance. On Medium1, the SD gives a better
minimum cost and the LD has a better mean cost.
For problem Medium2, the LE and SD heuristics
give the best minimum and mean cost, respectively.
The obtained results of Table 2 demonstrate that for
all of the problems tested, the GA with different
heuristics finds feasible solutions. Also the RO
heuristic, that is random ordering of unscheduled
courses, obtains the worst performance on all
problems except on Medium1 and Medium2 in terms
of mean cost. But it is evident that, among other
heuristics, no heuristic obtained significantly better

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 136 Issue 3, Volume 12, March 2013

Table 2. A comparison among performance of different graph colouring heuristics in the GA on 4 databases

Graph heuristic Small1 Small2 Medium1 Medium2
 min mean min mean min mean min mean

RO 14 17.9 15 21.3 215 244.7 227 250.2
LE 12 17.6 10 18.7 212 248.1 217 241.6
LD 9 14.5 11 19.3 205 236.5 227 254.6

LWD 7 15.3 12 17.2 203 249 224 248.3
CD 9 14.7 12 16.9 211 241.1 223 243.2
SD 8 14.8 11 17.2 197 239.5 219 240.6

Table 3. A comparison among non-hybrid global search algorithms.

Database GA PSO GAPSO
 min mean min mean min mean

Small1 6 12.8 11 20 8 15.7
Small2 8 15.2 11 24.8 9 16.7
Small3 7 15.3 9 16.4 7 16.1
Small4 8 15 10 16.3 8 17.6
Small5 3 7.5 6 13 4 7.3

Medium1 187 221.1 225 289.5 198 240.9
Medium2 202 240.6 284 314.2 242 302.2
Medium3 252 317.2 321 370.4 286 338.4
Medium4 224 274.5 280 337 240 285.5
Medium5 268 308.5 - 100% Inf 260 311.2

Large - 100% Inf - 100% Inf - 100% Inf

performance.
Table 3 shows a comparison of the PSO, the GA
and the GAPSO results based on 11 university
course timetabling databases. The best results were
highlighted. The obtained results demonstrate that
the GA has a better performance than two other
global search algorithms in terms of both considered
aspects, except on Small5 that the GAPSO has a
better average result. Also the PSO can not find any
feasible timetable on Medium5 and all algorithms
obtain infeasible timetables on Large database.
The experimental results after applying LS method
on global search algorithms are shown in Table 4. In
comparison with results of Table 3, hybridizing can
improve the quality of solutions. All hybrid
algorithms outperform their non-hybrid competitors
in Table 3. However, the GA had the best results
among non-hybrid global search algorithms in Table
3, the HGAPSO obtains the best results among
hybrid algorithms on all databases, except on
Medium5. Also the HPSO algorithm, such as PSO in
Table 3, has the worst performance among hybrid
algorithms.
It is clear from Tables 3 and 4 that the GA and the
HGAPSO are two superior non-hybrid and hybrid

algorithms which give the best results than other
algorithms.

5.2 Comparison with previous studies
Table 5 compares results of the GA and HGAPSO
which were the best non-hybrid and hybrid
algorithms, and three other hyper-heuristic
approaches proposed in literature. The utilized
studies include:
• The GHH upon six heuristics [15].
• The TS hyper-heuristic (TSHH) [75].
• The fuzzy multiple heuristic (FMH) [76].
Results of Table 5 clearly evident the promising
results of our proposed methods. The GA has a
better performance than the GHH, the TSHH and
the FMH on 5, 2 and 7 problems, respectively. Also
the HGAPSO has a better performance than the
GHH, the TSHH and the FMH on 9, 4 and 9
problems, respectively. Based on this comparison,
The HGAPSO obtains the best results on 6 problems
and the second-best results on 3 other problems.
Thus by considering the HGAPSO as a hybrid
hyper-heuristic, it is one of the best strategies for

Table 1. Specifications of the utilized database
category Small Medium Large

Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400
Maximum courses per student 20 20 20
Maximum student per courses 20 50 100
Approximate feature per room 3 3 5
Percent feature use 70 80 90

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 137 Issue 3, Volume 12, March 2013

Table 4. A comparison among hybrid global search algorithms.

Database HGA HPSO HGAPSO
 min mean min mean min mean

Small1 2 5 4 6.4 0 1.2
Small2 3 5.6 5 7.8 1 2.4
Small3 2 6.6 3 6.2 0 1.9
Small4 3 5.6 3 6.8 1 3.8
Small5 0 1.4 1 1.8 0 0.8

Medium1 178 196.2 184 204.2 175 184.4
Medium2 191 205.3 198 210.7 184 196.1
Medium3 212 224.7 221 238.2 205 218.2
Medium4 174 191.4 190 208.3 176 192.5
Medium5 201 214.8 312 50% Inf 180 194.8

Large - 100% Inf - 100% Inf - 100% Inf

hyper-heuristic systems on the UCTP. Also the GA
obtains a competitive performance with GHH, LS
and fuzzy multiple heuristic approaches. It
outperforms the GHH and fuzzy multiple heuristic
approaches on all Medium databases, except
Medium5.
Table 6 compares results of the GA and HGAPSO
and eleven other EAs proposed in literature. The
utilized studies include:
• The LS [29].
• The ant algorithm (Ant) [29].
• The DCABA [76].
• The randomized iterative (RI) [52].
• The EGSGA [63].
• The NLGD [34].
• The GAWLS [64].
• The HEA Abdullah et al [65].
• The HGA [32].
• The VNS-Tabu [51]
• The MA [66].
(Note: the reported results for LS and Ant algorithm
are average of obtained results, but the reported
results for other approaches are the best results).
The GA obtains a better performance than the Ant,
DCABA, RI, LS, EGSGA, NLGD, GAWLS, HEA,
HGA, VNS-Tabu and MA on 1, 0, 2, 9, 0, 0, 4, 1, 2,
5 and 1 problems, respectively. Also the HGAPSO
obtains a better performance than the Ant, DCABA,
RI, LS, EGSGA, NLGD, GAWLS, HEA, HGA,
VNS-Tabu and MA on 6, 5, 3, 10, 0, 4, 9, 2, 6, 5

and 3 problems, respectively. The performance of
the HGAPSO on Small1, Small3 and Small5 is in
the range of the best algorithms. It also has the
second-best results on two other Small databases.
There are 5 hybrid algorithms in this comparison
which are a combination of GA and another LS, i.e.
EGSGA, GAWLS, HEA, HGA and MA. Among
these algorithms, the HGAPSO obtains the best
results on Small1, Small3 and Small5 problems and
the second-best results on Small2, Small4, Medium1
and Medium3 problems. Also the EGSGA has a
considerably better performance than other
algorithms.
So in an overall view, the HGAPSO method obtains
a competitive performance on Small and Medium
databases, however it leads to an infeasible solution
on Large database.

6 Conclusion and future works
The overall goals and the obtained results of this
paper were as follow:
1. There was not any efficient crossover method for
the UCTP, thus more of literatures which used the
GA for this problem, have withdrawn from
crossover or have used a repair mechanism to
modify infeasible solutions generated by classic
crossover methods. This paper proposed a new
crossover method called 2SNPC, by combination of
classic n-point crossover and graph colouring

Table 5. The best results obtained by our proposed algorithms, i.e. the GA and HGAPSO, and
other hyper-heuristic methods.
Database GA HGAPSO GHH TSHH FMH
Small1 6 0 6 1 10
Small2 8 1 7 2 9
Small3 7 0 3 0 7
Small4 8 1 3 1 17
Small5 3 0 4 0 7

Medium1 187 175 372 146 243
Medium2 202 184 419 173 325
Medium3 252 205 359 267 249
Medium4 224 176 348 169 285
Medium5 268 180 171 303 132

Large 100% Inf 100% Inf 1068 80% Inf 1166 1138

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 138 Issue 3, Volume 12, March 2013

heuristics. The GA using this crossover method
obtained some competitive results than other
proposed methods.
2. In this paper, to improve the obtained solutions
by non-hybrid algorithms, a LS based on HC
method was applied to three global search
algorithms i.e. the GA, the PSO and the GAPSO and
three hybrid algorithms were obtained i.e. the HGA,
the HPSO and the HGAPSO.
3. Experimental results on 11 well-known
benchmark problems demonstrated that among
compared non-hybrid algorithms, the GA obtained
the best results and outperformed the PSO and the
GAPSO algorithms. Also to the best of our
knowledge, the obtained results of GA were the first
reported results on these databases in the literatures
which were competitive with results of other
approaches. Also among hybrid algorithms, the
HGAPSO gives the best results.
4. In final part of comparison study, a comparison of
our proposed algorithms with some approaches
reported in the literature was carried out. The
obtained results demonstrated that by considering
the HGAPSO as a hybrid hyper-heuristic, it was one
of the best strategies for hyper-heuristic systems on
the UCTP proposed so far. Also results of the
HGAPSO in comparison of other hybrid algorithms
proposed in the literature were completely
comparable.

However our proposed algorithms obtained a
comparable performance than other proposed
approaches, but those did not find any feasible
solution on Large database. This infeasible solution
is due to initialization stage that leads to a huge
number of infeasible assignments on this database.
For the future work, it might be interesting to
employ and examine some efficient initialization
methods that generate less infeasible assignments.
Also in crossover and mutation stage, we used a
single and same graph colouring heuristic. It might
also be interesting to employ more than one and
different heuristics when assigning the unscheduled
courses.

References:
[1] R. Qu, Case-based reasoning for course

timetabling problems, PH.D. thesis, University of
Nottingham, UK, 2002.

[2] S. Abdullah, Heuristic approaches for university
timetabling problem, PH.D. thesis, University of
Nottingham, UK, 2006.

[3] M.W. Carter, A comprehensive course
timetabling and student scheduling system at the
university of waterloo, In: Burke, E. K., Erben,
W., eds.: The Practice and Theory of Automated
Timetabling: Selected papers from the third
International Conference, Lecture Notes in
Computer Science, Springer-Verlag, Berlin,
Vol.2079, 2000, pp. 64–82.

Table 6. The best results obtained by our proposed algorithms, i.e. the GA and HGAPSO, and other EAs.
Database GA HGAPSO Ant (average) DCABA RI LS (average) EGSGA
Small1 6 0 1 5 0 8 0
Small2 8 1 3 5 0 11 0
Small3 7 0 1 3 0 8 0
Small4 8 1 1 3 0 7 0
Small5 3 0 0 0 0 5 0

Medium1 187 175 195 176 242 199 139
Medium2 202 184 184 154 161 202.5 92
Medium3 252 205 248 191 265 77.5% Inf 122
Medium4 224 176 164.5 148 181 177.5 98
Medium5 268 180 219.5 166 151 100% Inf 116

Large 100% Inf 100% Inf 851.5 798 100% Inf 100% Inf 615

Table 6 continued
Database NLGD GAWLS HEA HGA Rossi-Doria VNS-Tabu MA
Small1 3 2 0 0 0 0
Small2 4 4 0 3 0 0
Small3 6 2 0 0 0 0
Small4 6 0 0 0 0 0
Small5 0 4 0 0 0 0

Medium1 140 254 221 280 317 227
Medium2 130 258 147 188 313 180
Medium3 189 251 246 249 357 235
Medium4 112 321 165 247 247 142
Medium5 141 276 135 232 292 200

Large 876 1027 529 100% Inf 100% Inf 100% Inf
Note: the reported results for local search and ant algorithm are average of obtained results, but the reported results
for other approaches are the best results.

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 139 Issue 3, Volume 12, March 2013

[4] M. Amintoosi,J. Haddadnia, Feature selection in
a fuzzy student sectioning algorithm, In: Burke,
E. K., Trick, M.,, eds.: The Practice and Theory
of Automated Timetabling V: Selected Papers
from 5th International Conference on the Practice
and Theory of Automated Timetabling, Lecture
Notes in Computer Science, Springer-Verlag,
Pittsburg, USA, Vol.3616, 2005, pp. 147-160.

[5] P. De Causmaecker,P. Demeester, G.V. Berghe,
A decomposed metaheuristic approach for a real-
world university timetabling problem, Eur. J.
Oper. Res, Vo.195, 2009, pp. 307–318.

[6] G. Lajos, Complete university modular
timetabling using constraint logic programming,
In: Burke, E. K., Ross, P., eds.: The Practice and
Theory of Automated Timetabling I: Selected
Papers from 1st International Conference on the
Practice and Theory of Automated Timetabling,
Lecture Notes in Computer Science, Springer-
Verlag, Edinburgh, UK, Vol.1153, 1996, pp.
146–161.

[7] M. Henz, J. Würtz, Using Oz for college
timetabling, In: Burke, E. K., Ross, P., eds.: The
Practice and Theory of Automated Timetabling I:
Selected Papers from 1st International
Conference on the Practice and Theory of
Automated Timetabling, Lecture Notes in
Computer Science, Springer-Verlag, Edinburgh,
UK, Vol.1153, 1996, pp. 162-177.

[8] H. Cambazard, F. Demazeau, N. Jussien, P.
David, Interactively solving school timetabling
problems using extensions of constraint
programming, In: Burke, E. K., Trick, M., eds.:
The Practice and Theory of Automated
Timetabling: Selected papers from the third
International Conference, Lecture Notes in
Computer Science, Springer-Verlag, Vol.124,
2004, pp. 107–124.

[9] M.W. Carter, G. Laporte, Recent developments
in practical examination timetabling, In: Burke E.
K., and Ross, P., eds.: The Practice and Theory
of Automated Timetabling I: Selected Papers
from 1st International Conference on the Practice
and Theory of Automated Timetabling, Lecture
Notes in Computer Science, Springer-Verlag,
Edinburgh, UK, Vol.1153, 1996, pp. 3-21.

[10] E.K. Burke, J.H. Kingston, D. De Werra,
Applications to timetabling, In: Gross, J., Yellen,
J., eds.: The Handbook of Graph Theory,
Chapman Hall/CRC Press, 2004, pp. 445-474.

[11] M.W. Carter, G. Laporte, J.W. Chinneck, A
general examination scheduling system,
Interfaces, Vol.24, 1994, pp. 109-120.

[12] E.K.Burke,J.P. Newall, R.F. Weare, A simple
heuristically guided search for the timetable

problem, In: proceedings of the International
ICSC Symposium on Engineering of Intelligent
System (EIS’98), Canada/Switzerland, 1998, pp.
574-579.

[13] H. Asmuni, E.K. Burke, J. Garibaldi, B.
McCollum, Fuzzy multiple ordering criteria for
examination timetabling, In: Burke, E. K., Trick,
M., eds: The practice and theory of automated
timetabling (PATAT), Springer, Berlin, Vol.3616,
2005, pp. 334-353.

[14] E.K. Burke, J.P. Newall, Solving examination
timetabling problems through adaption of
heuristic orderings, Ann. Oper. Res. Vol.129,
2004, pp. 107-134.

[15] E.K. Burke, B. McCollum, A. Meisels, S.
Petrovic,R. Qu, A graph-based hyper-heuristic
for educational timetabling problem, Eur. J.
Oper. Res, Vol. 176, 2007, pp. 177-192.

[16] N. Pillay, W. Banzhaf, G.V. Berghe, A study of
heuristic combinations for hyper-heuristic
systems for the uncapacitated examination
timetabling problem, Eur. J. Oper. Res, Vol.197,
2009, pp. 482-491.

[17] A. Tripathy, School timetabling-a case in large
binary integer linear programming, Manage. Sci,
Vol.30, 1984, pp. 1473–1489.

[18] E.K. Burke, D.G. Elliman, R.F. Weare, A
genetic algorithm for university timetabling, In:
proceedings of the Artificial Intelligence and
Simulation of Behaviour (AISB), University of
Leeds, Pittsburg, UK, 1994, pp. 334-353.

[19] A. Ergül, GA-based examination scheduling
experience at Middle East Technical University,
In: Burke, E. K., Ross, P., eds.: The Practice and
Theory of Automated Timetabling (PATAT) I,
Springer, Berlin, Vol. 1153, 1996, pp. 212- 226.

[20] N. Pillay, W. Banzhaf, An informed genetic
algorithm for the examination timetabling
problem, Appl. Soft. Comput, Vol.10, 2010, pp.
457-467.

[21] A. Hertz, Finding a Feasible Course Schedule
Using Tabu Search, Discrete Appl Math, Vol.35,
1992, pp. 255-270.

[22] G.M. White, B.S. Xie, S. Zonjic, Using tabu
search with longer-term memory and relaxation
to create examination timetables, Eur. J. Oper.
Res., Vol.153, 2004, pp. 80-91.

[23] C.H. Aladag, G. Hocaoglu, M.A. Basaran, The
effect of neighborhood structures on tabu search
algorithm in solving course timetabling problem,
Expert. Syst. Appl. Vol.36, 2009, pp. 12349-
12356.

[24] J.M. Thompson., K.A. Dowsland, Variants of
simulated annealing for the examination

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 140 Issue 3, Volume 12, March 2013

timetabling problem, Ann. Oper. Res, Vol.63,
1996, pp. 105-128.

[25] J.M. Thompson, K.A. Dowsland, A robust
simulated annealing based examination
timetabling system, Comput. Oper. Res,
Vol.25,1996, pp. 637-648.

[26] D. Abramson, M. Krishnamoorthy,H. Dang,
Simulated annealing cooling schedules for the
school timetabling problem, Asia. Pacc. J.
Oper. Res, Vol.16, 1999, pp. 1-22.

[27] J. Frausto-Solís, F. Alonso-Pecina, J. Mora-
Vargas, An Efficient Simulated Annealing
Algorithm for Feasible Solutions of Course
Timetabling, In: Gelbukh, A., Morales, E. F.,
eds.: MICAI 2008, Springer, Berlin, Vol.5317,
2008, pp. 675–685.

[28] D. Zhang, L. Yongkai, R. M’Hallah, S.C.H.
Leung, , A simulated annealing with a new
neighborhood structure based algorithm for high
school timetabling problems, Eur. J. Oper. Res,
Vol.203, 2010, pp. 550-558.

[29] K. Socha, J. Knowles, M. Samples, A max-min
ant system for the university course timetabling
problem, In: proceedings of the 3rd
international workshop on ant algorithms
(ANTS 2002), Springer, Vol.2463, 2002, pp. 1-
13.

[30] K. Socha, M. Samples,. M. Manfrin, Ant
algorithm for the university course timetabling
problem with regard to the state-of-the art, In:
proceedings of the 3 European workshop on
evolutionary computation in combinatorial
optimisation, Essex, UK, Springer,
Vol.2611,2003, pp. 334-345.

[31] N. Ejaz, M. Javed, An Approach for Course
Scheduling Inspired by Die-Hard Co-Operative
Ant Behavior, In: proceedings of the IEEE
international conference on automation and
logistics, Jinan, china, 2007, pp. 3095-3100.

[32] O. Rossi-Doria, M. Sampels, M. Birattari, M.
Chiarandini, M. Dorigo, L. Gambardella, J.
Knowles, M. Manfrin, M. Mastrolilli, B.
Paechter, L. Paquete, T. St¨utzle, A comparison
of the performance of different metaheuristics
on the timetabling problem, In: Proc. 4th Int.
Conf. Pract. Theory Automated Timetabling,
Lecture Notes in Computer Science, Vol.2740,
2003, pp. 329–351.

[33] P. Pongcharoena, W. Promtetb, P. Yenradeec,
C. Hicks, Stochastic Optimisation Timetabling
Tool for university course scheduling, Int. J.
Prod. Econ., Vol.112, 2008, pp. 903-918.

[34] D. Landa-Silva, J.H. Obit, Great deluge with
non-linear decay rate for solving course

timetabling problems, In: Proc. 4th IEEE Int.
Conf. Intell. Syst., 2008, pp. 811–818.

[35] R. Lewis, A survey of metaheuristic-based
techniques for university timetabling problems,
OR. Spectrum., Vol.30, 2008, pp. 167-190.

[36] S.C. Kong, L.F. Kwok., A conceptual model of
knowledge-based timetabling system, Knowl-
Based. Syst., Vol.12, 1999, pp. 81-93.

[37] L.R. Foulds, D.G. Johinson, SlotManager: a
microcomputer-based decision support system
for university timetabling, Decis. Support. Syst.,
Vol.27, 2000, pp. 307–381.

[38] J.L. Kolodner, Case-based reasoning. Morgan
Kaufman Publishers, Inc. San Mateo 1993.

[39] E.K. Burke, B. MacCarthy, S. Petrovic, R. Qu,
Structured Cases in CBR – Re-using and
Adapting Cases for Timetabling Problems,
Knowl-Based. Syst. Vol.13, 2000, pp. 159-165.

[40] E.K. Burke, S. Petrovic, R. Qu, Case based
heuristic selection for timetabling problems, J.
Scheduling., Vol.9, 2006, pp. 115–132.

[41] E.K. Burke, E. Hart, G. Kendall, J.P. Newall, P.
Ross, S. Schulenburg, Hyper-heuristics: An
emerging direction in modern search
technology, In: Glover, F., Kochenberger, G.,
eds.: Chapter 16 in Handbook of Meta-
Heuristics, Kluwer, 2003, pp. 457-474.

[42] R. Qu, E.K. Burke, Hybridisations within a
Graph Based Hyperheuristic Framework for
University Timetabling Problems, Technical
Report NOTTCS-TR-2006-1, School of CSiT,
University of Nottingham, UK, 2006.

43] H. Asmuni, E.K. Burke, J.M. Garibaldi, Fuzzy
multiple heuristic ordering for course
timetabling, In: proceedings of the 5th united
kingdom workshop on computational
intelligence (UKCI05), London, UK, 2003, pp.
302-309.

[44] H. Asmuni, E. K. Burke, J.M. Garibaldi, A
comparison of fuzzy and non-fuzzy ordering
heuristics for examination timetabling, In:
Proceedings of the 5th International Conference
on Recent Advances in Soft Computing,
Nottingham, UK, 2004, pp. 288-293.

[45] S. Petrovic, V. Pate, Y. Yang, University
timetabling with fuzzy constraints, In: Burke, E.
K., Trick, M.,, eds.: The Practice and Theory of
Automated Timetabling I: Selected Papers from
5th International Conference on the Practice and
Theory of Automated Timetabling, Lecture
Notes in Computer Science, Springer-Verlag,
Pittsburg, USA, Vol.3616, 2005, pp. 313-333.

[46] A. Chaudhuri, K. De, Fuzzy genetic heuristic
for university course timetable problem, Intern.

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 141 Issue 3, Volume 12, March 2013

J. Adv. Soft. Comput. Appl., Vol.2, 2010, pp.
100-123.

[47] K.A. Smith, D. Abramson, D. Duke, Hopfield
neural networks for timetabling: formulations,
methods, and comparative results, Comput. Ind.
Eng., Vol.44, 2003, pp. 283-305.

[48] M.P. Carrasco, M.V. Pato, A comparison of
discrete and continuous neural network
approaches to solve the class/teacher
timetabling problem, Eur. J. Oper. Res.,
Vol.153, 2004, pp. 65-79.

[49] S. Daskalaki, T. Birbas, Efficient solutions for
a university timetabling problem through integer
programming, Eur. J. Oper. Res., Vol.160,
2005, pp. 106-120.

[50] K. Schimmelpfeng, S. Helber, Application of a
real-world university-course timetabling model
solved by integer programming, OR. Spectrum,
Vol.29, 2007, pp. 783-803.

[51] S. Abdullah., E.K. Burke, B. McCollum, An
investigation of a variable neighbourhood
search approach for course timetabling, In:
proceedings of the 2nd multidisciplinary
international conference on scheduling: theory
and applications (MISTA 2005), New York,
USA, 2005, pp. 413-427.

[52] S. Abdullah, E.K. Burke, B. McCollum, Hybrid
evolutionary approach to the university course
timetabling problem. In proceedings of the
IEEE congress on evolutionary computation
(CEC 2007), 2007, pp. 1764-1768.

[53] A. Schaerf, A survey of automated timetabling.
Artif. Intell. Rev., Vol.13, 1999, pp. 87-127.

[54] R. Qu, E.K. Burke, B. McCollum, L.T.G.
Merlot, S.Y. Lee, A survey of search
methodologies and automated approaches for
examination timetabling, Computer Science
Technical Report No. NOTTCS-TR-2006-4,
School of Computer Science and Information
Technology, University of Nottingham, UK,
2006.

[55] S. Petrovic, E.K. Burke, University timetabling,
In: Leung J ed.: Chapter 45 in Handbook of
Scheduling: Algorithms, Models, and
Performance Analysis, CRC Press, 2004.

[56] E.K. Burke, S. Petrovic, Recent research
directions in automated timetabling, Eur. J.
Oper. Res., Vol.140, 2002, pp. 266-280.

[57] S.C. Chu, H.L. Fang, Genetic algorithms vs
tabu search in timetable scheduling, In:
proceedings of the 3rd international conference
on knowledge-based intelligent information
engineering system, Australia, Adelaide, 1999,
pp. 492-495.

[58] P. Ross, E. Hart, D. Corne, Some observations
about GA based timetabling, In: Burke, E. K.,
Carter M eds.: The Practice and Theory of
Automated Timetabling (PATAT) II, Springer,
Berlin, Vol.1408, 1998, pp. 115-129.

[59] E.K. Burke, J.P. Newall, R.F. Weare, A memetic
algorithm for university exam timetabling, In:
Burke, E. K., Ross, P. eds.: Practice and theory
of automated timetabling (PATAT) I, Springer,
Berlin, Vol.1153, 1996, pp. 241-250.

[60] L.T.G. Merlot, N. Boland, B.D. Hughes, O.J.
Stuckey, A hybrid algorithm for the
examination timetabling problem, In: Burke, E.
K., De Causmaecker P eds.: Practice and theory
of automated timetabling (PATAT) IV, Springer,
Berlin, Vol.2740, 2003, pp. 207-231.

[61] Z.N. Azimi, Hybrid heuristics for examination
timetabling problem, Appl. Math. Comput.,
Vol.163, 2005, pp. 705-733.

[62] M. Chiarandini, M. Birattari, K. Socha, O.
Rossi-Doria, An effective hybrid algorithm for
university course timetabling, J. Scheduling.,
Vol.9, 2006, pp. 403-432.

[63] S. Yang, S.N. Jat, Genetic algorithms with
guided and local search strategies for university
course timetabling, IEEE. T. Sys. Man. CY. C,
Vol.41, 2011, pp. 93-106.

[64] S. Abdullah, H. Turabieh, Generating university
course timetable using genetic algorithm and
local search, In: Proc 3rd Int Conf Hybrid
Inform Tech, 2008, pp. 254–260.

[65] S. Abdullah, E.K. Burke, B. McCollum, H.
Turabieh, A hybrid evolutionary approach to the
university course timetabling problem, In Proc
2007 Congr Evoll Comput, 2007, pp. 1764–
1768.

[66] S.N. Jat, S. Yang, A Memetic algorithm for the
university course timetabling problem, In: 2008
20th IEEE International Conference on Tools
with Artificial Intelligence DOI
10.1109/ICTAI.2008.126, 2008.

[67] E.K. Burke, D.G. Elliman, R.F. Weare, A
university timetabling system based on graph
colouring and constraint manipulation, J. Res.
Comput. Educ., 27, pp. 1-18, 1994.

[68] Burke, E. K., Kingston, J., De Werra, D.,
Applications to timetabling, In Gross J, Yellen J
eds.: Handbook of Graph, Chapman Hall/CRC
Press, Vol.24, 2004, pp. 445-474.

[69] R.L. Haupt, S.E. Haupt, Practical genetic
algorithms. John Wiley & Sons, 2004, pp. 38-
41.

[70] P. Ross, D. Corne, H.L. Fang, Improving
evolutionary timetabling with delta evolution
and directed mutation, In: proceedings of the

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 142 Issue 3, Volume 12, March 2013

Conference on parallel problem solving from
nature III, Springer, Berlin, Vol.866, 1994, pp.
556-565.

[71] S. Abdullah, E.K. Burke, B. McCollum, Using a
randomised iterative improvement algorithm
with composite neighbourhood structures for the
university course timetabling problem, In:
Doerner, F. K., Gendreau, M., Greistorfer, P.,
Gutjahr, W. J., Hartl, R. F., and Reimann, M.,
eds. Metaheuristics - Progress in Complex
Systems Optimization, Computer Science
Interfaces Book Series, Springer Operations
Research, ISBN-13, pp. 978-0-387-71919-1,
Vol.39, 2007, pp. 153-169.

[72] D. Corne, H.L. Fang, C. Mellish, Solving the
modular exam scheduling problem with genetic
algorithms, In: proceedings of the 6th
international conference of industrial and
engineering applications of AI and expert
system, 1993, pp. 370-373.

[73] V. Bhatt, R. Sahajpal, Lecture timetabling using
hybrid genetic algorithms, In: proceedings of
2004 international conference on intelligent
sensing and information processing, 2004, pp.
29-34.

[74] Q.K. Pan, M.F. Tasgetiren, Y.C. Liang, A
discrete particle swarm optimization algorithm
for the no-wait flowshop scheduling problem,
Comput. Oper. Res., Vol.35, 2008, pp. 2807-
2839.

[75] E.K. Burke, G. Kendall, E. Soubeiga, A tabu-
search hyper-heuristic for timetabling and
rostering, J. Heuristics., Vol.9, 2003, pp. 451-
470.

[76] H. Asmuni, E.K. Burke., J.M. Garibaldi, A
hybrid approach for course scheduling inspired
by die-hard co-operative ant behavior, In
proceedings of the IEEE international
conference on automation and logistics, Jinan,
China, 2007, pp. 3095-3100.

WSEAS TRANSACTIONS on COMPUTERS Morteza Alinia Ahandani, Mohammad Taghi Vakil Baghmisheh

E-ISSN: 2224-2872 143 Issue 3, Volume 12, March 2013

