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Abstract: - This paper proposes an optimization technique for the outline capture of planar images. This is 

inspired by a global optimization algorithm based on multilevel coordinate search (MCS). By starting a search 

from certain good points (initially detected corner points), an improved convergence result is obtained. The 

overall technique has various phases including extracting outlines of images, detecting corner points from the 

detected outline, curve fitting, and addition of extra knot points if needed. The idea of multilevel coordinate 

search has been used to optimize the shape parameters in the description of the generalized cubic spline 

introduced. The spline method ultimately produces optimal results for the approximate vectorization of the 

digital contour obtained from the generic shapes. It provides an optimal fit as far as curve fitting is concerned. 

The proposed algorithm is fully automatic and requires no human intervention. Implementation details are 

sufficiently discussed. Some numerical and pictorial results are also demonstrated to support the proposed 

technique. 
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1 Introduction 
Capturing and vectorizing outlines of images is one 

of the important problems of computer graphics, 

vision, and imaging. Various mathematical and 

computational phases are involved in the whole 

process. This is usually done by computing a curve 

close to the data point set [3-5, 23-25]. 

Computationally economical and optimally good 

solution is an ultimate objective to achieve the 

vectorized outlines of images for planar objects. 

The representation of planar objects in terms of 

curves has many advantages. For example, scaling, 

shearing, translation, rotation and clipping 

operations can be performed without any difficulty. 

Although a good amount of work has been done in 

the area [10-16, 31], it is still desired to proceed 

further to explore more advanced and interactive 

strategies. Most of the up-to-date research has 

tackled this kind of problem by curve subdivision or 

curve segmentation. Curve segmentation is 

advantageous in a way that it gives a rough 

geometry of the shape. Approaches used to achieve 

this task, in the literature, are polygonal 

approximations [8, 13], circular arc approximations 

[10,15,17,18, 22] and approximations using cubics 

or higher order spline functions [2,14, 24-25]. 

A non-parametric dominant point detection 

algorithm was proposed in [8], it used the dominant 

points for polygonization of digital curves. The 

problem with polygonal approximation is that these 

approaches are rarely used for shape analysis. A 

combination of line segments and circular arcs for 

object approximation is used in [17, 18]. A scheme 

to construct a curvature continuous conic spline is 

proposed in [15]. This approach presented the conic 

spline curve fitting and fairing algorithm using 

conic arc scaling. The smoothing is done by 

removing unwanted curvature extrema. Similar 

algorithms for data fitting by arc spline curves are 

presented in [22]. A method for segmentation of 

curves into line segments and circular arcs by using 

types of breakpoints is proposed in [10]. Advantage 

of this technique is that it is threshold free and 

transformation invariant. Five categories of 

breakpoints have been defined. The line and conic 

segmentation and merging is based on these 

breakpoints. 

Least square fitting is mostly adopted in 

approximations, which uses splines and higher order 

polynomials. Some approaches are based on active 

contour models known as snakes. These techniques 

are also based on parameterization. Enhancement to 

the scheme by adjusting both number and positions 
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of control points of the active spline curve is shown 

in [14]. This scheme is based on curve 

approximation using iterative optimization with B-

spline curve by squared distance minimization.  

Another way, other than parametric form, is to 

use implicit form of the polynomial. Curve 

reconstruction problem is solved by approximating 

the point clouds using implicit B-spline curve [12]. 

The authors have used trust region algorithm in 

optimization theory as minimization heuristics. 

Techniques described for fitting implicitly defined 

algebraic spline curves and surfaces to scattered 

data by simultaneously approximating points and 

associated normal vectors are proposed in [19, 20, 

21]. 

The proposed work, in this paper, is inspired by 

the fast growing area of soft computing. A good 

amount of literature has been produced on various 

heuristics [30-32] for optimization problems. The 

proposed work is motivated by an optimization 

algorithm based on multilevel coordinate search 

(MCS) by Huyer and Neumaier [30]. It motivates 

the author to an optimization technique proposed for 

the outline capture of planar images. It is an 

extension of the work in [25]. In this paper, the data 

point set represents any generic shape whose outline 

is required to be captured. We present an iterative 

process to achieve our objectives. The algorithm 

comprises of various phases to achieve the target. 

First of all, it finds the contour of the gray scaled 

bitmap image. Secondly it detects corners. These 

phases are considered as preprocessing steps. The 

next phase detects the corner points on the digital 

contour of the generic shape under consideration. 

The idea of multilevel coordinate search (MCS) is 

then used to fit a generalized cubic spline which 

passes through the corner points. It globally 

optimizes the shape parameters in the description of 

the generalized cubic spline to provide a good 

approximation to the digital curve.  

In most of the cases, corner points are not 

enough to approximate the digital object and hence 

some more points are also needed. These points are 

known as break points or knots as they are used to 

break a segment for better approximation. For 

onwards discussion, the set of corner points together 

with the break points will be called as the set of 

significant points. In the fourth phase of the 

proposed algorithm, for each iteration, we will insert 

a point as knot in every piece (if needed) in a 

manner that the distance, d, of the computed point 

on the spline curve and its corresponding contour 

point is greater than a threshold ε. This process 

increases the set of significant points and hence 

needs multilevel coordinate search to be employed 

again for the updated set of significant points to fit 

an optimal spline curve. This process continues until 

it rectifies the solution and helps towards the 

objective optimization in a global fashion. We stop 

the iterative process when all d’s are less than ε. The 

proposed spline method, using multilevel coordinate 

search, ultimately produces optimal results for 

vectorizing the digital contour of the generic shapes. 

It provides an optimal fit as far as curve fitting is 

concerned. 

The organization of the paper is as follows, 

Section 2 discusses about pre-processing step which 

includes finding the boundary of planar object and 

corner detection algorithm for finding the significant 

points. Section 3 is about the interpolant form of 

cubic spline curves and computation of its 

associated tangents. The process of multilevel 

coordinate search is explained in Section 4. Overall 

methodology of curve fitting is explained in Section 

5, it includes the idea of knot insertion as well as the 

algorithm design for the proposed vectroization 

scheme. Demonstration of the proposed scheme is 

presented in Section 6. Finally, the paper is 

concluded in Section 7.  

 

 

2 Preprocessing 
The proposed scheme starts with first finding the 

boundary of the generic shape and then using the 

output to find the corner points or the significant 

points. Forthcoming Sections 2.1 and 2.2 will 

explain these phases. 

 

 

2.1 Finding Boundary of Generic Shapes 
The image of the generic shape can be acquired 

either by scanning or by some other mean. The 

quality of scanned images is dependent upon factors 

such as paper quality and scanning resolution. The 

better the resolution and paper quality, the better 

will be the image. The aim of boundary detection is 

to produce an object’s shape in graphical or non-

scalar representation. Chain codes [6, 7, 27-28] are 

the most widely used representations. Other well-

known representations are syntactic techniques, 

boundary approximations and scale-space 

techniques. The benefit of using chain code is that it 

gives the direction of edges. The boundary points 

are selected as contour points based on their corner 

strength and fluctuations. To arrange the extracted 

boundary points in a sequence (clockwise direction), 

a boundary tracing is performed, using the algorithm 

in [26] for boundary tracing. Demonstration of the 
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method can be seen in Figure 1(b) which is the 

contour of the bitmap image shown in Figure 1(a).  

 

2.2 Detecting Corner Points 
Corners in digital images give important clues for 

the shape representation and analysis. Generally 

objects information can be represented in terms of 

its corners, which play a very vital role in object 

recognition, shape representation and image 

interpretation [1,8]. These are the points that 

partition the boundary into various segments. The 

strategy of getting these points is based on the 

method proposed in [1]. The details of this 

procedure is left for the reader to see in [1]. The 

demonstration of the algorithm is made on Figure 

1(b). The corner points of the image are shown in 

Figure 1(c).  

 

   
(a) (b) (c) 

Figure 1. Pre-processing Steps: (a) Original Image, 

(b) Outline of the image, (c) Corner points achieved. 

 

 

3 Curve Fitting with Cubic Spline 
The motive of finding the corner points, in Section 

2.2, was to divide the contour into pieces. Each 

piece contains the data points in between two 

subsequent corners inclusive. This means that if 

there are m corner points cp1, cp2, …, cpm then there 

will be m pieces pi1, pi2, …, pim. We treat each piece 

separately and fit the spline [9, 24-25] to it. First 

piece includes all the contour points in between cp1 

and cp2 inclusive. Second piece contains all contour 

points in between cp2 and cp3 inclusive. 

Consequently, the m
th
 piece contains all contour 

points between cpm and cp1 inclusive. In general, the 

i
th
 piece contains all the data points between cpi and 

cpi+1 inclusive. 
After breaking the contour of the image into 

different pieces, we fit the spline curve to each 

piece. For this purpose we have used piecewise 

parametric cubic spline interpolant. The spline 

formulation globally is C
1
 continuous.  

 

 

3.1 Cubic Spline Interpolant 
The cubic spline is defined as follows: 
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The functions Rj,i, j = 0,1,2,3 are Bernstein Bézier 

like basis functions, such that 
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From the Bernstein-Bézier theory, it follows that the 

curve segment  1,|
ii ttP lies in the convex hull of the 

control points {Fi, Vi, Wi, Fi+1} and is variation 

diminishing with respect to the control polygon 

joining these points. 

To get the control points  1,,, iiii FWVF , we 

make use of a Bernstein-Bézier representation 

where we can impose the Hermite interpolation 

conditions: 

ii FtP )(  and ii DtP  )( , i  (5) 

where Fi and Fi+1 are corner points of i
th
 piece. Di 

and Di+1 are the corresponding tangents at corner 

points.  

To construct the parametric C
1
 cubic spline 

interpolant on the interval ],[ 0 ntt  we have m
i RF  , 

ni ,......,1,0 , as interpolation data, at knots ti, 

ni ,......,1,0 . The derivatives m
i RD   can be 

found out by the imposition of C
1
 constraints on the 

piecewise cubic form. The C
1
 constraints can be 

written as: 
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Since, the objective of the paper is to come up with 

an optimal technique which can provide a decent 

curve fit to the digital data. Therefore, the interest 

would be to compute the curve in such a way that 

sum square error of the computed curve with the 

actual curve (digitized contour) is minimized. 

Mathematically, the sum squared distance is given 

by:  
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where  

Pi,j = (xi,j, yi,j),    j = 1,2,…,mi ,  (9) 

are the data points of the ith segment on the 

digitized contour. The parameterization over t's is in 

accordance with the chord length parameterization. 

Thus the curve fitted in this way will be a candidate 

of best fit. 

 

 

3.2 Generalized Cubic Spline Interpolant 
The curve fitted in Section 3.1 is a candidate of best 

fit, but it may not be a desired fit. This leads to the 

need of introducing some shape parameters in the 

description of the cubic spline. This section deals 

with the generalized form of cubic spline. It 

introduces two parameters v and w in the description 

of cubic spline defined as follows: 
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It follows from Bézier theory that the curve segment 

)(tP lies in the convex hull of the control points 

 1,,, iiii FWVF  and is variation diminishing with 

respect to the control polygon joining these points. 

It should also be observed that the weights are 

independent and that one could take ii wv   a 

constant for all Zi  without loss of generality. 

However, we find it useful to consider the two 

scalar weights vi and wi on 1[ )i it t   in the 

development of the theory.  

 

Remark 1. If ( )P t  is the interpolant for scalar data 

iF R   with derivatives iD R i Z     then 

( ( ))t p t  can be considered as the interpolation 

scheme applied in 
2R  to data ( )i it F   with 

derivatives (1 )iD   i Z   This is a consequence of 

the property that the interpolant is able to reproduce 

linear functions. In particular, for 1i iv w    the 

scalar data i iF t   and derivatives 1iD i Z     

the interpolant reproduces the function t    
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. (a) Biased behavior of the generalized 

cubic for different values of v with w = 0, (b) Biased 

behavior of the generalized cubic for v = 0 and 

different values of w,  (c) interval tension behavior 

of the generalized cubic for the same values of v and 

w. 

 

Fi 

Fi+1 

Fi 
Fi+1 

Fi 

Fi+1 
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Remark 2. If ( )P t  is the interpolant for planar data  

m
i RF  , 2m , we need to have some specific 

parametrization over t . Although, there are number 

of parametrization schemes in the literature, we will 

prefer to use the chord lenght parametrization as 

follows:  

 
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where 1ii FF  denotes the distance of the i th chord 

segment. Some more details about the 

parametrization is given in the next section. 

 

   
(a) (b) (c) 

Figure 3. (a) Global biased behavior of the generalized cubic for different values of v with w = 0, (b) 

Global biased behavior of the generalized cubic for v = 0 and different values of w,  (c) Global 

interval tension behavior of the generalized cubic for the same values of v and w. 
 

 

The following tension  properties of the Hermite 

like form are now immediately apparent from (10) 

and (11).  

 

Biased Tension: The biased tension behavior is 

possible for the curve designing. For the biased 

tension behavior to the left, one can observe that for 

any i Z   one can have the following:  
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v
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i



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0

    (13) 

This behavior follows from equation (11). For the 

demonstration, see Figure 2(a) for local behavior in 

one interval of the design curve, and see Figure 3(a) 

for global behavior in the whole curve. Similarly, 

for the biased tension behavior to the right, one can 

observe that for any i Z   one can have the 

following:  

1
0

lim 


 ii
w

FW
i

.    (14) 

This behavior follows from equation (11), see 

Figures 2(b) and 3(b) for local and global behavior 

respectively.  

 

Interval Tension: The interval tension behavior is 

possible for the curve designing too. For any i Z   

one can have the following:  

ii
v

FV
i




lim
0

 and 1
0

lim 


 ii
w

FW
i

  (15) 

and the interpolant (10) reduces to:  
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For the demonstration, see Figure 2(c) for local 

behavior in one interval of the design curve, and see 

Figure 3(c) for global behavior in the whole curve. 

 

  
(a) (b) 

 

Figure 4. Curve fitting on a data of a fork (a) Default 

cubic spline, (b) Variety of shape control used. 

 

 

A variety of shape control has been demonstrated 

in the Figure 4, where different shape parameter 

values have been used to get a desired shape in 

Figure 4(e). The Figure 4(a) the default cubic spline 

fitted on the data points of a fork  image. 

 

Remark 3. The case i i iv w r   is that of the 

interval tension method. Obviously, the parameter 

values 3/1 ii wv  provide the special case of 

cubic spline of Section 3.1. Otherwise, these 

parameters can be used to loose or tight the curve. 

This paper proposes an evolutionary technique, 

namely multilevel coordinate search (MCS), to 
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optimize these parameters so that the curve fitted is 

optimal. 

 

4 Multilevel Coordinate Search 
Multi-level coordinate search (MCS) is a global 

optimization technique [30]. It guarantees the 

converge of the optimal solution if the function is 

continuous in the neighborhood of a global 

minimizer. It works by combining two types of 

searching: global searching and local searching. The 

advantage is that if the optimal value is somewhere 

near the current position, local search makes sure 

that the algorithm does not divert to distant locations 

in the solution space. It also reduces the time to 

reach the exact optimal value after reaching near it. 

MCS makes use of other complex implemented 

techniques such as global line search and bound 

constrained quadratic program solver [30]. 

Derivation of the MCS algorithm and underlying 

theory can be found in [30]. A detailed description 

of the mapping of the MCS technique on our 

problem is given in the Section 5. 
 

5 Proposed Approach 
The proposed approach to the curve problem is 

described here in detail. It includes the phases of 

problem matching with MCS using cubic spline, 

description of parameters used for MCS, curve 

fitting, and the overall algorithm design. 

 

 

5.1 Problem Mapping 
This section describes about the MCS formulation 

of the solution to the problem in detail. Our interest 

is to optimize the values of shape parameters v and 

w, in the description of the spline in Section 3.2, 

such that the defined curve fits as close to the 

original contour segment as possible. We use MCS 

for the optimization of these two variables for the 

fitted curve. Hence the dimensionality of the 

solution space is 2, and each point in MCS 

represents a pair of values for v and w. We start with 

an initial set of points that are taken to be the corner 

points of the 2-dimensional solution space and the 

midpoints along the two directions. Since the 

solution space is bounded, with boundary values as -

1 and 1 for both the dimensions, the initial points 

are chosen at these corners. Then we make boxes of 

the solution spaces using these points. For each 

point, we also compute and store the objective 

function value and associate each with one of the 

boxes. Now each box corresponds to a range of 

values of v and w. From all these boxes (ranges of v 

and w values), we first select the one having an 

associated point with the lowest function value. In 

this box, we apply local search and try to find the 

optimum in the determined direction of 

minimization within the box. If the v and w pair 

found in this box is not the optimal solution, then 

this box is split. That is, the range of v and w values 

within this box is further split into smaller mutually 

exclusive ranges. Each new range is associated with 

a new representative point in the solution space and 

its fitness value. The shopping basket is hence kept 

updated with these ranges and fitness values. 

Note that we apply MCS independently for each 

segment of a contour between two consecutive 

corner points that we have identified using corner 

point algorithm. MCS is applied sequentially on 

each of the segments, generating an optimized fitted 

curve for each segment. The algorithm is run until 

the maximum level of allowed splitting is reached, 

or an optimal value is reached. Once, all the contour 

segments are exhausted and still the desired global 

optimum solution is not achieved, MCS is applied 

again. MCS is applied sequentially on each of the 

segments. 

 

 

5.1.1 Initialization  

Once we have the bitmap image of a generic shape, 

the boundary of the image can be extracted using 

the method described in Section 2.1. After the 

boundary points of the image are found, the next 

step is to detect corner points as explained in 

Section 2.2. This corner detection technique assigns 

a measure of ‘corner strength’ to each of the points 

on the boundary of the image. This step helps to 

divide the boundary of the image into n segments. 

Each of these segments is then approximated by 

interpolating spline described in Section 3.2. The 

initial solution of spline parameters (v and w) are 

randomly selected within the range [-1, 1]. 

 

 

5.1.2 Initialization   

After an initial approximation for the segment is 

obtained, better approximations are obtained 

through MCS to reach the optimal solution. We 

experiment with our system by approximating each 

segment of the boundary using the generalized cubic 

spline of Section 3.2. This spline method is a 

variation of the well-known Hermite cubic spline. 

This modified Hermite cubic spline provides greater 

control on the shape of the curve and also efficient 

to compute. The tangents, in the description of the 

spline, are computed using least square method. 

Each boundary segment is approximated by the 

spline. The shape parameters v and w, in the cubic 
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spline, provide greater flexibility over the shape of 

the curve. These parameters are adjusted using MCS 

to get the optimal fit.  

Once an initial fit for a particular segment is 

obtained, the parameters of the fitted curve (v's and 

w's) are adjusted to get better fit. Here, we try to 

minimize the sum squared error. Using MCS, we try 

to obtain the optimal values of the curve parameters. 

We choose this technique because it is powerful, yet 

simple to implement and as shown in Section 6, 

performs well for our purpose. 

 

 
 

Figure 5. Calculation of Intermediate Point (a 

hollow bullet). 

 

5.1.3 Segmentation using Intermediate Points  

For some segments, the best fit obtained through 

iterative improvement may not be satisfactory. In 

that case, we subdivide the segment into smaller 

segments at points where the distance between the 

boundary and parametric curve exceeds some 

predefined threshold, see Figure 5. Such points are 

termed as intermediate points. A new parametric 

curve is fitted for each new segment. 

 

 

5.2 The Algorithm 
We can summarize all the phases from digitization 

to optimization discussed in the previous sections. 

The algorithm of the proposed scheme is contained 

on various steps as shown in the Pseudo code in 

Figure 6. A detailed description, describing the 

whole system with step by step flow, is shown in the 

flowchart demonstrated in Figure 7. 

 

 

5.3 MCS Parameters 
Although MCS sets default values (see Table 1) of 

the algorithm variables, it gives the option of 

manipulating some parameters that define various 

factors affecting its performance. One of the factors 

is that how much weight MCS should give to global 

searching as opposed to local searching. The higher 

this value, the more global level search will be done. 

Similarly, another parameter that defines how much 

local search to do is also specified.  

 

 
 

Figure 6. Pseudo-code Algorithm with MCS. 

 

An initial set of starting solution points have to 

be specified for the system to start with. MCS 

requires an initial guess for the solution. It is this 

starting state parameters that affect the performance 

of the algorithm. If the starting solution is very near 

the optimal solution, it is more likely to find the 

optimal solution readily than if the starting solution 

is distant from the optimal solution. An acceptable 

error value has to be defined, so that if the system 

comes within this error range from the optimal 

value, it terminates with the found solution.  

An overall constraining factor is the maximum 

number of epochs that the algorithm may run, so 

that it does not run indefinitely if it is not reaching a 

stable solution after that number of epochs. The 

direction of optimization of the fitness function has 

to be specified i.e. specific value that has to be 

attained. The default value is negative infinity and it 

can be used for our problem since the lowest value 

for our objective function is zero. The dimension of 

the problem has to be defined as the number of 

inputs that will be passed to MCS, and the allowable 

range of these variables. Table 1 shows the MCS 

parameter settings that have been used for the 

proposed curve fitting optimization problem in a 

global way. 
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Figure 7. Flowchart of the system with MCS. 
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Table 1. Parameter Settings for MCS. 

MCS parameters Values 

Range of input parameters v and w [-1,1] 

Fitness Function Optimization 

Target 

0 (function 

minimization) 

Dimension of problem (number of 

inputs to MCS) 
2 

Weight given to global search 

versus local search 
20 

Maximum number of iterations 

(epochs) 
200 

Stopping relative error (if distance 

from optima is less than this, the 

algorithm terminates) 

1e-4 

Initial Set of Solution Points 

Corner-points 

and Mid-

points of 

solution space 

Number of Steps in Local Search 50 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 8. Pre-processing Steps: (a) Original Image, 

(b) Outline of the image, (c) Corner points achieved, 

(d) Fitted Outline of the image. 

 

 

6 Demonstration 
The algorithm in Section 5 has been implemented 

practically and the proposed curve scheme has been 

implemented with and without intermediate point 

incorporation. Use of MCS has provided pleasing 

and efficient results. We evaluate the performance 

of our system by fitting parametric curves to 

different binary images. 

Figure 8 shows the implementation results of the 

algorithm with MCS. Figures 8(a), 8(b), 8(c) and 

8(d) are respectively the original image of an Arabic 

language word "Ilm", its outline, outline together 

with corner points detected, and the fitted outline 

together with corner points and intermediate points.  

 

  
(a) (b) 

  
(c) (d) 

 

Figure 9. Demonstration of spline fitting at different 

iterations (average per segment) using MCS without 

Intermediate Point: (a) 1
st
 iteration, (b) 5

th
 iteration, 

(c) 10
th
 iteration, (b) 62th (final) iteration. 

 

 

Figures 9(a), 9(b), 9(c) and 9(d) demonstrate, 

respectively, 1
st
, 5

th
, 10

th
 and last (62

th
) iteration of 

the algorithm using MCS without inserting any 

intermediate point. Since the number of iterations 

may not be same for each segment, therefore the 

number of iterations for the whole curve mentioned 

here actually represents the average number of 

iterations per segment. This experiment is done 

without inserting any intermediate point in any of 

the curve segment. One can notice that after some 

iterations, although an approximation curve has 

been achieved, still it is required to have some 

further improvements. Figures 8(d) demonstrates the 

improvement in the output. This is done by inserting 

some appropriate intermediate points in the desired 

curve segments. The process of such an insertion 

has been explained in Section 5.1.3. One can notice 

that after some insertions, a pleasing approximate 

curve has been achieved. However, some cost of 

having some intermediate points has been paid. This 

cost, the author believes, is bearable as the 

computation time consumed is not very significant 

as compared to the time paid to achieve not a good 

approximation in Figure 9. Moreover, accuracy 
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achieved in Figure 8 is much higher and visually acceptable.  

 

 

     

(a) (b) (c) (d) (e) 
 

Figure 10. Pre-processing steps for curve fitting (a) Image of a plane, (b) Extracted outline (c) Initial corner 

points. 

 

Some more experiments are done on different 

images. An image of a plane is shown in Figure 

10(a), its outline is detected in Figure 10(b), and the 

corner points are shown in 10(c). Figures 10(d) and 

10(e) demonstrate the fitted curves to the outline of 

Figure 10(b) corresponding to the proposed scheme 

without and with insertion points respectively. It can 

be noticed that the fitted curve in Figure 10(d) has a 

good approximation without inserting extra points. 

However, inserting extra points, has highly refined 

the approximation in Figure 10(e). 

 

 

   

(a) (b) (c) 

Figure 11. Pre-processing steps for curve fitting (a) 

Image of a fork, (b) Extracted outline (c) Initial corner 

points. 

 

 

 

 

(a) (b) 

Figure 12. Cubic curve fitting (a) without 

intermediate points (b) with intermediate points. 

 

Another experiment is made on an image of Fork 

in Figure 11(a).  Its outline is detected in Figure 

11(b), and the corner points are shown in 11(c). 

Figures 12(a) and 12(b) demonstrate the fitted 

curves to the outline of Figure 11(b) corresponding 

to the scheme without and with insertion points 

respectively. It can be noticed that the fitted curve in 

Figure 12(a) has a good approximation, without 

inserting extra points, except at two segments. 

However, inserting extra points, has highly refined 

the approximation everywhere in Figure 12(b). 

 

 

Table 2. Names and contour details of images. 

Image Name # of 

Contours 

# of Contour 

Points 

 
Ilm.bmp 1 [1641] 

 
Plane.bmp 3 [1106+61+83] 

 
Fork.bmp 1 [693] 

 

 

Table 3. Comparison of number of initial corner 

points, intermediate points and total time taken (in 

seconds) for cubic interpolation approaches. 

Image 

# of 

Initial 

Corner 

Points 

#
 o

f 
In

te
rm

ed
ia

te
 

P
o

in
ts

 i
n

 C
u

b
ic

 

In
te

rp
o

la
ti

o
n

 

Total Time 

Taken For Cubic 

Interpolation 

W
it

h
o

u
t 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

W
it

h
 

In
te

rm
ed

ia
te

 

P
o

in
ts

 

Ilm.bmp 18 34 46.312 164.17 

Plane.bmp 31 13 56.766 100.58 

Fork.bmp 10 22 18.438 70.297 

 

 

Tables 2 to 4 summarize the experimental results 

for different bitmap images. These results highlight 

various information including contour details of 
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images (Table 2), intermediate points (Table 3), and 

number of iterations (Table 4). 

 

Table 4. Comparison of number of epochs taken by 

MCS cubic interpolation approach with and without 

intermediate points. 

Image 

# of Epochs taken by MCS 

Cubic 

Interpolation 

Without 

Intermediate 

Points 

Cubic 

Interpolation 

With 

Intermediate 

Points 

Ilm.bmp 2459 8915 

Plane.bmp 4726 7613 

Fork.bmp 1035 4690 

 

 

4 Conclusion 
A global optimization technique, based on 

multilevel coordinate search, is proposed for the 

outline capture of planar images. The proposed 

technique uses the multilevel coordinate search to 

optimize a cubic spline to the digital outline of 

planar images. By starting a search from certain 

good points (initially detected corner points), an 

improved convergence result is obtained. The 

overall technique has various phases including 

extracting outlines of images, detecting corner 

points from the detected outline, curve fitting, and 

addition of extra knot points if needed. The idea of 

multilevel coordinate search has been used to 

optimize the shape parameters in the description of 

the generalized cubic spline introduced. The spline 

method ultimately produces optimal results for the 

approximate vectorization of the digital contour 

obtained from the generic shapes. It provides an 

optimal fit with an efficient computation cost as far 

as curve fitting is concerned. The proposed 

algorithm is fully automatic and requires no human 

intervention. Implementation details are sufficiently 

discussed using both with and without insertion of 

intermediate points. The proposed technique has 

been supported with numerical and pictorial results 

demonstrated. 
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