
Parallel Particle Swarm Optimization on Graphical Processing Unit

for Pose Estimation

VINCENT ROBERGE, MOHAMMED TARBOUCHI

Electrical and Computer Engineering

Royal Military College of Canada

PO Box 17000, Station Forces, Kingston, Ontario, K7K 7B4

CANADA

vincent.roberge@rmc.ca, tarbouchi-m@rmc.ca

Abstract: - In this paper, we present a parallel implementation of the Particle Swarm Optimization (PSO) on

GPU using CUDA. By fully utilizing the processing power of graphic processors, our implementation provides

a speedup of 215x compared to a sequential implementation on CPU. This speedup is significantly superior to

what has been reported in recent papers and is achieved by a few simple optimizations we made to better adapt

the parallel algorithm to the specific architecture of the NVIDIA GPU. Next, we apply our parallel PSO to the

problem of 3D pose estimation of a bomb in free fall. We reduce the computation time of the analysis of 120

images to about 1 s, representing a speedup of 140x compared to the sequential version on CPU.

Key-Words: - CUDA, graphic processing units, particle swarm optimization, parallel implementation, 3D pose

estimation

1 Introduction
The particle swarm optimization (PSO) is a

population based non-deterministic optimization

algorithm [1]. Since it was first proposed in 1995,

the PSO has been extensively used to optimize very

complex functions in a wide range of applications.

Its implementation is simple, its performance is very

competitive and it is not required to derive the

function to be optimized. However, because the

algorithm simulates the movement of a swarm of

candidate solutions over a very large number of

iterations, it has the disadvantage to require

significant processing power.

In order to reduce the computation time, we

propose a parallel implementation of the PSO on

GPU in CUDA [2]. Our approach allows the

execution of the PSO with a very large number of

particles and iterations in a minimal time. This

paper provides three main contributions. First, it

presents an innovative implementation of the

original PSO on GPU. Second, it proposes four

simple optimizations to fine tune the algorithm for

the NVIDIA GPUs, resulting in a very impressive

speedup compared to what has been previously

published in [3], [4] and [5]. Finally, we

demonstrate how our parallel PSO can be applied to

the 3D pose estimation of a bomb in free fall

allowing for very high accuracy and an extremely

short execution time.

The remainder of this document is organized in

sections. Sections 2 and 3 briefly discuss the latest

architecture of the NVIDIA GPU and provide an

overview of the PSO algorithm. Section 4

summarizes some of the previous work done in the

field. We present our parallel implementation of the

PSO in section 5 and propose four optimizations in

section 6. The performance results of our

implementation are published in section 7. Finally,

we apply our algorithm to the problem of 3D pose

estimation of a bomb in free fall in section 8.

2 GPU Architecture
The graphic card used in our experiments is an

EVGA NVIDIA GTX560Ti [6]. It is equipped with

the NVIDIA graphic processor Fermi GF116

composed of 384 cores. This chip is currently

available with a maximum of 16 multi-processors

blocks, each equipped with 32 processors. In the

case of the GTX560Ti, it is equipped with 8 blocks

of 48 processors. We could discuss here all the

details of the GPU architectures. These processors

are indeed significantly different from CPUs.

However, we will focus on four characteristics of

the GPUs that we deem important. We actually

optimized our implementation of the PSO based on

those characteristics.

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 170 Issue 6, Volume 11, June 2012

2.1. PCI Express Bus
In today’s personal computers, graphic cards are

usually connected to the motherboard through a PCI

Express bus. Although rated to 16 GB/s for the

PCIe 2 bus, the actual throughput achieved when

transferring data from the main memory to the

graphic card is usually lower and depends on the

hardware used. As an example, the NVIDIA GTX

throughput is about 5.11 GB/s [4]. This bandwidth

is slower than the memory bandwidth of recent

CPUs and very much slower than the memory

bandwidth of recent GPUs [7]. When designing a

CUDA application, it is therefore important to

consider the bottleneck caused by the PCIe bus and

to minimize the data transfers between the CPU and

the GPU. This slow transfer could easily cancel the

performance gain of a parallel implementation.

2.2. Memory architecture
The memory of the NVIDIA Fermi GPU is divided

into global memory, constant memory, texture

memory, shared memory and registers [8]. The

constant and texture memory can be bothersome to

use and are less attractive for scientific computing.

The global memory resides off chip, can be a few

GB in size and has a large data bus resulting in a

very high bandwidth (up to 192.4 GB/s [9]). It is

used to store large amounts of data and is persistent

for the entire length of the application. The shared

memory has a maximum size of 48 KB and resides

on chip. This memory is shared between all the

processors of a multi-processor block and is

persistent for the duration of a parallel function

(called a kernel in CUDA). The latency of this

memory is about 20 to 40 times shorter than for the

global memory [8]. The registers are even smaller

than the shared memory, but offer a slightly faster

access. Their scope is also limited to the life of the

kernel. The maximum use of shared memory and

registers is therefore recommended to improve the

efficiency of a CUDA application.

2.3. Single-instruction, multiple threads
Unlike multicore systems (such as dual or quad-core

Intel and AMD CPUs), graphic processors can

contain hundreds of cores and are considered

“manycore” systems. This type of system allows the

parallel executions of many threads on a single

multi-processor block. It has the advantage of

providing superior computing power, but the

disadvantage that all threads within the block must

execute the same instruction at the same time. These

systems have been categorized as “single-

instruction, multiple-threads” (SIMT) by

NVIDIA [8]. Their functioning is directly linked to

the hardware architecture of the multi-processor

blocks which use a limited number of control units

(instruction caches, schedulers, dispatch units) and a

large number of cores. As a consequence, when a

parallel program contains conditional statements (if,

elseif), the multi-processor block will sequentially

execute the possible paths regardless the number of

active cores. This phenomenon is called thread

divergence and should be avoided to maximize

performance [7].

3. Particle Swarm Optimization
The PSO is a population based non-deterministic

optimization method that was proposed by Kennedy

and Eberhart in 1995 [1]. The algorithm simulates

the movement of a swarm of particles in a

multidimensional search space progressing towards

an optimal solution. The position of each particle

represents a candidate solution (a complete

trajectory encoded in a single vector) and is

randomly initiated. At every step of the iterative

process, the velocity of each particle is individually

updated based on the previous velocity of the

particle, the best position ever occupied by the

particle (personal influence) and the best position

ever occupied by any particle of the swarm (social

influence). As outlined in [10], the equations used to

compute the velocity and position of a single

particle at iteration t are as follows:

 (1)

 (2)

where variables in bold are vectors; v is the velocity

of the particle; x is its position; b is the best position

previously occupied by the particle; g is the best

position previously occupied by any particle of the

swarm; r1 and r2 are vectors of random values

between 0 and 1; and ω, c1 and c2 are the inertia, the

personal influence and the social influence

parameters. Still based on [10], the flow diagram of

the PSO is displayed in Fig. 1.

4. Related Works
Scientific computing on GPUs is a relatively new

field of research. The CUDA SDK was actually

released in 2007 [7]. For this reason, there are only a

few publications available that discuss the

implementation of the PSO on GPU. In [3], Zhou

and Tan implement in CUDA a local variant of the

PSO. Instead of using a global communication

scheme as in the original PSO [1], they restrict the

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 171 Issue 6, Volume 11, June 2012

communication of a particle to its two closest

neighbors (based on the particles’ index, not the

actual location in the search space). This approach

does not require a parallel search for the best

particle g and limits the communication between the

threads. However, it also modifies the behavior and

affects the effectiveness of the PSO. They achieve a

speedup of 11.4x. The authors of [11] implement

and compare three different variants of the PSO on

GPU, but only parallelize the evaluation of the cost

function. Although they report a maximum speedup

of 27x, we believe that their approach is not scalable

to larger swarm sizes since the initialization, the

search for the best particle, and the velocity and

position updates are performed sequentially. The

authors of [4] discuss the impact of different thread-

block sizes over the performance of the PSO in a

GPU implementation. They also limit their

parallelization to the evaluation of the cost function.

They report a speedup of 43x, but their results

provide insight with regard to the specific cost

function used, but not for the PSO. More recently,

the authors of [12] proposed a GPU-based

asynchronous PSO that uses a single CUDA kernel

and simultaneously runs independent swarms on the

different multi-processor blocks. Their

implementation eliminates the communication

between the thread blocks, but modifies the

behaviors of the original PSO. Their approach also

has the disadvantage of forcing a single thread block

size for all steps of the PSO including the fitness

evaluation. This can significantly reduce the

maximum speedup achieved for complex fitness

functions [4].

Fig. 1. Flowchart of the particle swarm optimization

algorithm

They achieved a speedup of 30x for the Rosenbrock

function. Finally, the authors of [13] proposed a

similar approach using multiple swarms, but did not

limit their implementation to a single kernel and

allowed migrations of the particles between the

swarms. They achieved a speedup of 37x. In this

paper, we parallelize every step of the original PSO

and achieve a 215x speedup for the Rosenbrock

function while maintaining the behavior of the

original PSO algorithm.

5. CUDA Implementation of the PSO
5.1. Overall design
The flowchart of our parallel implementation of the

PSO in CUDA is presented in Fig. 15 at the end of

this document. The program starts on the CPU and

copies the configuration parameters, such as the

swarm size and the number of iterations, to the

global memory of the GPU. The CPU then launches

the execution of the GPU. The particle swarm is

randomly initiated and its movement is simulated on

the GPU. In between each parallel kernel (a parallel

function in CUDA), the state of the swarm is saved

in the global memory of the GPU. Once the

specified number of iterations has been reached, the

control is given back to the CPU who then copies

the optimal solution from the GPU to the CPU. It is

important to note that a block of threads is executed

by a single multi-processor block and there is no

means to synchronize or communicate between

blocks other than terminating and launching another

kernel. Moreover, the CPU and the GPU do not

share the same memory and special CUDA

functions must be used to transfer the data.

As used in [14], [15] and [16], a common

technique to parallelize the PSO consists of

executing a local swarm on each processor while

minimizing the communication between the

swarms. This approach can be used on current

multicore processors, but does not provide the level

of parallelism needed for an efficient

implementation on GPU. In our implementation, we

launch one independent thread for each particle. For

a complex problem, the number or particles used

may be very large resulting in more threads than

GPU cores. Although it may seem undesirable, it is

actually advantageous to create more threads than

cores. In an NVIDIA GPU, the creation, scheduling

and destruction of threads are done in hardware and

require minimal time. Moreover, using a lot of

threads will give flexibility to the GPU to better

schedule the computation and hide the memory

access latency. A parallel program which uses a lot

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 172 Issue 6, Volume 11, June 2012

of threads will better scale to future GPUs. For all

these reasons, it is recommended to develop parallel

algorithms that will provide sufficient parallelism to

maximize the number of threads created [7]. The

NVIDIA Fermi GPUs allow the creation of 2
16

blocks of 2
10

 threads (for a total of 2
26

 threads) [8].

5.2. Implementation details
In this section, we present the implementation

details of each kernel shown in Fig. 15.

5.2.1 Initialize particles’ position and velocity

This kernel launches one thread for each particle of

the swarm. It randomly initializes the position of the

particles within the search space using the

curand_uniform() function from the CUDA

CURAND library [17] and sets the particles’

velocity to 0. Before terminating, the kernel saves

the particles’ position and velocity in the GPU

global memory so the data is available to the next

kernel.

5.2.2 Compute costs and update local bests

This kernel launches a thread for each particle. This

thread loads the position of the particle and

computes the associated cost by evaluating the

function to be optimized. If necessary, the thread

updates the best cost and best position b ever

occupied by the particle (local influence). The

thread saves this information back to the global

memory.

5.2.3 Find the index of the best particle

This kernel launches one thread per particle and

searches for the index of the best particle using a

parallel tree-based reduction [18] (shown on Fig. 2).

This type of reduction is a well-known pattern and

requires log2(N) steps. Because CUDA thread-

blocks cannot communicate between them, we

divide the parallel reduction into two kernels.

Fig. 2. Tree-based parallel reduction

The first kernel finds the best particle within each

block and the second, the best particle within the

entire swarm. The first kernel is then launched with

a number of threads equal to the swarm size and the

second, with a number of threads equal to the

number of thread-blocks of the first kernel.

5.2.4 Update the global best

This kernel is launched with a number of threads

equal to the dimension of the function to optimize.

Each thread simply updates one element of the

global best when the best particle found at this

iteration is of better quality (lower cost), ensuring a

parallel access to the memory.

5.2.5 Compute the particles’ new velocity and

position

This kernel launches one thread for each particle.

This thread first reads the current velocity of a

particle, its current position, its best previous

position and the swarm’s best position and updates

its velocity and position using equations (1) and (2).

The new velocity and position are saved in global

memory.

This entire process is repeated several times until

the specified number of iterations is reached. At that

time, the position of the best particle of the swarm

represents the optimal solution returned to the CPU.

Our implementation limits the amount of data

transferred between the CPU and the GPU and fully

parallelizes all the steps of the PSO algorithm. The

speedup achieved is therefore significant.

6. Optimizations
Our parallel PSO exhibits the level of parallelism

necessary to fully use the GPU hardware. However,

it is still too general and needs to be fine-tuned to

the specific architecture of the NVIDIA GPUs as

explained in section 2. In this section, we discuss

four optimizations we made to our program that are

specific to a CUDA implementation. These

optimizations further improve the achieved speedup

by a factor of 10x.

6.1 Maximum use of shared memory
Each multi-processor block has 48 KB of shared

memory physically collocated on the chip. As

explained earlier, this memory has a very fast access

time. For this reason, we modified all our kernels to

always load the data in shared memory before

performing the calculations. As an example, in the

first kernel, each thread calls the curand_uniform()

function multiple times to initialize each dimension

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 173 Issue 6, Volume 11, June 2012

of the particle’s position. Our initial implementation

loaded and stored the state of the random generator

(40 bytes per thread) from global memory every

time. In our optimized version, the states are first

loaded in shared memory and all future memory

accesses are done to the shared memory. Once

completed, the kernel stores all the variables back to

the global memory to ensure persistence of the data.

6.2 Coalescing memory access
NVIDIA GPUs are equipped with a very large

global memory bus (up to 384-bit) resulting in a

very high bandwidth (up to 192.4 GB/s) [9].

However, this performance can only be achieved

when the memory access pattern is fully

coalesced [8]. One of the main factors for this

condition is that each thread involved in a parallel

load operation accesses memory cells that are

collocated. In our initial implementation, we stored

the positions and velocities of the particles in global

memory in a contiguous manner as shown in Fig. 3.

When the threads load the data from global memory

to shared memory, they simultaneously fetch one

dimension at the time (remember the “single-

instruction, multiple-threads” model). The

throughput achieved is therefore 1/D of the rated

bandwidth (where D is the dimension of the

particles). To address this limitation, we re-

organized our data in an interleave configuration, as

in Fig. 4, to ensure a coalescing memory access

pattern, resulting in an improved throughput.

Fig. 3. Sub-optimal memory storage layout for 4

particles of 4D resulting in a non-coalescing

memory access pattern to global memory

Fig. 4. Optimal memory storage layout for 4

particles of 4D resulting in a coalescing memory

access pattern to global memory

6.3 Thread divergence
As explained earlier, when programming a “single-

instruction, multiple-threads” system, it is important

to minimize the different execution paths to avoid

their sequential execution. In CUDA, thread

divergence is actually only applicable to groups of

32 threads (called warp). In other words, peak

performance will only be achieved when all the

threads within the same warp follow the same

execution path. In order to minimize thread

divergence, we modified our parallel reduction

kernel following the approach presented in [19]. In

our original implementation, every warp suffered

thread divergence while only one warp exhibited the

divergence in our optimized version shown in

Fig. 5.

Fig. 5. Optimized version of the tree-based parallel

reduction minimizing thread divergence

6.4 Block size
When launching a CUDA kernel, different thread-

block configurations can be chosen. A programmer

might decide to create a few blocks, each containing

many threads or many blocks, each containing a few

threads. As explained in [4], this design decision

will influence the overall performance of the

application. Although one could mathematically

compute the best configuration, it is usually

suggested to experimentally test multiple

configurations [7]. This test should be repeated

when using different application parameters (such as

the PSO swam size) or hardware (such as a newer,

more powerful GPU). In our case, we ran our

parallel PSO using different numbers of particles

and block sizes. As shown in Fig. 6, we found that

smaller block sizes generally deliver better

performance for a smaller problem size. For 16 384

particles, a block size of 128 threads provides the

best performance, 58% more than with a block size

of 32 threads.

Fig. 6. Speedup of our parallel PSO for different

number of particles and block sizes

0

50

100

150

200

250

256 512 1024 2048 4096 8192 16384

S
p

ee
d

u
p

Number of particles

block_size 32 block_size 64
block_size 128 block_size 256

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 174 Issue 6, Volume 11, June 2012

7. Performance Results
To test the performance of our parallel PSO, we

optimize the following benchmark function which is

based on the Rosenbrock function and illustrated for

2D in Fig. 7.

∑ ((
)

)

(3)

Fig. 7. Benchmark function based on the

Rosenbrock function

For our performance evaluation, we ran our

sequential and parallel PSO to optimize equation (3)

with 20 dimensions, 2000 iterations and different

numbers of particles. The characteristics of the

system used are listed in Table 1 and the results

obtained are shown in Fig. 8 and Fig. 9. The

maximum speedup achieved is 215.6x, which is

significantly higher than what was achieved by

other CUDA PSO implementations proposed in

recent papers (11.4x in [3], 17.2x in [5] and 43.9x in

[4]). We believe that our better performance is

related to the parallelization of the entire PSO and

the four optimizations we discussed in section 6.

Table 1. Details of our experimental setup

Host PC used to run the sequential version:

 AMD Phenom II X6, 2.80 GHz

 8 GB DDR3, 1333 MHz

 Windows 7 SP1 64 bit Enterprise

 Visual Studio 2010 SP1

Device GPU used to run the parallel version in

CUDA:

 EVGA NVIDIA GTX 560 Ti

 384 CUDA cores, 1.701 GHz

 1 GB DDR5, 2052 MHz

 Windows 7 SP1 64 bit Enterprise

 Visual Studio 2010 SP1

 CUDA Toolkit 4.0

 CUDA SDK 4.0

Fig. 8. Execution time of our sequential and parallel

PSO for different precisions and number of particles

(20 dim, 2000 iterations, avg of 20 trials)

Fig. 9. Speedup of our parallel PSO for different

precisions and number of particles (20 dimensions,

2000 iterations, average of 20 trials)

8. Application to 6DOF
In this section, we use our parallel PSO to accelerate

the computation of the 6 degrees of freedom

(6DOF) (x, y, z, yaw, pitch, and roll) of a bomb in

free fall. In modern military aviation, the

accreditation of new ordnances usually requires a

safe separation test. This test is used to define the

safe envelope of operation to drop the bomb. One

approach consists of installing a high speed camera

on the aircraft and recording multiple drops at

different speeds and orientations. The 2D video

images are then processed to produce a 3D

animation which is visualized under different angles

by experts to assess the safety of the separation

between the bomb and the aircraft. This approach

requires the accurate computation of the 3D position

of the bomb from a 2D image. To help with the

tracking of the bomb, markers are precisely painted

in many locations on the bomb.

1

10

100

1000

10000

100000

1000000

256 512 1024 2048 4096 8192 16384

E
x

ec
u

ti
o
n

 t
im

e
(m

s)

Number of particules

sequential double sequential float

0

50

100

150

200

250

256 512 1024 2048 4096 8192 16384

S
p

ee
d

u
p

Number of particules

double float

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 175 Issue 6, Volume 11, June 2012

We previously developed software to compute

the 6DOF from 2D images using an exhaustive

search (see Fig. 10) [20]. This approach is extremely

slow and not very precise. There exist other

methods to tackle the problem such as the direct

mathematic method presented in [21]. After

experimentation, we concluded that this approach is

very fast, but provides bad results for noisy inputs

(which is obviously the case for the safe separation

test). In this section, we propose to increase the

accuracy of the results and minimize the execution

time by using our parallel PSO to compute the

6DOF on a GPU.

Fig. 10. Screenshot of our software showing the

bomb being released from the aircraft.

8.1 Cost Function
As discussed earlier, the PSO is a non-deterministic

algorithm that allows the optimization of a function

without the need to derive it. It other words, the

PSO can be used to optimize a problem where the

optimal solution is not practically computable (such

as the 6DOF problem with noisy input), but a

candidate solution is easily evaluated.

In our implementation, we use the PSO to find

the 3D position of the bomb that, when projected to

the 2D video image, minimizes the average

distances between the original markers and the

projected markers. For a candidate solution (tx, ty, tz,

yaw, pitch, and roll), we define our cost function as

follows:

1) Place a virtual bomb centered and oriented in

the same direction as the camera;

2) Select the (x, y, z) coordinates of one of the

marker of the virtual bomb;

3) Rotate this virtual marker using the following

equation:

[

] [

] (4)

where R(α, β, γ) is the rotation matrix and is

defined as follows [22]:

 cos(α)cos(β) cos(α)sin(β)sin(γ)

- sin(α)cos(γ)

cos(α)sin(β)cos(β)

+ sin(α)sin(γ)

(5) sin(α)cos(β) sin(α)sin(β)sin(γ)

+ cos(α)cos(γ)

sin(α) sin(β)cos(γ)

- cos(α)sin(γ)

 -sin(β) cos(β)sin(γ) cos(β)cos(β)

where α is the yaw angle, β is the pitch angle

and γ is the roll angle of the candidate solution.

It is important to note that this matrix performs

the three rotations in the roll-pitch-yaw order

and would be different if the order was altered.

4) Translate the virtual marker based on the tx, ty

and tz of the candidate solution:

[

] [

] [

] (6)

5) Project the virtual marker on the 2D images

using:

 (

)

(7)

(8)

where the vector (fx, fy) represents the focal

distance of the lens in pixels, the vector (cx, cy)

represents the coordinates of the principal point

of the lens in pixels, and αc is the skew

coefficient (angle between the x and y

pixels) [23].

6) Finally, compute the distance between the

virtual marker projected on the 2D image and

the actual marker identified on the 2D image

using:

 √ (9)

where (x, y) is the position in pixels of the actual

marker on the 2D image and (x’’’, y’’’) is the

position in pixels of the virtual marker projected

on the 2D image.

7) Repeat these steps for all markers visible on the

2D video image and compute the average error

per marker in pixels.

Throughout the iterative process of the PSO, the

swarm of candidate solutions will move towards a

solution that minimizes the above cost function.

This final solution represents the 3D position of the

bomb for that 2D image. The process must be

repeated for every image of the video sequence.

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 176 Issue 6, Volume 11, June 2012

This approach demonstrates a very high level of

parallelism and can be accelerated on GPUs using

CUDA.

8.2 CUDA implementation
Our parallel implementation in CUDA of the PSO

applied to the problem of pose estimation of a bomb

in free fall is almost identical to the one we

previously described in section 4. As shown in

Fig. 11, the algorithm creates an independent swarm

of particles for each 2D image and still uses one

thread per particle. The positions of the bombs are

therefore computed simultaneously for all images

using an independent PSO algorithm. For 128

images and 256 particles, our software initially

launches 32 768 threads. The cost function is

replaced with the one described at the previous

section. The parallel reduction is now implemented

with a single kernel since each thread-block

implements an independent PSO. The rest of the

algorithm remains identical.

Fig. 11. Flowchart of our implementation of the

parallel PSO in CUDA applied to the 6DOF

problem

8.3 Performance analysis
To assess the performance of our parallel algorithm,

we developed a sequential version for the CPU. We

used the system described in Table 1 and executed

our algorithms to analyse 128 video images with

2000 iterations and different swarm sizes. The

execution times and speedups achieved are shown in

Fig. 12 and Fig. 13. The maximum speedup reached

is 140.3x with an execution time of 1.4 s. To

demonstrate the precision of our approach, we also

show the average error in pixels for each image on

Fig. 14. The average error for all images is of 0.286

pixels per marker which is 21% more precise than

the original exhaustive search method we developed

[20]. It is important to note that an error of 0 would

be impossible since it would involve that the marker

detection was 100% accurate with an extreme sub-

pixel precision and that the camera calibration was

also perfect. An error of 0.286 pixels is excellent

and truly demonstrates the accuracy of our PSO

algorithm.

Fig. 12. Execution of our sequential and parallel

PSO for different precisions and number of particles

(6DOF problem, 2000 iterations, average of 20

trials)

Fig. 13. Speedup of our parallel PSO for different

precisions and number of particles (6DOF problem,

2000 iterations, average of 20 trials)

Fig. 14. Average error in pixels for each image

1

10

100

1000

10000

100000

1000000

32 64 128 256

E
x

ec
u

ti
o
n

 t
im

e
(m

s)

Number of particles

sequential double sequential float

parallel double parallel float

0

50

100

150

32 64 128 256

S
p

ee
d

u
p

Number of particles

double float

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 10 20 30 40 50 60 70 80

E
rr

o
r

(p
ix

el
s)

Image number

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 177 Issue 6, Volume 11, June 2012

9. Conclusion
In this paper, we presented a brief description of the

latest NVIDIA GPU architecture and its limitations.

We provided an overview of the PSO algorithm and

proposed a parallel implementation on GPU using

CUDA. Unlike multicore CPU, GPU are built of

hundreds of cores. The CUDA program must exploit

a very high level of parallelism to fully use the GPU

hardware. Unlike other implementations presented

in the literature, we exploited this level of

parallelism and tuned our algorithm to achieve a

speedup of 215x on NVIDIA GPU. Finally, we

applied our algorithm to accelerate the computation

of the 6 degrees of freedom of a bomb in free fall.

This allowed an increase in the accuracy of the

results and a speedup of 140x. This paper represents

a significant contribution since it provides a parallel

implementation of the PSO with a speedup higher

than any previously proposed implementations. Our

approach can be used at the core of many

optimization solvers to significantly speedup the

computation using a GPU. In the future, we intend

to implement other optimization algorithms on

GPUs using CUDA.

References:

[1] J. Kennedy and R. Eberhart, “Particle swarm

optimization,” Proceedings of: IEEE

International Conference on Neural Networks,

Perth, WA, Australia, 1995, pp. 1942-1948.

[2] “CUDA” Available: http://www.nvidia.com/

object/cuda_home_new.html.

[3] You Zhou and Ying Tan, “GPU-based parallel

particle swarm optimization,” Proceedings of:

2009 IEEE Congress on Evolutionary

Computation, Piscataway, NJ, USA, 2009,

pp. 1493-500.

[4] M. Cárdenas-Montes, M. Vega-Rodríguez, J.

Rodríguez-Vázquez, and A. Gómez-Iglesias,

“Effect of the Block Occupancy in GPGPU

over the Performance of Particle Swarm

Algorithm,” Adaptive and Natural Computing

Algorithms, Springer Berlin / Heidelberg,

2011, pp. 310-319.

[5] Y. Tan and Y. Zhou, “Parallel Particle Swarm

Optimization Algorithm Based on Graphic

Processing Units,” Handbook of Swarm

Intelligence, Springer Berlin Heidelberg, 2010,

pp. 133-154.

[6] “EVGA | Intelligent Innovation” Available:

http://www.evga.com/.

[7] D.B. Kirk and W. Mei W. Hwu, Programming

Massively Parallel Processors, A Hands-on

Approach, Burlington, MA: Elsevier, Morgan

Kaufmann, 2010.

[8] NVIDIA CUDA C Programming Guide,

version 3.2, Santa Clara, CA, NVIDIA

Corporation, 2010.

[9] NVIDIA Corporation, “GeForce GTX 580”

Available:

http://www.nvidia.com/object/product-geforce-

gtx-580-us.html.

[10] M. Clerc, Particle Swarm Optimization,

France, Lavoisier, 2005.

[11] G.A. Laguna‐Sánchez, M. Olguín‐Carbajal, N.

Cruz‐Cortés, R. Barrón‐ Fernández, and J.

Álvarez‐Cedillo, “Comparative Study of

Parallel Variants for a Particle Swarm

Optimization Algorithm Implemented on a

Multithreading GPU,” Journal of Applied

Research and Technology, Vol. 7, 2010,

pp. 292-309.

[12] L. Mussi, Y.S.G. Nashed, and S. Cagnoni,

“GPU-based asynchronous particle swarm

optimization,” Proceedings of: 13th annual

conference on Genetic and evolutionary

computation, Dublin, Ireland, ACM, 2011,

pp. 1555-1562.

[13] S. Solomon, P. Thulasiraman, and R.

Thulasiram, “Collaborative multi-swarm PSO

for task matching using graphics processing

units,” Proceedings of: the 13th annual

conference on Genetic and evolutionary

computation, Dublin, Ireland: ACM, 2011,

pp. 1563-1570.

[14] V.R. Roberge, “Contributions à la conception

d’un système opérationnel de planification de

trajectoires en temps réel pour les drones,”

M.S. thesis, Collège Militaire Royal du

Canada, 2011.

[15] F. Parra, S. Galan, A. Yuste, R. Prado, and J.

Muñoz, “A Method to Minimize Distributed

PSO Algorithm Execution Time in Grid

Computer Environment,” Bioinspired

Applications in Artificial and Natural

Computation, Springer Berlin / Heidelberg,

2009, pp. 478-487.

[16] Z.-hui Zhan and J. Zhang, “Parallel Particle

Swarm Optimization with Adaptive

Asynchronous Migration Strategy,” Algorithms

and Architectures for Parallel Processing,

Springer Berlin / Heidelberg, 2009,

pp. 490-501.

[17] NVIDIA, “CUDA CURAND Library,” Aug.

2010.

[18] T.G. Mattson, B.A. Sanders, and B.L.

Massingill, Patterns for Parallel

Programming, Addison Wesley, 2004.

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 178 Issue 6, Volume 11, June 2012

[19] J. Hoberock and D. Tarjan, “NVIDIA Lecture

Slides for Course CS193G, Standford

University.”

[20] V. Roberge, G. Vigeant, and A. Forest,

“Document de conception détaillée pour le

projet des six degrées de liberté (6DOF)”,

GEF455/457-DID-08, Royal Military College

of Canada, Mar. 2005.

[21] A. Ansar and K. Daniilidis, “Linear pose

estimation from points or lines,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 25, 2003, pp. 578-589.

[22] S. Lavalle, “Yaw, pitch, and roll rotations”,

Planning Algorithms Available:

http://planning.cs.uiuc.edu/node102.html.

[23] “Camera Calibration Toolbox for Matlab”

Available: http://www.vision.caltech.edu/

bouguetj/calib_doc/htmls/parameters.html.

Fig. 15. Flowchart of our implementation of the parallel PSO in CUDA

WSEAS TRANSACTIONS on COMPUTERS Vincent Roberge, Mohammed Tarbouchi

E-ISSN: 2224-2872 179 Issue 6, Volume 11, June 2012

