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Abstract: - In this paper, we present a parallel implementation of the Particle Swarm Optimization (PSO) on 

GPU using CUDA. By fully utilizing the processing power of graphic processors, our implementation provides 

a speedup of 215x compared to a sequential implementation on CPU. This speedup is significantly superior to 

what has been reported in recent papers and is achieved by a few simple optimizations we made to better adapt 

the parallel algorithm to the specific architecture of the NVIDIA GPU. Next, we apply our parallel PSO to the 

problem of 3D pose estimation of a bomb in free fall. We reduce the computation time of the analysis of 120 

images to about 1 s, representing a speedup of 140x compared to the sequential version on CPU. 
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1 Introduction 
The particle swarm optimization (PSO) is a 

population based non-deterministic optimization 

algorithm [1]. Since it was first proposed in 1995, 

the PSO has been extensively used to optimize very 

complex functions in a wide range of applications. 

Its implementation is simple, its performance is very 

competitive and it is not required to derive the 

function to be optimized. However, because the 

algorithm simulates the movement of a swarm of 

candidate solutions over a very large number of 

iterations, it has the disadvantage to require 

significant processing power. 

In order to reduce the computation time, we 

propose a parallel implementation of the PSO on 

GPU in CUDA [2]. Our approach allows the 

execution of the PSO with a very large number of 

particles and iterations in a minimal time. This 

paper provides three main contributions. First, it 

presents an innovative implementation of the 

original PSO on GPU. Second, it proposes four 

simple optimizations to fine tune the algorithm for 

the NVIDIA GPUs, resulting in a very impressive 

speedup compared to what has been previously 

published in [3], [4] and [5]. Finally, we 

demonstrate how our parallel PSO can be applied to 

the 3D pose estimation of a bomb in free fall 

allowing for very high accuracy and an extremely 

short execution time.  

The remainder of this document is organized in 

sections. Sections 2 and 3 briefly discuss the latest 

architecture of the NVIDIA GPU and provide an 

overview of the PSO algorithm. Section 4 

summarizes some of the previous work done in the 

field. We present our parallel implementation of the 

PSO in section 5 and propose four optimizations in 

section 6. The performance results of our 

implementation are published in section 7. Finally, 

we apply our algorithm to the problem of 3D pose 

estimation of a bomb in free fall in section 8. 

 

 

2 GPU Architecture 
The graphic card used in our experiments is an 

EVGA NVIDIA GTX560Ti [6]. It is equipped with 

the NVIDIA graphic processor Fermi GF116 

composed of 384 cores. This chip is currently 

available with a maximum of 16 multi-processors 

blocks, each equipped with 32 processors. In the 

case of the GTX560Ti, it is equipped with 8 blocks 

of 48 processors. We could discuss here all the 

details of the GPU architectures. These processors 

are indeed significantly different from CPUs. 

However, we will focus on four characteristics of 

the GPUs that we deem important. We actually 

optimized our implementation of the PSO based on 

those characteristics. 
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2.1. PCI Express Bus 
In today’s personal computers, graphic cards are 

usually connected to the motherboard through a PCI 

Express bus. Although rated to 16 GB/s for the 

PCIe 2 bus, the actual throughput achieved when 

transferring data from the main memory to the 

graphic card is usually lower and depends on the 

hardware used. As an example, the NVIDIA GTX 

throughput is about 5.11 GB/s [4]. This bandwidth 

is slower than the memory bandwidth of recent 

CPUs and very much slower than the memory 

bandwidth of recent GPUs [7]. When designing a 

CUDA application, it is therefore important to 

consider the bottleneck caused by the PCIe bus and 

to minimize the data transfers between the CPU and 

the GPU. This slow transfer could easily cancel the 

performance gain of a parallel implementation. 

 

2.2. Memory architecture 
The memory of the NVIDIA Fermi GPU is divided 

into global memory, constant memory, texture 

memory, shared memory and registers [8]. The 

constant and texture memory can be bothersome to 

use and are less attractive for scientific computing. 

The global memory resides off chip, can be a few 

GB in size and has a large data bus resulting in a 

very high bandwidth (up to 192.4 GB/s [9]). It is 

used to store large amounts of data and is persistent 

for the entire length of the application. The shared 

memory has a maximum size of 48 KB and resides 

on chip. This memory is shared between all the 

processors of a multi-processor block and is 

persistent for the duration of a parallel function 

(called a kernel in CUDA). The latency of this 

memory is about 20 to 40 times shorter than for the 

global memory [8]. The registers are even smaller 

than the shared memory, but offer a slightly faster 

access. Their scope is also limited to the life of the 

kernel. The maximum use of shared memory and 

registers is therefore recommended to improve the 

efficiency of a CUDA application. 

 

2.3. Single-instruction, multiple threads 
Unlike multicore systems (such as dual or quad-core 

Intel and AMD CPUs), graphic processors can 

contain hundreds of cores and are considered 

“manycore” systems. This type of system allows the 

parallel executions of many threads on a single 

multi-processor block. It has the advantage of 

providing superior computing power, but the 

disadvantage that all threads within the block must 

execute the same instruction at the same time. These 

systems have been categorized as “single-

instruction, multiple-threads” (SIMT) by 

NVIDIA [8]. Their functioning is directly linked to 

the hardware architecture of the multi-processor 

blocks which use a limited number of control units 

(instruction caches, schedulers, dispatch units) and a 

large number of cores. As a consequence, when a 

parallel program contains conditional statements (if, 

elseif), the multi-processor block will sequentially 

execute the possible paths regardless the number of 

active cores. This phenomenon is called thread 

divergence and should be avoided to maximize 

performance [7].  

 

 

3. Particle Swarm Optimization 
The PSO is a population based non-deterministic 

optimization method that was proposed by Kennedy 

and Eberhart in 1995 [1].  The algorithm simulates 

the movement of a swarm of particles in a 

multidimensional search space progressing towards 

an optimal solution.  The position of each particle 

represents a candidate solution (a complete 

trajectory encoded in a single vector) and is 

randomly initiated. At every step of the iterative 

process, the velocity of each particle is individually 

updated based on the previous velocity of the 

particle, the best position ever occupied by the 

particle (personal influence) and the best position 

ever occupied by any particle of the swarm (social 

influence). As outlined in [10], the equations used to 

compute the velocity and position of a single 

particle at iteration t are as follows: 

                                     (1) 

             (2) 

where variables in bold are vectors; v is the velocity 

of the particle; x is its position; b is the best position 

previously occupied by the particle; g is the best 

position previously occupied by any particle of the 

swarm; r1 and r2 are vectors of random values 

between 0 and 1; and ω, c1 and c2 are the inertia, the 

personal influence and the social influence 

parameters. Still based on [10], the flow diagram of 

the PSO is displayed in Fig. 1. 

 

 

4. Related Works 
Scientific computing on GPUs is a relatively new 

field of research. The CUDA SDK was actually 

released in 2007 [7]. For this reason, there are only a 

few publications available that discuss the 

implementation of the PSO on GPU. In [3], Zhou 

and Tan implement in CUDA a local variant of the 

PSO. Instead of using a global communication 

scheme as in the original PSO [1], they restrict the 
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communication of a particle to its two closest 

neighbors (based on the particles’ index, not the 

actual location in the search space). This approach 

does not require a parallel search for the best 

particle g and limits the communication between the 

threads. However, it also modifies the behavior and 

affects the effectiveness of the PSO. They achieve a 

speedup of 11.4x. The authors of [11] implement 

and compare three different variants of the PSO on 

GPU, but only parallelize the evaluation of the cost 

function. Although they report a maximum speedup 

of 27x, we believe that their approach is not scalable 

to larger swarm sizes since the initialization, the 

search for the best particle, and the velocity and 

position updates are performed sequentially. The 

authors of [4] discuss the impact of different thread-

block sizes over the performance of the PSO in a 

GPU implementation. They also limit their 

parallelization to the evaluation of the cost function. 

They report a speedup of 43x, but their results 

provide insight with regard to the specific cost 

function used, but not for the PSO. More recently, 

the authors of [12] proposed a GPU-based 

asynchronous PSO that uses a single CUDA kernel 

and simultaneously runs independent swarms on the 

different multi-processor blocks. Their 

implementation eliminates the communication 

between the thread blocks, but modifies the 

behaviors of the original PSO. Their approach also 

has the disadvantage of forcing a single thread block 

size for all steps of the PSO including the fitness 

evaluation. This can significantly reduce the 

maximum speedup achieved for complex fitness 

functions [4]. 

 

 
Fig. 1. Flowchart of the particle swarm optimization 

algorithm 

They achieved a speedup of 30x for the Rosenbrock 

function.  Finally, the authors of [13] proposed a 

similar approach using multiple swarms, but did not 

limit their implementation to a single kernel and 

allowed migrations of the particles between the 

swarms. They achieved a speedup of 37x. In this 

paper, we parallelize every step of the original PSO 

and achieve a 215x speedup for the Rosenbrock 

function while maintaining the behavior of the 

original PSO algorithm. 

 

 

5. CUDA Implementation of the PSO 
5.1. Overall design 
The flowchart of our parallel implementation of the 

PSO in CUDA is presented in Fig. 15 at the end of 

this document. The program starts on the CPU and 

copies the configuration parameters, such as the 

swarm size and the number of iterations, to the 

global memory of the GPU. The CPU then launches 

the execution of the GPU. The particle swarm is 

randomly initiated and its movement is simulated on 

the GPU. In between each parallel kernel (a parallel 

function in CUDA), the state of the swarm is saved 

in the global memory of the GPU. Once the 

specified number of iterations has been reached, the 

control is given back to the CPU who then copies 

the optimal solution from the GPU to the CPU. It is 

important to note that a block of threads is executed 

by a single multi-processor block and there is no 

means to synchronize or communicate between 

blocks other than terminating and launching another 

kernel. Moreover, the CPU and the GPU do not 

share the same memory and special CUDA 

functions must be used to transfer the data. 

As used in [14], [15] and [16], a common 

technique to parallelize the PSO consists of 

executing a local swarm on each processor while 

minimizing the communication between the 

swarms. This approach can be used on current 

multicore processors, but does not provide the level 

of parallelism needed for an efficient 

implementation on GPU. In our implementation, we 

launch one independent thread for each particle. For 

a complex problem, the number or particles used 

may be very large resulting in more threads than 

GPU cores. Although it may seem undesirable, it is 

actually advantageous to create more threads than 

cores. In an NVIDIA GPU, the creation, scheduling 

and destruction of threads are done in hardware and 

require minimal time. Moreover, using a lot of 

threads will give flexibility to the GPU to better 

schedule the computation and hide the memory 

access latency. A parallel program which uses a lot 
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of threads will better scale to future GPUs. For all 

these reasons, it is recommended to develop parallel 

algorithms that will provide sufficient parallelism to 

maximize the number of threads created [7]. The 

NVIDIA Fermi GPUs allow the creation of 2
16

 

blocks of 2
10

 threads (for a total of 2
26

 threads) [8]. 

 

5.2. Implementation details 
In this section, we present the implementation 

details of each kernel shown in Fig. 15. 

 

5.2.1 Initialize particles’ position and velocity 

This kernel launches one thread for each particle of 

the swarm. It randomly initializes the position of the 

particles within the search space using the 

curand_uniform() function from the CUDA 

CURAND library [17] and sets the particles’ 

velocity to 0. Before terminating, the kernel saves 

the particles’ position and velocity in the GPU 

global memory so the data is available to the next 

kernel. 

 

5.2.2 Compute costs and update local bests 

This kernel launches a thread for each particle. This 

thread loads the position of the particle and 

computes the associated cost by evaluating the 

function to be optimized. If necessary, the thread 

updates the best cost and best position b ever 

occupied by the particle (local influence). The 

thread saves this information back to the global 

memory. 

 

5.2.3 Find the index of the best particle 

This kernel launches one thread per particle and 

searches for the index of the best particle using a 

parallel tree-based reduction [18] (shown on Fig. 2). 

This type of reduction is a well-known pattern and 

requires log2(N) steps. Because CUDA thread-

blocks cannot communicate between them, we 

divide the parallel reduction into two kernels. 

 

 
Fig. 2. Tree-based parallel reduction 

 

The first kernel finds the best particle within each 

block and the second, the best particle within the 

entire swarm. The first kernel is then launched with 

a number of threads equal to the swarm size and the 

second, with a number of threads equal to the 

number of thread-blocks of the first kernel. 

 

5.2.4 Update the global best 

This kernel is launched with a number of threads 

equal to the dimension of the function to optimize. 

Each thread simply updates one element of the 

global best when the best particle found at this 

iteration is of better quality (lower cost), ensuring a 

parallel access to the memory. 

 

5.2.5 Compute the particles’ new velocity and 

position 

This kernel launches one thread for each particle. 

This thread first reads the current velocity of a 

particle, its current position, its best previous 

position and the swarm’s best position and updates 

its velocity and position using equations (1) and (2). 

The new velocity and position are saved in global 

memory. 

This entire process is repeated several times until 

the specified number of iterations is reached. At that 

time, the position of the best particle of the swarm 

represents the optimal solution returned to the CPU. 

Our implementation limits the amount of data 

transferred between the CPU and the GPU and fully 

parallelizes all the steps of the PSO algorithm. The 

speedup achieved is therefore significant. 

 

 

6. Optimizations 
Our parallel PSO exhibits the level of parallelism 

necessary to fully use the GPU hardware. However, 

it is still too general and needs to be fine-tuned to 

the specific architecture of the NVIDIA GPUs as 

explained in section 2. In this section, we discuss 

four optimizations we made to our program that are 

specific to a CUDA implementation. These 

optimizations further improve the achieved speedup 

by a factor of 10x. 

 

6.1 Maximum use of shared memory 
Each multi-processor block has 48 KB of shared 

memory physically collocated on the chip. As 

explained earlier, this memory has a very fast access 

time. For this reason, we modified all our kernels to 

always load the data in shared memory before 

performing the calculations. As an example, in the 

first kernel, each thread calls the curand_uniform() 

function multiple times to initialize each dimension 
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of the particle’s position. Our initial implementation 

loaded and stored the state of the random generator 

(40 bytes per thread) from global memory every 

time. In our optimized version, the states are first 

loaded in shared memory and all future memory 

accesses are done to the shared memory. Once 

completed, the kernel stores all the variables back to 

the global memory to ensure persistence of the data. 

 

6.2 Coalescing memory access 
NVIDIA GPUs are equipped with a very large 

global memory bus (up to 384-bit) resulting in a 

very high bandwidth (up to 192.4 GB/s) [9].  

However, this performance can only be achieved 

when the memory access pattern is fully 

coalesced [8]. One of the main factors for this 

condition is that each thread involved in a parallel 

load operation accesses memory cells that are 

collocated. In our initial implementation, we stored 

the positions and velocities of the particles in global 

memory in a contiguous manner as shown in Fig. 3. 

When the threads load the data from global memory 

to shared memory, they simultaneously fetch one 

dimension at the time (remember the “single-

instruction, multiple-threads” model). The 

throughput achieved is therefore 1/D of the rated 

bandwidth (where D is the dimension of the 

particles). To address this limitation, we re-

organized our data in an interleave configuration, as 

in Fig. 4, to ensure a coalescing memory access 

pattern, resulting in an improved throughput. 

 

 
Fig. 3. Sub-optimal memory storage layout for 4 

particles of 4D resulting in a non-coalescing 

memory access pattern to global memory 

 

 

 
Fig. 4. Optimal memory storage layout for 4 

particles of 4D resulting in a coalescing memory 

access pattern to global memory 

 

6.3 Thread divergence 
As explained earlier, when programming a “single-

instruction, multiple-threads” system, it is important 

to minimize the different execution paths to avoid 

their sequential execution. In CUDA, thread 

divergence is actually only applicable to groups of 

32 threads (called warp). In other words, peak 

performance will only be achieved when all the 

threads within the same warp follow the same 

execution path. In order to minimize thread 

divergence, we modified our parallel reduction 

kernel following the approach presented in [19]. In 

our original implementation, every warp suffered 

thread divergence while only one warp exhibited the 

divergence in our optimized version shown in 

Fig. 5. 

 
Fig. 5. Optimized version of the tree-based parallel 

reduction minimizing thread divergence 

 

6.4 Block size 
When launching a CUDA kernel, different thread-

block configurations can be chosen. A programmer 

might decide to create a few blocks, each containing 

many threads or many blocks, each containing a few 

threads. As explained in [4], this design decision 

will influence the overall performance of the 

application. Although one could mathematically 

compute the best configuration, it is usually 

suggested to experimentally test multiple 

configurations [7]. This test should be repeated 

when using different application parameters (such as 

the PSO swam size) or hardware (such as a newer, 

more powerful GPU). In our case, we ran our 

parallel PSO using different numbers of particles 

and block sizes. As shown in Fig. 6, we found that 

smaller block sizes generally deliver better 

performance for a smaller problem size. For 16 384 

particles, a block size of 128 threads provides the 

best performance, 58% more than with a block size 

of 32 threads. 

 

 
Fig. 6. Speedup of our parallel PSO for different 

number of particles and block sizes 
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7. Performance Results 
To test the performance of our parallel PSO, we 

optimize the following benchmark function which is 

based on the Rosenbrock function and illustrated for 

2D in Fig. 7. 

 

       
 

∑ ((            
  )

 

        )   
   

 
(3) 

 

 

 
Fig. 7. Benchmark function based on the 

Rosenbrock function 

 

For our performance evaluation, we ran our 

sequential and parallel PSO to optimize equation (3) 

with 20 dimensions, 2000 iterations and different 

numbers of particles. The characteristics of the 

system used are listed in Table 1 and the results 

obtained are shown in Fig. 8 and Fig. 9. The 

maximum speedup achieved is 215.6x, which is 

significantly higher than what was achieved by 

other CUDA PSO implementations proposed in 

recent papers (11.4x in [3], 17.2x in [5] and 43.9x in 

[4]). We believe that our better performance is 

related to the parallelization of the entire PSO and 

the four optimizations we discussed in section 6. 

 

Table 1. Details of our experimental setup 

Host PC used to run the sequential version: 

 AMD Phenom II X6, 2.80 GHz 

 8 GB DDR3, 1333 MHz 

 Windows 7 SP1 64 bit Enterprise 

 Visual Studio 2010 SP1 

 

Device GPU used to run the parallel version in 

CUDA: 

 EVGA NVIDIA GTX 560 Ti 

 384 CUDA cores, 1.701 GHz 

 1 GB DDR5, 2052 MHz 

 Windows 7 SP1 64 bit Enterprise 

 Visual Studio 2010 SP1 

 CUDA Toolkit 4.0 

 CUDA SDK 4.0 

 

 
Fig. 8. Execution time of our sequential and parallel 

PSO for different precisions and number of particles 

(20 dim, 2000 iterations, avg of 20 trials) 

 

 
Fig. 9. Speedup of our parallel PSO for different 

precisions and number of particles (20 dimensions, 

2000 iterations, average of 20 trials) 

 

 

8. Application to 6DOF 
In this section, we use our parallel PSO to accelerate 

the computation of the 6 degrees of freedom 

(6DOF) (x, y, z, yaw, pitch, and roll) of a bomb in 

free fall. In modern military aviation, the 

accreditation of new ordnances usually requires a 

safe separation test. This test is used to define the 

safe envelope of operation to drop the bomb. One 

approach consists of installing a high speed camera 

on the aircraft and recording multiple drops at 

different speeds and orientations. The 2D video 

images are then processed to produce a 3D 

animation which is visualized under different angles 

by experts to assess the safety of the separation 

between the bomb and the aircraft. This approach 

requires the accurate computation of the 3D position 

of the bomb from a 2D image. To help with the 

tracking of the bomb, markers are precisely painted 

in many locations on the bomb. 
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We previously developed software to compute 

the 6DOF from 2D images using an exhaustive 

search (see Fig. 10) [20]. This approach is extremely 

slow and not very precise. There exist other 

methods to tackle the problem such as the direct 

mathematic method presented in [21]. After 

experimentation, we concluded that this approach is 

very fast, but provides bad results for noisy inputs 

(which is obviously the case for the safe separation 

test). In this section, we propose to increase the 

accuracy of the results and minimize the execution 

time by using our parallel PSO to compute the 

6DOF on a GPU. 

 

 
Fig. 10. Screenshot of our software showing the 

bomb being released from the aircraft. 

 

8.1 Cost Function 
As discussed earlier, the PSO is a non-deterministic 

algorithm that allows the optimization of a function 

without the need to derive it. It other words, the 

PSO can be used to optimize a problem where the 

optimal solution is not practically computable (such 

as the 6DOF problem with noisy input), but a 

candidate solution is easily evaluated. 

In our implementation, we use the PSO to find 

the 3D position of the bomb that, when projected to 

the 2D video image, minimizes the average 

distances between the original markers and the 

projected markers. For a candidate solution (tx, ty, tz, 

yaw, pitch, and roll), we define our cost function as 

follows: 

1) Place a virtual bomb centered and oriented in 

the same direction as the camera; 

2) Select the (x, y, z) coordinates of one of the 

marker of the virtual bomb; 

3) Rotate this virtual marker using the following 

equation: 

[
  
  

  

]    [
 
 
 
] (4) 

where R(α, β, γ) is the rotation matrix and is 

defined as follows [22]: 

 
 cos(α)cos(β) cos(α)sin(β)sin(γ) 

- sin(α)cos(γ) 

 

cos(α)sin(β)cos(β) 

+ sin(α)sin(γ) 
 

(5)  sin(α)cos(β) sin(α)sin(β)sin(γ) 

+ cos(α)cos(γ) 

sin(α) sin(β)cos(γ) 

- cos(α)sin(γ) 

 

 

 -sin(β) cos(β)sin(γ) cos(β)cos(β)  

 

where α is the yaw angle, β is the pitch angle 

and γ is the roll angle of the candidate solution. 

It is important to note that this matrix performs 

the three rotations in the roll-pitch-yaw order 

and would be different if the order was altered. 

4) Translate the virtual marker based on the tx, ty 

and tz of the candidate solution: 

[
   
   

   

]  [
  
  

  

]  [

  
  
  

] (6) 

5) Project the virtual marker on the 2D images 

using: 

        (
   

   
   

   

   
)     

(7) 

        
   

   
    

(8) 

where the vector (fx, fy) represents the focal 

distance of the lens in pixels, the vector (cx, cy) 

represents the coordinates of the principal point 

of the lens in pixels, and αc is the skew 

coefficient (angle between the x and y 

pixels) [23]. 

6) Finally, compute the distance between the 

virtual marker projected on the 2D image and 

the actual marker identified on the 2D image 

using: 

      √                    (9) 

where (x, y) is the position in pixels of the actual 

marker on the 2D image and (x’’’, y’’’) is the 

position in pixels of the virtual marker projected 

on the 2D image. 

7) Repeat these steps for all markers visible on the 

2D video image and compute the average error 

per marker in pixels. 

 

Throughout the iterative process of the PSO, the 

swarm of candidate solutions will move towards a 

solution that minimizes the above cost function. 

This final solution represents the 3D position of the 

bomb for that 2D image. The process must be 

repeated for every image of the video sequence. 
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This approach demonstrates a very high level of 

parallelism and can be accelerated on GPUs using 

CUDA. 

 

8.2 CUDA implementation 
Our parallel implementation in CUDA of the PSO 

applied to the problem of pose estimation of a bomb 

in free fall is almost identical to the one we 

previously described in section 4. As shown in 

Fig. 11, the algorithm creates an independent swarm 

of particles for each 2D image and still uses one 

thread per particle. The positions of the bombs are 

therefore computed simultaneously for all images 

using an independent PSO algorithm. For 128 

images and 256 particles, our software initially 

launches 32 768 threads. The cost function is 

replaced with the one described at the previous 

section. The parallel reduction is now implemented 

with a single kernel since each thread-block 

implements an independent PSO. The rest of the 

algorithm remains identical. 

 
Fig. 11. Flowchart of our implementation of the 

parallel PSO in CUDA applied to the 6DOF 

problem 

 

8.3 Performance analysis 
To assess the performance of our parallel algorithm, 

we developed a sequential version for the CPU. We 

used the system described in Table 1 and executed 

our algorithms to analyse 128 video images with 

2000 iterations and different swarm sizes. The 

execution times and speedups achieved are shown in 

Fig. 12 and Fig. 13. The maximum speedup reached 

is 140.3x with an execution time of 1.4 s. To 

demonstrate the precision of our approach, we also 

show the average error in pixels for each image on 

Fig. 14. The average error for all images is of 0.286 

pixels per marker which is 21% more precise than 

the original exhaustive search method we developed 

[20]. It is important to note that an error of 0 would 

be impossible since it would involve that the marker 

detection was 100% accurate with an extreme sub-

pixel precision and that the camera calibration was 

also perfect. An error of 0.286 pixels is excellent 

and truly demonstrates the accuracy of our PSO 

algorithm. 

 
Fig. 12. Execution of our sequential and parallel 

PSO for different precisions and number of particles 

(6DOF problem, 2000 iterations, average of 20 

trials) 

 

 
Fig. 13. Speedup of our parallel PSO for different 

precisions and number of particles (6DOF problem, 

2000 iterations, average of 20 trials) 

 

 
Fig. 14. Average error in pixels for each image 
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9. Conclusion 
In this paper, we presented a brief description of the 

latest NVIDIA GPU architecture and its limitations. 

We provided an overview of the PSO algorithm and 

proposed a parallel implementation on GPU using 

CUDA. Unlike multicore CPU, GPU are built of 

hundreds of cores. The CUDA program must exploit 

a very high level of parallelism to fully use the GPU 

hardware. Unlike other implementations presented 

in the literature, we exploited this level of 

parallelism and tuned our algorithm to achieve a 

speedup of 215x on NVIDIA GPU. Finally, we 

applied our algorithm to accelerate the computation 

of the 6 degrees of freedom of a bomb in free fall. 

This allowed an increase in the accuracy of the 

results and a speedup of 140x. This paper represents 

a significant contribution since it provides a parallel 

implementation of the PSO with a speedup higher 

than any previously proposed implementations. Our 

approach can be used at the core of many 

optimization solvers to significantly speedup the 

computation using a GPU. In the future, we intend 

to implement other optimization algorithms on 

GPUs using CUDA. 
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Fig. 15. Flowchart of our implementation of the parallel PSO in CUDA 
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