**AUTHORS:**Larissa Soares, Cleonilson Souza

**Download as PDF**

**ABSTRACT:**
Testing of integrated circuits (ICs) is always a challenge because the continuous miniaturization process and consequently increase of transistor density in microelectronic industry. Nowadays, the industry has to handle with defects that traditional testing approaches can not detect. The result of this imprecise testing process is the increase number of defective ICs that reach the end consumer. To improve the quality of IC testing, a new approach of fault modeling is being adopted which is not based on transistor or logic gate level, but in the IC layout perspective itself. This paper describes the meaning of testing based on layout perspective, particularly, Cell-Aware Testing (CAT) methodology, and a practical approach to obtain the matrix of defects, in which is the set of test patterns to each modelled fault coming from CAT, and that is the CAT’s main result. Experimental simulation results show the matrix of defects obtained for a specific standard cell that can be immediately used by an ATPG.

**KEYWORDS:**
Defect, Fault-model, Layout-perspective, Defect insertion

**REFERENCES:**

[1] I. E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun., Vol. 10, 1999, pp. 585-595.

[2] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wireless Pers. Commun., Vol. 6, 1998, pp. 311-335.

[3] M. K. Simon and M. S. Alouini, Digital Communications over Fading Channels, 2nd ed., Wiley-Interscience. John Wiley & Sons, Inc., 2005.

[4] A. F. Molisch and M. Z. Win, MIMO systems with antenna selection, IEEE Microw. Mag., Vol. 5, No. 1, 2004, pp. 46-56.

[5] Z. Chen, J. Yuan, and B. Vucetic, Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels, IEEE Trans. Veh. Technol., Vol. 54, No. 4, 2005, pp. 1312-1321.

[6] Z. Chen, B. Vucetic, J. Yuan, and K. Leong Lo, Analysis of transmit antenna selection / maximal-ratio combining in Rayleigh fading channels, in Proc. 2003 IEEE International Conference Communication, 2003, pp. 1532- 1536.

[7] M. Yacoub, The η-μ distribution: A general fading distribution, in Proc. 52nd IEEE VTCFall, 2000, pp. 872-877.

[8] M. Yacoub, The κ-μ distribution and the η-μ distribution, IEEE Antennas Propag. Mag., Vol. 49, No. 1, 2007, pp. 68-81.

[9] D. B. da Costa and M. D. Yacoub, Accurate closed-form approximations to the sum of generalized random variables and applications in the performance analysis of diversity systems, IEEE Trans. Commun., Vol. 57, No. 5, 2009, pp. 1271-1274.

[10] M. Milisic, M. Hamza, and M. Hadzialic, Outage and symbol errorprobability perf

[1] K. Y. Mei, Bridging and Stuck-At Faults IEEE Transactions on Computers, Vol. C23, No 7, 1974.

[2] F. J. Ferguson, T. Larrabee, Test Pattern Generation for Realistic Bridge Faults in CMOS ICs IEEE Design and Diagnostics of Electronic Circuits and Systems, 2007.

[3] J. A. Waicukausi, E. Lindbloom, B. K. Rosen, V. S. Iyengar, Transition Fault Simulation IEEE International Test Conference, 1994.

[4] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour, S. Eichenberger, C. Hora, D. Adolfsson, Defect-Oriented CellAware and Fault Simulation for Industrial Cell Libraries and Designs IEEE, pp. 1–10 2009. Figure 12: Defect matrix.

[5] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, R. Krenz-Baath, J. Schloeffel, M. Wittke, H. Hashempour, S. Eichenberger, Defect-Oriented Cell-Aware and Fault Simulation for Industrial Cell Libraries and Designs IEEE Test Conference (ITC), pp. 1–10, 2010.

[6] F. Hapke, J. Schloeffel, Introduction to the defect-oriented cell-aware test methodology for significant reduction of DPPM rates IEEE, pp. 1–6, 2012.

[7] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim, J. Schloeffel, A. Fast, Cell-Aware Test IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1396– 1409, 2014.

[8] P. Dahlgren, P. Liden, A fault model for switch-level simulation of gate-to-drain shorts IEEE Comput. Soc. Press, pp. 414– 421, 1996.

[9] R. C. Aitken, Finding defects with fault models Int. Test Conference, pp. 498–505, 1995.

[10] M.K. Reddy, S.M. Reddy, P. Agrawal, Transistor Level Test Generation for MOS Circuits IEEE, pp. 825–828, 1985

[11] Abraham, Saab, CRIS: A test cultivation program for sequential VLSI circuits IEEE Comput. Soc. Press, pp. 216–219, 1992.

[12] G. A. Allan, J. P. Elliott, A. J. Walton, A Layout-Driven Yield Predictor and Fault Generator for VLSI IEEE Transactions on Semiconductor Manufacturing, Vol. 6, No 1, 1993.

[13] F. Hapke, J. Schloeffel, H. Hashempour, S. Eichenberger, Gate-Exhaustive and CellAware pattern sets for industrial designs IEEE, pp. 1–4, 2011.

[14] I. Bubel, W. Maly, T. Waas, P.K. Nag, H. Hartmann, D. Schmitt-Landsiedel, S. Griep, , AFFCCA: A tool for critical area analysis with circular defects and lithography deformed layout IEEE Comput. Soc. Press, pp. 10–18, 1995

[15] G. A. Allan, A. J. Walton, Efficient critical area estimation for arbitrary defect shapes IEEE Comput. Soc, pp. 20–28, 1997.

[16] G. A. Allan, J. P. Elliott, A. J. Walton, Critical Area Extraction for Soft Fault Estimation IEEE, 1998.

[17] G. A. Allan, A. J. Walton, Efficient extra material critical area algorithms IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1480–1486, 1997

[18] M. Gkatziani, R. Kapur, Q. Su, B. Mathew, R. Mattiuzzo, L. Tarantini, C. Hay, S. Talluto, T. W. Williams, Accurately Determining Bridging Defects from Layout IEEE Design and Diagnostics of Electronic Circuits and Systems, Vol. 11, No 1, 2007. ormance of L-branch maximal-ratio combiner for generalized fading, in Proc. 50th International Symposium ELMAR, 2008, pp. 10-12.

[11] M. Milisic, M. Hamza, N. Behlilovic, and M. Hadzialic, Symbol error probability performance of L-branch maximal-ratio combiner for generalized fading, IEEE VTC Conf. 2009, pp. 1-5.

[12] D. B. da Costa, J. C. S. S. Filho, M. D. Yacoub, and G. Fraidenraich, Second-order statistics of fading channels: theory and applications, IEEE Trans. Wireless Commun., Vol. 7, No. 3, 2008, pp. 819-824.

[13] Juan P. Pena-Martin, Juan M. Romero-Jerez and Concepcion Tellez-Labao, Performance of Selection Combining Diversity in η-μ Fading Channels with Integer Values of μ , IEEE Transactions on Vehicular Technology, Vol. 64, No. 2, 2015.

[14] V. A. Aalo, Performance of maximal-ratio diversity systems in a correlated Nakagamifading environment, IEEE Trans. on Commun., Vol. 43, No. 8, 1995, pp. 2360-2369.

[15] G C Alexandropoulos, N. C. Sagias, F. I. Lazarakis and K. Berberidis, New results for the multivariate Nakagami-m fading model with arbitrary correlation matrix and applications, IEEE transaction on Wireless Communication, Vol. 8, No. 1, 2009, pp. 245- 255.

[16] M Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1970.

[17] J. Gurland, Distribution of the maximum of the arithmetic mean of correlated random variables, Annals of Math. Stat., Vol. 26, 1955, pp. 294-300.

[18] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed., Tata McGraw-Hill, 2002.

[19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., San Diego, CA: Academic, 2000.

[20] Juan P. Pena-Martin, Juan M. Romero-Jerez and Concepcion Tellez-Labao, Performance of TAS/MRC Wireless Systems Under Hoyt Fading Channels, IEEE Transaction on Wireless Communications, Vol. 12, No. 7, 2013, pp. 3350-3359.

[21] A. Annamalai, C. Tellambura, and Vijay K. Bhargava, Equal-Gain Diversity Receiver Performance in Wireless Channels, IEEE Trans. Commun., Vol. 48, No. 10, 2000, pp. 1732-1745.