
Conflict-Free Data Aggregation in WSN with Unbounded Number of
Channels

ROMAN PLOTNIKOV, ADIL ERZIN, and VYACHESLAV ZALYUBOVSKIY

Sobolev Institute of Mathematics
4 Acad. Koptyug Avenue, Novosibirsk

RUSSIA

Novosibirsk State University
2 Pirogova Str., Novosibirsk

RUSSIA
prv@math.nsc.ru, adilerzin@math.nsc.ru, slava@math.nsc.ru

Abstract: We consider a problem of minimum length scheduling for conflict-free aggregation convergecast in
wireless networks in a case when each element of a network uses its own frequency channel. This problem is
equivalent to the well-known NP-hard problem of telephone broadcasting, since only the conflicts between the
children of the same parent are taken into account. We propose a new integer programming formulation and
compare it with the known one by running the CPLEX software package. Based on the results of a numerical
experiment, we concluded that our formulation is more preferable in practice to solve the considered problem by
CPLEX than the known one. We also propose a novel heuristic algorithm, based on a genetic algorithm and a
local search metaheuristic. The simulation results demonstrate the high quality of the proposed algorithm
compared to the best known approaches.

Key-Words: wireless sensor networks, convergecast, minimum latency, genetic local search, telephone
broadcasting, simulation

1 Introduction
In wireless sensor networks (WSNs), collecting data
from all sensor nodes to a distinguished node, called
the sink, is one of the most fundamental problems.
Due to the limited transmission range of sensor
nodes, which follows, in particular, from the need to
minimize communication energy consumption [1],
multi-hop communication over a tree-based routing
topology is usually used to gather data. Such a
pattern is known as convergecast [2].

Since radio communication is the main source of
energy consumption, it is important to minimize the
amount of transmitted data. One of the ways to
optimize communication overhead for sensor nodes
is to merge their own data with the received packets
by means of some aggregation function. Aggregation
convergecast is possible when data are spatially
correlated or the goal is to collect some summarized
information (e.g. maximum, mean, etc.) In such a
scenario, each sensor node needs to send only one
packet during the aggregation session.

Because of its ability to provide time bounds,
TDMA-based scheduling algorithms are widely used.
In a TDMA scheduling, time is divided in equal-
length slots under the assumption that each slot is

long enough to send or receive one packet [3].
Minimizing time for the aggregated convergecast in
this case is equivalent to minimizing the number of
time slots required for all packets to reach the sink.

Another important factor of the convergecast
protocol is aggregation latency, defined as the
required number of time slots of the whole data
collection process. The problem of minimization of
latency is known in literature as minimum-latency
aggregation scheduling (MLAS) [4]. The solution of
MLAS typically includes two components: a
spanning tree rooted at and directed towards the sink
node, and the schedule, which assigns a transmitting
time slot for each tree link so that (1) every node
transmits only after all its children in the tree have,
and (2) links with potential interference are
scheduled to transmit in different time slots. The last
condition means that the TDMA schedule should be
interference free, i.e. no receiving node is within the
interference range of the other transmitting node.
There are two types of interference or collisions in
wireless networks: primary and secondary. A
primary collision occurs when more than one node
transmits to the same destination. In tree-based
aggregation, it corresponds to the case when two or

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 192 Volume 16, 2017

mailto:prv@math.nsc.ru
mailto:adilerzin@math.nsc.ru
mailto:slava@math.nsc.ru

more children of the same parent send their packets
in the same time slot. A secondary collision occurs
when a node overhears transmissions intended for
other nodes. Such kind of collision is caused by links
in the underlying communication graph, but not in
the aggregation tree.

The MLAS problem was proven to be NP-hard
[5]. Finding an optimal time slot assignment for a
given tree is still NP-hard [6]. Therefore, all existing
results in literature are heuristic algorithms for
finding approximate solutions. Most of them contain
two relatively independent phases: aggregation tree
construction, followed by link scheduling [4, 5, 7].

In this paper, we mainly focus on the first phase –
finding the minimum delay aggregation tree,
assuming that the proper chosen tree would lead to a
good solution. Additionally, in this stage we take into
account only conflicts between the children of the
same parent, i.e. primary collisions. First, such a
model is suitable for multichannel transmissions,
where secondary interference can be avoided by
assigning different frequencies under the assumption
that the number of channels is big enough. Moreover,
the solution of such a “relaxed” problem can be used
as a lower bound of the aggregation latency for the
original MLAS, so a tree with a smaller delay can be
considered as a better candidate to produce a shorter
schedule.

It is worthwhile to mention that the considered
problem is equivalent to the problem of finding the
optimal broadcasting tree in a graph, also known as a
telephone broadcasting problem, which has been
proved to be NP-hard [8]. Most existing algorithms
construct an aggregation tree based on the shortest
path tree (SPT) or connected dominated set (CDS),
but as was shown in [9] an optimal solution could be
neither SPT nor CDS based. To overcome this issue,
we propose a novel heuristic algorithm, which
combines a genetic algorithm performing broad
search among various aggregation trees with a local
search procedure aimed at the pruning of the
currently found tree.

In summary, we provide the following
contributions towards a better understanding of the
aggregated convergecast problem:

• We present an alternative IP formulation for
the MLAS problem in case of the absence of
secondary collisions and compare it with
previously known models.

• We propose a novel heuristic Genetic Local
Search (GLS). In contrast to traditional
genetic algorithms, GLS uses an embedded
local search procedure to further improve the
current feasible solution.

• Through extensive simulation experiments,
we demonstrate the quality of the solutions

achievable by the GLS algorithm vs. the
current state-of-the-art methods.

The rest of the paper is organized as follows: The
recent research results are overviewed in Section 2.
The mathematical formulation of the problem and the
comparative analysis of two IP-formulations are
given in Section 3. In Section 4, the new heuristic
algorithms are described. Simulation results are
presented in Section 5, and the paper is concluded in
Section 6.

2 Related work
Data aggregation for WSNs has been proposed to
improve energy efficiency of sensor nodes and
consequently prolong network lifetime [10]. Some
surveys considering different aspects of the problem
have been published [11, 12]. According to [12], a
data aggregation protocol should achieve five main
goals: energy efficiency, reducing data propagation
latency, data accuracy, aggregation freshness, and
collision avoidance. Depending on the type of
aggregation function, the data can be aggregated to
one or multiple values. Also, data can be aggregated
in-network or at the base station. With in-network
data aggregation, each sensor node applies some
aggregation function in order to minimize the amount
of forwarded data. In-network aggregation functions
can be roughly classified as perfect and partial
aggregation functions. In our research, we are
focusing on minimization of data latency with perfect
aggregation subject to avoiding collisions. Such a
problem is known as minimum-latency aggregation
scheduling (MLAS).

The MLAS problem was first introduced in [5].
The authors proved that the problem is NP-hard even
for unit disk graphs, and proposed a (Δ – 1)-
approximation algorithm, where Δ is the maximum
node degree in the network graph. In this algorithm,
the Shortest Path Tree is created first, which later is
used as an input for the scheduling algorithm. It
worth noting that the tree actually isn’t used as data
aggregation framework. Instead, it is exploited to sort
nodes in the scheduling process.

In the nearly constant approximation proposed by
Huang et al. [7], the data latency bounded by
23R + Δ – 18, where R is the network’s radius. The
algorithm in [13] aims to minimize the data
aggregation time by using a Connected Dominated
Set (CDS). Moreover, the authors choose the
network topology center as the aggregation tree root
instead of the sink. This allows them to reduce the
upper bound to 16R + Δ – 14. The algorithm consists
of two steps: Dominating Set construction and data
aggregation scheduling. The first one is constructed
using the same approach as in [14]. The data

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 193 Volume 16, 2017

aggregation scheduling is done in two steps. First, the
data are aggregated from all the dominatees to the
dominators by scheduling the maximum number of
dominatee-dominator pairs at each time slot. Second,
the dominators aggregate their data to the root node,
using a non-redundant set of dominates called
connectors. The algorithm in [4] differs from [13]
only by the way of scheduling aggregated data from
the dominators to the base station and has a latency
bound of 15R + Δ – 4. It is important to note that
Bagaa et al. in [15] have proved that the data latency
upper bounds in [4] and [13] are incorrect. Based on
the properties of neighboring dominators in CDS,
Nguyen et al. have improved the algorithm from [13]
and have given a proof of upper bound 12R + Δ – 12
for their algorithm [16].

Wang et al. designed a Peony-tree-based data
aggregation algorithm with latency bound 15R + Δ –
15 [17]. In this algorithm, network nodes are
subdivided into levels by using the hop count
information such that the first level contains only the
base station, while the bottom level contains only the
leaf nodes. In order to create the aggregation tree, a
maximal independent set is constructed first in a top-
down manner. To interconnect the dominators in
level i with the dominators in level i-1, a set of non-
redundant dominatees, called connectors, is selected.
After that, the data aggregation schedule is executed
using first-fit algorithm in two steps. First, all
dominatee nodes are divided into node-disjoint
maximum concurrent sets, such that nodes in each set
can transmit data to their parents without interference
in one time slot. After this, the dominators and
connectors are scheduled level by level starting from
the bottom level.

Most previously mentioned works on solving
MLAS problem have two independent phases: a tree
construction phase followed by an edge-scheduling
phase, exploiting the assumption that a well-chosen
tree would consequently lead to good scheduling.
However, authors of [9] emphasized the following
problems of two-phase approaches. First, the result
of the same algorithm could be substantially
different, depending on the constructed tree. Second,
the layered nature of the predefined tree reduces the
opportunity of parallel transmissions, which leads to
suboptimal solutions. In contrast to previous works,
the authors proposed algorithm GGT, which
constructs a growing spanning tree rooted at the base
station, and the tree construction is guided by the
scheduling algorithm. Though there is no provable
bounds provided, simulation results demonstrate the
superiority of the GGT algorithm, especially for
high-degree networks.

 Since communication collisions are a main
reason for long latency in data aggregation, using

multi-channel communication, which increases the
number of parallel transmissions over different
frequency channels, is an effective approach to
minimize latency. In [18], the authors proved that
minimizing the schedule length for an arbitrary
network in the presence of multiple frequencies is
NP-hard and proposed approximation algorithms
with worst-case performance bound for geometric
networks. They also showed that finding the
minimum number of frequencies required to remove
all interfering links in an arbitrary network is NP-
hard problem. Pan et al. considered convergecast for
low-duty-cycled multi-channel WSNs aimed at
finding a time slot and frequency channel assignment
that can minimize the data aggregation delay [19].
The authors proved NP-completeness of the problem
and proposed a heuristic scheme, which contains
three consecutives phases: tree formation, slot
assignment, and channel assignment.

As mentioned earlier, a relaxed version of the
MLAS problem, which takes into account only
primary collisions, is equivalent to the broadcast time
problem in a wired network. Specifically, in [8]
authors define broadcasting from a vertex u to be the
process of delivering one unit of information from a
vertex u to every other vertex in connected graph G =
(V, E). The broadcast number of u in G then is
defined as the minimum number of time units to
broadcast from u. The authors proved that the
problem of finding the broadcast number for an
arbitrary vertex in an arbitrary graph is NP-hard.
Moreover, they presented an O(N) algorithm for
calculating the broadcast number of any vertex in any
tree with N vertices. In [20] it is shown that the
problem remains NP-hard even for 3-regular planar
graphs. Polynomial-time algorithms for the exact
solution are known only for few special graphs: trees
[8], complete graphs [21], and unicyclic graphs [22].
An algorithm based on a combinatorial approach
with an O(log n) approximated ratio were presented
in [23]. As for heuristics, simulation results suggest
that the best results are achieved by the algorithms
presented in [24] and [25].

3 Problem formulation
We consider a WSN consisting of stationary sensor
nodes with one sink. All sensors are homogeneous.
We use a protocol interference model [26], which is a
graph theoretic approach that assumes correct
reception of a message if and only if there is no
simultaneous transmission within proximity of the
receiver. For simplicity, we assume that the
interference range is equal to the transmission range.
Then the WSN with sink node s can be represented
as a graph G = (V, E), where V denotes all the sensor

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 194 Volume 16, 2017

nodes and s ∊ V. An edge (u, v) ∊ E if and only if the
distance between the nodes u and v is within the
transmission range.

The problem considered in this paper is defined as
follows. Given a connected undirected graph
G = (V, E), |V| = n, |E| = m and a sink node s ∊ V, find
the minimum length schedule of data aggregation
from all the vertices of V ∖ {s} to s under the
following conditions:

• at the same time slot any vertex can either
receive or send a message;

• each vertex can receive at most one message
during one time slot;

• each vertex can send a message only once.
Since it is convenient to consider the directed

edges (arcs) when constructing an aggregation tree,
we also introduce a directed graph Gor = (V, A)
constructed from G by replacing each edge with two
oppositely directed arcs and excluding the arcs
starting from s.

In Fig. 1 an example of the considered problem is
presented. The communication graph with 12
vertices is presented in Fig. 1a. A feasible solution of
the MLAS problem with primary collisions only is
presented in Fig. 1b. The sink node is colored red,
the arrows correspond to the arcs of the aggregation
tree, and the dotted lines correspond to the edges of
the communication graph. A number near an arc
stands for the time slot when a message is sent along
the arc. In this example the length of the data
aggregation schedule equals 5. In Fig. 1c the
telephone broadcasting schedule on the same graph is
presented. Note that spanning trees and schedule
lengths are the same for aggregation and
broadcasting.

a) Communication graph.

b) A feasible solution to the MLAS problem with only
primary collisions. The length of a schedule equals 5.

c) A feasible solution to the telephone broadcasting problem.
The length of a schedule equals 5.

Fig.1. An example of communication network, convergecast
without primary collisions and telephone broadcasting schedules.

3.1 Integer Programming formulations
3.1.2 IP formulation 1
Tian et al. [9] proposed an IP formulation for the
general problem when the elements use the same
channel (frequency) and collisions between the
vertices (not only between the children of the same
parent) are taken into account. The IP-formulation of
the problem with an unbounded number of channels
may be obtained from this formulation by excluding
the corresponding set of constraints as follows.

Let us consider a directed graph Gor
ꞌ = (V ∪ {sꞌ},

A ∪ (s,sꞌ)) which is constructed from Gor by adding a
fictive node sꞌ and an arc (s,sꞌ). Let us introduce the
variables xa,t for any a ∊ A ∪ (s,sꞌ) and t ∊ {1, …, n}:
xa,t = 1 if an arc a is scheduled to transmit a packet
during the time slot t, and xa,t = 0 otherwise. Let us
also denote the set of all arcs starting from v ∊ V as
S(v) and all arcs ending at v ∊ V ∪ {sꞌ} as D(v). Then
the problem is the following:

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 195 Volume 16, 2017

∑ 𝑡𝑡 ∗ 𝑥𝑥(𝑠𝑠,𝑠𝑠ꞌ),𝑡𝑡
𝑛𝑛
𝑡𝑡=0 → x min (1)

∑ ∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡
𝑛𝑛
𝑡𝑡=0𝑎𝑎∊𝑆𝑆(𝑣𝑣) = 1, ∀v ∊V (2)

∑ 𝑥𝑥𝑎𝑎 ꞌ𝑡𝑡ꞌ
𝑛𝑛
𝑡𝑡 ꞌ=𝑡𝑡+1 ≤ 1 − ∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡𝑎𝑎∊𝑆𝑆(𝑣𝑣) ,

∀v ∊ V ∪ {sꞌ} ∀ aꞌ ∊ D(v) ∀t
(3)

∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡𝑎𝑎∊𝑆𝑆(𝑣𝑣) + ∑ 𝑥𝑥𝑎𝑎 ꞌ,𝑡𝑡𝑎𝑎 ꞌ∊𝐷𝐷(𝑣𝑣) ≤ 1 ∀v ∊ V ∪
{sꞌ} ∀t

(4)

In this formulation the time slot when s sends a

message to sꞌ is taken as an objective function (1).
Constraints (2) guarantee that each vertex can
transmit data only once. Constraints (3) ensure that,
once a vertex transmits, it can no longer receive
messages. Constraints (4) hold the requirement that
each vertex can only transmit or receive a message
during each time slot. Note that the formulation (1)-
(4) contains O(nm) variables and O(n2 + nm)
constraints.

3.1.1 IP formulation 2
The solution space of the formulation (1)-(4) is rather
large: in the case of dense graph G the number of
variables may be close to O(n3) as well as the number
of variables of the dual problem. For the efficiency of
branch and bound-based exact methods IP
formulations of less size are more preferable.
Therefore below we propose another IP formulation
with O(n2) variables and O(n3) constraints.

Let us number all vertices V = {v0 = s, v1, …, vn-1}
and introduce the following variables. Let
ti ∊ {1, …, n - 1} be the time slot of data sending by
the vertex vi ∊ V; ui be the number of edges in the
path from vi to s in the convergecasting tree (u0 = 0);
L be the length of a schedule; xij be equal to 1 if vi
sends a message to vj and 0 otherwise; yij is equal to 1
if ti ≥ tj and 0 otherwise. Then the IP-formulation can
be written in the following form:

L → x, u, t, y, L min (5)

L ≥ ti, i =1, ..., n (6)

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=0 =1, i =1, ..., n (7)

1 – (n + 1)(1 – xij) ≤ ui – uj ≤

≤ 1 + (n + 1)(1 – xij), (i,j) ∊ E
(8)

tj – ti ≤ –1 + (n + 1)(2 – xik – xjk) + (n+1)(1 – yij)

i, j, k =1, ..., n, i < j
(9)

1– (n + 1) yij ≤ tj – ti ≤ (n + 1) (1 – yij), (10)

i, j =1, ..., n, i < j

ti + 1 – (n + 1)(1 – xij) ≤ tj, (i, j) ∊ E (11)

Constraints (7) guarantee that each vertex sends a
message only once during the aggregation session.
Constraints (8) ensure that the subgraph which is
defined by the variables x is a tree. With the
constraints (9) and (10) the conflicts between
children of a same parent are eliminated. The
constraints (11) hold the requirement that each vertex
can transmit data only after receiving messages from
all of its children in the aggregation tree.

3.2 Comparison of the IP formulations
We have tested both IP formulations using the IBM
ILOG CPLEX package. We launched CPLEX on
commonly used interconnection topologies: butterfly
graph (BFd), cube connected cycle (CCCd) and
shuffle-exchange graph (SEd) (Table 1). More
detailed information about these graph classes can be
found in [27]. We also launched CPLEX for
instances generated randomly using GT-ITM Pure
Random model [28]. Results of the experiments are
presented in Table 1 and Table 2, respectively.
CPLEXIP1 stands for the CPLEX using formulation
(1)-(4) and CPLEXIP2 stands for the CPLEX using
formulation (5)-(11). The calculation time was
limited by 1000 seconds. If CPLEX failed to find an
optimal solution during 1000 seconds, then the best
found feasible solution was returned. In this case the
objective value is marked in italics.

The results of the experiment show that the both
IP formulations are suitable to solve the considered
problem in acceptable time in cases of small
dimension (10-25 vertices and 20-50 edges). When
n ≥ 40 and m ≥ 60 CPLEXIP2 is unable to complete
the process during 1000 seconds (except one case
when n = 40, m = 64), it always finds an optimal or
near-optimal solution. This means that CPLEXIP2
finds a near-optimal solution rather fast, and spends
the majority of running time for the proof of its
optimality. Although CPLEXIP1 appeared to
outperform CPLEXIP2 in some cases, the results of
CPLEXIP1 were significantly worse when the
calculation process was aborted due to the time limit.
Additionally, CPLEXIP1 was often unable to find any
feasible solution (see, e.g. cases when n ≥ 50 in Table
2). In summary, we conclude that the IP formulation
(5)-(11) is more preferable in practice to solve the
considered problem by CPLEX than the formulation
(1)-(4). Even if CPLEX fails to find an optimal
solution for the formulation (5)-(11) in a specified
time, it always provides a decent near-optimal
feasible solution.

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 196 Volume 16, 2017

Table 1. CPLEX performances on the popular network
topologies.

 n m
CPLEXIP1 CPLEXIP2

Time
(sec.) Obj Time

(sec.) Obj

CCC3 24 36 8.92 6 4.99 6
CCC4 64 96 1000 60 1000 10
SE3 8 10 0.02 5 0.01 5
SE4 16 21 0.67 7 0.19 7
SE5 32 46 44.73 9 159.1 9
BF3 24 48 96.44 5 87.49 5
BF4 64 128 1000 58 1000 8

Table 2. CPLEX performances on the pure random graphs.

n m
CPLEXIP1 CPLEXIP2

Time
(sec.) Obj Time

(sec.) Obj

10 29 2.329 4 2.16 4
10 26 0.703 4 0.856 4
25 35 3.96 5 0.85 5
25 40 8.29 6 10.82 6
25 47 10.99 5 119.1 5
40 64 1000 30 965 7
40 68 67,6 7 1000 7
40 70 46,4 6 1000 6
50 158 1000 42 1000 7
50 127 1000 - 1000 6
50 126 1000 - 1000 7

100 232 1000 - 1000 9
100 233 1000 - 1000 10
100 367 1000 - 1000 9

4 Heuristic algorithms
In this section we propose two heuristic algorithms,
one of which is based on the genetic algorithm
approach [29] with a local search metaheuristic.
Another algorithm is based on the variable
neighborhood search [30] metaheuristic.

4.1 Genetic Local Search
Similar to a conventional genetic algorithm, GLS
maintains a set of feasible solutions (population) and
imitates an evolutionary process as follows: at each
iteration the pairs of solutions are chosen from the
population and reproduce an offspring. As soon as a
new solution is generated, it can be modified by the
Mutation procedure. After this, the Local Search
procedure tries to improve the current solution. Each
time, the best solutions are kept in the population of

the next generation. This process continues until
some predefined stopping condition is met.

The pseudocode of the GLS algorithm is
presented in Fig. 2. The starting population is
generated at the Initialization step in line 1. After that
in lines 3-9 the following steps are sequentially
repeated until a stopping condition is met: Selection,
Crossover, Mutation, LocalSearch,
FitnessCalculation and Join.

As an input the algorithm takes a communication
graph Gor and the following set of parameters:

• PopSize – the size of population;
• OffspSize – the size of offspring;
• FPItCount – the number of iterations in the

first population construction procedure;
• SPProportion – the ratio of shortest-path

trees in the starting population;
• PM – the probability of mutation;
• PLS – the probability of local search.
• kmax – the maximum possible number of

iterations in mutation procedure
The next subsections contain detailed descriptions

of the algorithm steps.

4.1.1 Initialization
At the Initialization step the first population is
generated. The first tree, which is added into the first
population, is the shortest-path tree constructed by
the Dijkstra algorithm. After this tree is constructed,
the length of the shortest path from each vertex to the
sink is known. Let l(v) be the length (number of
edges) of a shortest path from vertex v ∊ V. Let us
consider a directed graph G1 = (V, A1), where
A1 = {(u,v) | (u,v) ∊ A, l(u) = l(v) – 1}. Note that any
spanning tree which is rooted in s and contains only
arcs from A1 is a shortest-path tree. The next trees
added to the population are generated by two
procedures: RandomShortestPath and
RandomMinDegree. The procedure
RandomShortestPath

 INPUT: Gor = (V, A) - communication graph, PopSize,
OffspSize, FPItCoun, SPProportion, PM, PLS, kmax -
additional parameters;
 OUTPUT: T - spanning tree on G rooted in s;

1. Initialization;
2. FitnessCalculation(population);
3. while (stop condition is not met)
4. Selection;
5. Crossover;
6. Mutation;
7. LocalSearch;
8. FitnessCalculation(offspring);
9. Join;
10. T = the best tree among the current population
11. end while

Fig. 2. Genetic local search (GLS).

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 197 Volume 16, 2017

starts with a tree T = (∅, {s}); an arc from A1 which
connects a vertex from the current tree with a vertex
from V which is not in the current tree and is
sequentially chosen at random and added to the
current tree. In the procedure RandomMinDegree, the
tree is constructed in a similar manner, but with the
following difference: at each step an arc is chosen
randomly from A, and the probability of an arc
choice is inversely proportional to the degree of a
corresponding vertex in the current tree. A new tree
is added to the population only if it is not a copy of
an existing one. The Initialization step requires three
parameters: PopSize – the maximum size of the
population, SPProportion – an approximate part of
the trees generated by the procedure
RandomShortestPath, and FPItCount – the maximum
number of successive attempts to generate a tree. The
pseudocode of the Initialization step can be found in
Fig. 3.

 INPUT: Gor = (V, A) - communication graph,
SPProportion, FPItCount, PopSize - additional
parameters;
 OUTPUT: p - population (a set of spanning trees on G
rooted in s);

1. i = 0;
2. T0 = Dijkstra(); // Dijkstra algorithm
3. p = {T0}; // population
4. while (i < FPItCount and p.Size < PopSize)
5. p = random real value between 0 and 1
6. if (p < SPProportion)
7. T = RandomShortestPath();
8. else
9. T = RandomMinDegree();
10. if (p contains T)
11. i++; // clones are forbidden
12. else
13. p.add(T);
14. end while

Fig. 3. GLS: Initialization.

4.1.2 Fitness calculation
In order to estimate the quality of every solution in
the population its fitness should be calculated. Fitness
is a positive value which is higher when the solution
is closer to the optimal solution. Let L(T) be the
minimum convergecasting schedule length for a
spanning tree T. Then the fitness is 1 / L(T).

Note that the convergecasting schedule of
minimum length on a spanning tree T can be found in
time O(n), for example, using the procedure
described in [8] with a small modification, because
the position of the broadcast center is known in our
case.

4.1.3 Selection
In the Selection step a set of parents is filled by the
solutions from the current population in the
following way. Sequentially a tree is taken from the
current population with proportion to fitness
probability. Note that the same solution can be added
to the parent set several times. The number of
elements in the parent set exceeds twice the
maximum number of elements in offspring OffspSize,
which is the parameter of GLS.

4.1.4 Crossover
First a set of parents is divided randomly into
OffspSize pairs. After that each pair of parents
Tp

1 = (V, Ap
1) and Tp

2 = (V, Ap
2) generates a child tree

Tc in the following way. Let us consider a vertex
v ∊ V ∖ {s} and two vertices v1, v2 ∊ V: a1 = (v, v1) ∊
Ap

1, a2 = (v, v2) ∊ Ap
2. The goal is to choose an arc

from {a1, a2} and to add it to Tc. If v1 = v2 then the
arc a1 is chosen. If adding of one arc from {a1, a2} to
Tc leads to the appearance of cycles, then another arc
is chosen. In the remaining case let us introduce the
weight wi = 1 / δ(vi) + 1 / |l(v) – l(vi) – 2|, where δ(vi)
is a degree of the vertex vi in the tree Tp

i, i ∊ {1, 2}.
Then the arc is chosen randomly from {a1, a2} with
probability P(ai) = wi / (w1 + w2), i ∊ {1, 2}.

4.1.5 Mutation
Mutation is a randomized procedure which is applied
to the solutions in the current offspring. The
Mutation procedure is applied with probability PM (a
parameter of GLS) to each offspring. The Mutation
procedure takes as an argument (an integer
parameter) k – the maximum difference (number of
different arcs) between the initial tree and the
modified one. This parameter is taken randomly from
the interval [0, ..., kmax], where kmax is another
algorithm parameter, inverse to its value probability
(i.e., smaller modifications are more possible). The
pseudocode of the mutation procedure is given in
Fig. 4.

 INPUT: G = (V, A) – communication graph, T = (V,
A(T)) – spanning tree on G rooted in s, k – an integer
parameter;
 OUTPUT: T - spanning tree on G rooted in s;

1. do k times:
2. (i,j) = random arc from A \ A(T);
3. if (j is not descendant of i)
4. T.SetParent(i, j);

Fig. 4. GLS: Mutation.

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 198 Volume 16, 2017

4.1.5 Local search
In addition to mutation, the local search procedure is
applied to a subset of offspring defined by the
probability PLS – another algorithm parameter. The
pseudocode of the local search procedure is
presented in Fig. 5. At each iteration the procedure
performs a search of such arc a = (v1, v2) ∊ A ∖ A(T)
whose addition of T (together with detachment of v1
from its parent in T) leads to the maximum decrease
of the objective function. The method
CalculateEffect(T, u, v) calculates the change of the
schedule length after detachment of v from its parent
in T and adding an arc (v, u). Method T.SetParent
performs the mentioned reattachment. The whole
procedure continues while the solution is improved.

 INPUT: G = (V, A) – communication graph, T = (V,
A(T)) – spanning tree on G rooted in s, k – an integer
parameter;
 OUTPUT: T - spanning tree on G rooted in s;

1. improved = true;
2. while (improved)
3. improved = false;
4. best_u = NULL; best_v = NULL; bestImpr = 0;
5. for each arc (u, v) in A \ A(T)
6. effect = CalculateEffect(T, u, v);
7. if (effect < bestImpr)
8. best_u = u;
9. best_v = v;
10. bestImpr = effect;
11. improved = true;
12. end if
13. end for
14. if (improved)
15. T.SetParent(best_u, best_v);
16. CalculateSchedule(T);
17. break;
18. end if
19. end while

Fig. 5. GLS: Local search.

4.1.6 Join
At the join step PopSize solutions from the current
population and the current offspring, which have the
highest fitness, are chosen to fill the population of the
next generation.

4.2 Basic VNS
As has been shown previously [1, 31], the variable
neighborhood search metaheuristic is a rather
efficient approach for approximate solving of NP-
hard discrete optimization problems where the
solution space consists of spanning trees on a given
simple connected graph. In this subsection we
propose a new heuristic based on the basic variable
neighborhood search (BVNS) approach. A
pseudocode of this heuristic is presented in Fig. 6.
Note that in this algorithm we used the same

Mutation and Local Search procedures as in GLS. A
shortest-path spanning tree obtained by the Dijkstra
algorithm was taken as the first solution. The only
parameter of the basic VNS algorithm is kmax – the
maximum number of iterations in the mutation
operator.
 INPUT: G = (V, A) – communication graph, T = (V,
A(T)) – spanning tree on G rooted in s, kmax – an integer
parameter;
 OUTPUT: T - spanning tree on G rooted in s;

1. S = ScheduleLength(T);
2. while (stop condition is not met)
3. k = 0;
4. While (k ≤ kmax)
5. T1 = Mutation(k, T);
6. T2 = LocalSearch(T1);
7. S1 = ScheduleLength(T2);
8. if (S1 < S)
9. S = S1;
10. T = T2;
11. k = 0;
12. else
13. k = k + 1;
14. end if
15. end while
16. end while

Fig. 6. Basic VNS.

5 Simulation
The proposed algorithms have been implemented in
C++. Also, we implemented two of the most efficient
previous heuristics: the Round Heuristic (RH) [24]
and the Tree Based Algorithm (TBA) [25] in order to
compare them with our algorithms. As test instances,
the following commonly used interconnection
topologies have been considered: BFd – butterfly
graph, CCCd – cube connected cycle, SEd – shuffle-
exchange graph. The results can be found in Tables
3-5. In addition, we ran all algorithms on random
graphs generated using three well-known network
models: GT-ITM Pure Random, GT-ITM Transit-
Stub [28] and BRITE Top-Down Waxman [32], see
Tables 6-8. OPT stands for the optimal value of the
objective either known previously [27] or obtained
by us using CPLEX launched on one of the IP
formulations proposed in Section 3 (as for GT-ITM
Pure Random model when n ≤ 25). If the optimal
value of the objective is not known, then the lower
bound (LB) is mentioned. For graphs CCCd and BFd
the best known lower bounds are taken from [27].
For other models the maximum of the following two
values are taken: (a) ⌈log2 n⌉ [27]; (b) a value
obtained by calculating for each vertex its minimum
receiving time plus the length of the shortest path to
the root. The minimal values of convergecasting time
are marked bold in the tables below.

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 199 Volume 16, 2017

The following GLS algorithm’s parameters allow
us to get the best results: PopSize = 50,
OffspSize = 25, FPItCount = 3, SPProportion = 0.6,
PM = 0.6, PLS = 0.8, kmax = ⌊n/3⌋. In BVNS we took
kmax = 100. As a stopping criterion in both algorithms
we used the following rule: the minimum and the
maximum values of fitness among all solutions in the
current population are not changed during last 10
iterations.

For some reason in several cases we failed to
reproduce the results of TBA presented in [25]. For
example, in CCC6, CCC8, BF6, BF7, BF8, SE8, the
length of the schedule yielded by TBA in our
implementation appeared to be greater by 1 than the
length of the schedule constructed by RH, although
the authors of TBA state that they are the same in
those cases.

Table 3. Results in CCCd.

d n m LB RH TBA GLS
3 8 12 6 6 6 6
4 24 36 9 9 9 9
5 160 240 11 11 11 11
6 384 576 13 13 14 13
7 896 1344 16 16 16 16
8 2048 3072 18 18 19 18

Table 4. Results in BFd.

d n m LB RH TBA GLS
3 24 48 5 5 5 5
4 64 128 7 7 7 7
5 160 320 8 9 9 9
6 384 768 10 10 11 10
7 896 1792 11 12 13 12
8 2048 4096 13 14 15 14

Table 5. Results in SEd.

d n m OPT RH TBA GLS
3 8 10 5 5 5 5
4 16 21 7 7 7 7
5 32 46 9 9 9 9
6 64 93 11 11 11 11
7 128 190 13 13 13 13
8 256 381 15 15 16 15

The results of the experiment show that our

algorithm GLS performs better or the same as the
other known heuristics. The most noticeable
advantage of GLS can be observed on the GT-ITM
Transit-Stub model: in 10 cases out of 15 it

outperforms at least one of the other algorithms, in 4
cases it outperforms both of them, and in 2 cases its
convergecasting time is less by 2 than the

Table 6. Results in GT-ITM Pure Random model.

n m LB OPT RH TBA GLS
10 29 4 4 4 4 4
10 23 4 4 4 4 4
25 35 5 5 6 6 5
25 40 6 6 6 7 6
25 47 5 5 5 5 5
25 42 5 6 6 6 6

100 277 7 - 7 7 7
100 232 7 - 8 8 7
100 233 7 - 8 9 8
500 1497 9 - 10 10 10
500 1259 9 - 10 10 10

Table 7. Results in BRITE Top-Down Waxman model.

n m LB RH TBA GLS
100 208 8 10 11 10
100 307 9 11 10 10
100 407 9 10 10 10
500 1529 9 11 12 11
500 1529 9 12 12 12
500 1530 10 12 13 12
1000 1028 22 22 22 22
1000 2020 17 19 19 19
1000 3027 10 13 14 13

Table 8. Results in GT-ITM Transit-Stub model.

n m LB RH TBA GLS BVNS
100 287 7 8 9 8 9
100 261 7 9 9 9 9
100 267 7 9 11 9 9
100 273 7 9 9 8 8
100 275 7 9 8 9 9
600 1004 11 14 14 14 14
600 1208 10 14 13 13 13
600 1250 10 15 14 13 13
600 1234 10 15 14 14 14
600 1235 10 13 13 12 13
1020 2533 10 16 16 16 16
1020 3366 10 17 17 16 16
1020 3515 10 17 16 16 16
1020 2563 10 18 17 17 17
1020 2550 10 17 17 16 16

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 200 Volume 16, 2017

convergecasting time obtained by one of other
algorithms. We found only one case when another
algorithm outperforms GLS: in the fifth instance of
the BRITE Transit-Stub model the aggregation
latency obtained by TBA is less by 1 than the one
obtained by GLS. In total, GLS appeared to be
extremely efficient for all tested topologies and
network models.

BVNS appeared to not outperform RH and TBA
in all tested cases except the Transit-Stub models.
We did not include its result in the tables in those
cases. As it follows from the Table 8, BVNS almost
always yields solution of the same quality as GLS on
Transit-Stub models. And, since BVNS runs 3-5
times faster than GLS, its usage is more preferable
for the Transit-Stub models.

Obviously, GLS is more time-consuming than
RH, TBA and BVNS, but its running time remained
acceptable in all tested cases. Thus, it solves a
problem with 100 vertices and 300 edges in about 1.5
seconds, and it solves a problem with 1000 vertices
and 3000 edges in about 30 seconds. It should be
noticed that we launched it on one thread although it
is well-parallelizable and therefore it may be
significantly speeded-up according to the machine
hardware and operation system properties. Moreover,
the variety of parameters of GLS provides flexibility,
and more thorough tuning of these parameters may
also improve the algorithm.

6 Conclusion
In this paper, we addressed an aggregated
convergecast problem in WSNs for the case when the
number of channels is unbounded. The objective is to
minimize data aggregation time. We proposed new
heuristic algorithms, based on the genetic algorithm,
local search and variable neighborhood search
metaheuristics. Our scheduling algorithms have
lower latencies than the previous best approaches,
Round Heuristic [24] and Tree Based Algorithm [25]
especially for such widespread network model as
GT-ITM Transit–Stub. We also proposed a new IP-
formulation for this problem and compared it with a
variant from [9] using IBM CPLEX package. Our
formulation appeared to be more suitable for
moderate-size instances (up to 100 vertices and 300
edges), where it always finds a near-optimal feasible
solution in a reasonable time.

Acknowledgments. The research of R. Plotnikov is
partly supported by the Russian Foundation for Basic
Research (grant no. 16-37-60006). The research of A.
Erzin and V. Zalyubovskiy is partly supported by the
Russian Foundation for Basic Research (grant no. 16-
07-00552).

References:
[1] A.I. Erzin, N. Mladenovich, R.V. Plotnikov,

Variable neighborhood search variants for Min-
power symmetric connectivity problem,
Computers & Operations Research 78, 2017, pp.
557-563.

[2] B. Malhotra, I. Nicolaidis, M.A. Nascimento,
Aggregation convergecast scheduling in wireless
sensor networks, Wireless Netw. 17, 2011, pp.
319-335.

[3] I. Demirkol, C. Ersoy, F. Alagoz, MAC protocols
for wireless sensor networks: A survey, IEEE
Comm. Mag. 44, 2006, pp. 115-121.

[4] P.-J. Wan, S.C.-H. Huang, L. Wang, et al.,
Minimum-latency aggregation scheduling in
multihop wireless networks, Proc. ACM
MOBIHOC, 2009, pp. 185-194.

[5] X. Chen, X. Hu, J. Zhu, Minimum data
aggregation time problem in wireless sensor
networks, Lecture Notes Comput. Sci. 3794,
2005, pp. 133-142.

[6] A. Erzin, A. Pyatkin, Convergecast scheduling
problem in case of given aggregation tree: The
complexity status and some special cases, IEEE
Int. Symp. On Comm. Systems, Networks and
DSP (CSNDSP), 7574007, 2016.

[7] S.C.-H. Huang, P.J. Wan, C.T. Vu, et al., Nearly
constant approximation for data aggregation
scheduling in wireless sensor networks, Proc.
IEEE INFOCOM, 2007, pp. 366-372.

[8] P.J. Slater, E.J. Cockayne, S.T. Heditniemi,
Information dissemination in trees, SIAM J.
Comput. 10, 1981, pp. 692-701.

[9] C. Tian, H. Jiang, C. Wang, et al., Neither
shortest path nor dominating set: Aggregation
scheduling by greedy growing tree in multihop
wireless sensor networks, IEEE Trans. Veh.
Technol. 60, 2011, pp. 3462-3472.

[10] B. Krishnamachari, D. Estrin, S. Wicker, Impact
of data aggregation in wireless sensor networks,
IEEE ICDCS, 2002, pp. 575-578.

[11] R. Rajagopalan, P.K. Varshney, Data-
aggregation techniques in sensor networks: a
survey, IEEE Commun. Surveys & Tutorials 8,
2006, pp. 48-63.

[12] M. Bagaa, Y. Challa, A. Ksentini, et al., Data
aggregation scheduling algorithms in wireless
sensor networks: Solutions and challenges, IEEE
Commun. Surveys & Tutorials, 16, 2014, pp.
1339-1368.

[13] X. Xu, X. Mao, A delay-efficient algorithm for
data aggregation in multihop wireless sensor

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 201 Volume 16, 2017

networks, IEEE Trans. Parallel Distr. Syst., 22,
2011, pp. 163-175.

[14] P.J. Wan, K.L. Alzoubi, O. Frieder, Distributed
construction of connected dominating set in
wireless ad hoc networks, IEEE INFOCOM,
2002, pp. 1597-1604.

[15] M. Bagaa, A. Derhab, N. Lasla, A. Ouadjaout, N.
Badache, Semi-structured and unstructured data
aggregation scheduling in wireless sensor
networks, IEEE INFOCOM, 2012, pp. 2671-
2675.

[16] T.D. Nguyen, V. Zalyubovskiy, H. Choo,
Efficient time latency of data aggregation based
on neighboring dominators in WSNs, IEEE
Globecom, 6133827, 2011

[17] P. Wang, Y. He, L. Huang, Near optimal
scheduling of data aggregation in wireless sensor
networks, Ad Hoc Networks, 11, 2013, pp. 1287-
1296.

[18] A. Ghosh, O.D. Incel, V.S.A. Kumar, et al., MC-
MLAS: Multi-channel minimum latency
aggregation scheduling in wireless sensor
networks, IEEE MASS, 2009, pp. 363-372.

[19] M.-S. Pan, Y.-H. Lee, Fast convergecast for low-
duty-cycled multi-channel wireless sensor
networks, Ad Hoc Netw, 40C, 2016, pp. 1-14.

[20] M. Middendorf, Minimum broadcast time is NP-
complete for 3-regular planar graphs and
deadline 2, Information Processing Letters 46,
1993, pp. 281-287.

[21] C.-T. Cheng, K.T. Chi, F. Lau, A delay0aware
data collection network structure for wireless
sensor networks, IEEE Sensors J. 11, 2011, pp.
699-710.

[22] H.A. Harutyunyan, E. Maraachlian, On
broadcasting in unicyclic graphs, J. of
Combinatorial Optimization, 16, 2008, pp. 307-
322.

[23] M. Elkin, G. Kortsarz, Combinatorial logarithmic
approximation algorithm for directed telephone
broadcast problem, STOC, 2002, pp. 438-447.

[24] R. Beier, J.F. Sibeyn, A powerful heuristic for
telephone gossiping, SIROCCO, 2000, pp. 17-36.

[25] H.A. Harutyunyan, B. Shao, An efficient
heuristic for broadcasting in networks, J. Parallel
Distrib. Comput. 66, 2006, pp. 68-76.

[26] P. Gupta, P. Kumar, The capacity of wireless
networks, IEEE Trans. On Information Theory
IT-46, 2000, pp. 388-404.

[27] J. Hromkovic, R. Klasing, B. Monien, R. Peine,
Dissemination of information in interconnection
networks (broadcasting & gossiping),

Combinatorial Network Theory, 1996, pp. 125-
212.

[28] E.W. Zegura, K. Calvert, S. Bhattacharjee, How
to model an internetwork, IEEE INFOCOM,
1996, pp. 594-602

[29] S.N. Sivanandam, S.N. Deepa, Introduction to
genetic algorithms (Springer, 2008)

[30] P. Hansen, N. Mladenovic, J.A.M. Perez,
Variable neighbourhood search: methods and
applications. Annals of Operations
Research, 175, 2010, pp. 367–407.

[31] R. Plotnikov, A. Erzin, N. Mladenovic, Variable
neighborhood search-based heuristics for min-
power symmetric connectivity problem in
wireless networks, LNCS 9869, 2016, pp. 220-
232.

[32] A. Medina, A. Lakhina, I. Matta, J. Byers,
BRITE: An approach to universal topology
generation, Proc. Ninth Int. Symp. on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2001
p. 346.

WSEAS TRANSACTIONS on COMMUNICATIONS Roman Plotnikov, Adil Erzin, Vyacheslav Zalyubovskiy

E-ISSN: 2224-2864 202 Volume 16, 2017

https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=44861637000&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55892277700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55947364100&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987947973&origin=resultslist&sort=plf-f&src=s&sid=78c1bf99243f5885f6cd24c0226ff5d9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2844861637000%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987947973&origin=resultslist&sort=plf-f&src=s&sid=78c1bf99243f5885f6cd24c0226ff5d9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2844861637000%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987947973&origin=resultslist&sort=plf-f&src=s&sid=78c1bf99243f5885f6cd24c0226ff5d9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2844861637000%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987947973&origin=resultslist&sort=plf-f&src=s&sid=78c1bf99243f5885f6cd24c0226ff5d9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2844861637000%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987947973&origin=resultslist&sort=plf-f&src=s&sid=78c1bf99243f5885f6cd24c0226ff5d9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2844861637000%29&relpos=2&citeCnt=0&searchTerm=

