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Abstract: We consider a problem of minimum length scheduling for conflict-free aggregation convergecast in 
wireless networks in a case when each element of a network uses its own frequency channel. This problem is 
equivalent to the well-known NP-hard problem of telephone broadcasting, since only the conflicts between the 
children of the same parent are taken into account. We propose a new integer programming formulation and 
compare it with the known one by running the CPLEX software package. Based on the results of a numerical 
experiment, we concluded that our formulation is more preferable in practice to solve the considered problem by 
CPLEX than the known one. We also propose a novel heuristic algorithm, based on a genetic algorithm and a 
local search metaheuristic. The simulation results demonstrate the high quality of the proposed algorithm 
compared to the best known approaches. 
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1 Introduction  
In wireless sensor networks (WSNs), collecting data 
from all sensor nodes to a distinguished node, called 
the sink, is one of the most fundamental problems. 
Due to the limited transmission range of sensor 
nodes, which follows, in particular, from the need to 
minimize communication energy consumption [1], 
multi-hop communication over a tree-based routing 
topology is usually used to gather data. Such a 
pattern is known as convergecast [2]. 

Since radio communication is the main source of 
energy consumption, it is important to minimize the 
amount of transmitted data. One of the ways to 
optimize communication overhead for sensor nodes 
is to merge their own data with the received packets 
by means of some aggregation function. Aggregation 
convergecast is possible when data are spatially 
correlated or the goal is to collect some summarized 
information (e.g. maximum, mean, etc.) In such a 
scenario, each sensor node needs to send only one 
packet during the aggregation session. 

Because of its ability to provide time bounds, 
TDMA-based scheduling algorithms are widely used. 
In a TDMA scheduling, time is divided in equal-
length slots under the assumption that each slot is 

long enough to send or receive one packet [3]. 
Minimizing time for the aggregated convergecast in 
this case is equivalent to minimizing the number of 
time slots required for all packets to reach the sink.  

Another important factor of the convergecast 
protocol is aggregation latency, defined as the 
required number of time slots of the whole data 
collection process. The problem of minimization of 
latency is known in literature as minimum-latency 
aggregation scheduling (MLAS) [4]. The solution of 
MLAS typically includes two components: a 
spanning tree rooted at and directed towards the sink 
node, and the schedule, which assigns a transmitting 
time slot for each tree link so that (1) every node 
transmits only after all its children in the tree have, 
and (2) links with potential interference are 
scheduled to transmit in different time slots. The last 
condition means that the TDMA schedule should be 
interference free, i.e. no receiving node is within the 
interference range of the other transmitting node. 
There are two types of interference or collisions in 
wireless networks: primary and secondary. A 
primary collision occurs when more than one node 
transmits to the same destination. In tree-based 
aggregation, it corresponds to the case when two or 
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more children of the same parent send their packets 
in the same time slot. A secondary collision occurs 
when a node overhears transmissions intended for 
other nodes. Such kind of collision is caused by links 
in the underlying communication graph, but not in 
the aggregation tree. 

The MLAS problem was proven to be NP-hard 
[5]. Finding an optimal time slot assignment for a 
given tree is still NP-hard [6]. Therefore, all existing 
results in literature are heuristic algorithms for 
finding approximate solutions. Most of them contain 
two relatively independent phases: aggregation tree 
construction, followed by link scheduling [4, 5, 7].   

In this paper, we mainly focus on the first phase – 
finding the minimum delay aggregation tree, 
assuming that the proper chosen tree would lead to a 
good solution. Additionally, in this stage we take into 
account only conflicts between the children of the 
same parent, i.e. primary collisions. First, such a 
model is suitable for multichannel transmissions, 
where secondary interference can be avoided by 
assigning different frequencies under the assumption 
that the number of channels is big enough. Moreover, 
the solution of such a “relaxed” problem can be used 
as a lower bound of the aggregation latency for the 
original MLAS, so a tree with a smaller delay can be 
considered as a better candidate to produce a shorter 
schedule.  

It is worthwhile to mention that the considered 
problem is equivalent to the problem of finding the 
optimal broadcasting tree in a graph, also known as a 
telephone broadcasting problem, which has been 
proved to be NP-hard [8]. Most existing algorithms 
construct an aggregation tree based on the shortest 
path tree (SPT) or connected dominated set (CDS), 
but as was shown in [9] an optimal solution could be 
neither SPT nor CDS based. To overcome this issue, 
we propose a novel heuristic algorithm, which 
combines a genetic algorithm performing broad 
search among various aggregation trees with a local 
search procedure aimed at the pruning of the 
currently found tree. 

In summary, we provide the following 
contributions towards a better understanding of the 
aggregated convergecast problem: 

• We present an alternative IP formulation for 
the MLAS problem in case of the absence of 
secondary collisions and compare it with 
previously known models. 

• We propose a novel heuristic Genetic Local 
Search (GLS). In contrast to traditional 
genetic algorithms, GLS uses an embedded 
local search procedure to further improve the 
current feasible solution. 

• Through extensive simulation experiments, 
we demonstrate the quality of the solutions 

achievable by the GLS algorithm vs. the 
current state-of-the-art methods. 

The rest of the paper is organized as follows: The 
recent research results are overviewed in Section 2. 
The mathematical formulation of the problem and the 
comparative analysis of two IP-formulations are 
given in Section 3. In Section 4, the new heuristic 
algorithms are described. Simulation results are 
presented in Section 5, and the paper is concluded in 
Section 6. 
 
 
2 Related work  
Data aggregation for WSNs has been proposed to 
improve energy efficiency of sensor nodes and 
consequently prolong network lifetime [10]. Some 
surveys considering different aspects of the problem 
have been published [11, 12]. According to [12], a 
data aggregation protocol should achieve five main 
goals: energy efficiency, reducing data propagation 
latency, data accuracy, aggregation freshness, and 
collision avoidance. Depending on the type of 
aggregation function, the data can be aggregated to 
one or multiple values. Also, data can be aggregated 
in-network or at the base station. With in-network 
data aggregation, each sensor node applies some 
aggregation function in order to minimize the amount 
of forwarded data. In-network aggregation functions 
can be roughly classified as perfect and partial 
aggregation functions. In our research, we are 
focusing on minimization of data latency with perfect 
aggregation subject to avoiding collisions. Such a 
problem is known as minimum-latency aggregation 
scheduling (MLAS). 

The MLAS problem was first introduced in [5]. 
The authors proved that the problem is NP-hard even 
for unit disk graphs, and proposed a (Δ – 1)-
approximation algorithm, where Δ is the maximum 
node degree in the network graph. In this algorithm, 
the Shortest Path Tree is created first, which later is 
used as an input for the scheduling algorithm. It 
worth noting that the tree actually isn’t used as data 
aggregation framework. Instead, it is exploited to sort 
nodes in the scheduling process. 

In the nearly constant approximation proposed by 
Huang et al. [7], the data latency bounded by 
23R + Δ – 18, where R is the network’s radius. The 
algorithm in [13] aims to minimize the data 
aggregation time by using a Connected Dominated 
Set (CDS). Moreover, the authors choose the 
network topology center as the aggregation tree root 
instead of the sink. This allows them to reduce the 
upper bound to 16R + Δ – 14. The algorithm consists 
of two steps: Dominating Set construction and data 
aggregation scheduling. The first one is constructed 
using the same approach as in [14]. The data 
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aggregation scheduling is done in two steps. First, the 
data are aggregated from all the dominatees to the 
dominators by scheduling the maximum number of 
dominatee-dominator pairs at each time slot. Second, 
the dominators aggregate their data to the root node, 
using a non-redundant set of dominates called 
connectors. The algorithm in [4] differs from [13] 
only by the way of scheduling aggregated data from 
the dominators to the base station and has a latency 
bound of 15R + Δ – 4. It is important to note that 
Bagaa et al. in [15] have proved that the data latency 
upper bounds in [4] and [13] are incorrect. Based on 
the properties of neighboring dominators in CDS, 
Nguyen et al. have improved the algorithm from [13] 
and have given a proof of upper bound 12R + Δ – 12 
for their algorithm [16]. 

Wang et al. designed a Peony-tree-based data 
aggregation algorithm with latency bound 15R + Δ – 
15 [17]. In this algorithm, network nodes are 
subdivided into levels by using the hop count 
information such that the first level contains only the 
base station, while the bottom level contains only the 
leaf nodes. In order to create the aggregation tree, a 
maximal independent set is constructed first in a top-
down manner. To interconnect the dominators in 
level i with the dominators in level i-1, a set of non-
redundant dominatees, called connectors, is selected. 
After that, the data aggregation schedule is executed 
using first-fit algorithm in two steps. First, all 
dominatee nodes are divided into node-disjoint 
maximum concurrent sets, such that nodes in each set 
can transmit data to their parents without interference 
in one time slot. After this, the dominators and 
connectors are scheduled level by level starting from 
the bottom level. 

Most previously mentioned works on solving 
MLAS problem have two independent phases: a tree 
construction phase followed by an edge-scheduling 
phase, exploiting the assumption that a well-chosen 
tree would consequently lead to good scheduling. 
However, authors of [9] emphasized the following 
problems of two-phase approaches. First, the result 
of the same algorithm could be substantially 
different, depending on the constructed tree. Second, 
the layered nature of the predefined tree reduces the 
opportunity of parallel transmissions, which leads to 
suboptimal solutions. In contrast to previous works, 
the authors proposed algorithm GGT, which 
constructs a growing spanning tree rooted at the base 
station, and the tree construction is guided by the 
scheduling algorithm. Though there is no provable 
bounds provided, simulation results demonstrate the 
superiority of the GGT algorithm, especially for 
high-degree networks. 

 Since communication collisions are a main 
reason for long latency in data aggregation, using 

multi-channel communication, which increases the 
number of parallel transmissions over different 
frequency channels, is an effective approach to 
minimize latency.  In [18], the authors proved that 
minimizing the schedule length for an arbitrary 
network in the presence of multiple frequencies is 
NP-hard and proposed approximation algorithms 
with worst-case performance bound for geometric 
networks. They also showed that finding the 
minimum number of frequencies required to remove 
all interfering links in an arbitrary network is NP-
hard problem. Pan et al. considered convergecast for 
low-duty-cycled multi-channel WSNs aimed at 
finding a time slot and frequency channel assignment 
that can minimize the data aggregation delay [19]. 
The authors proved NP-completeness of the problem 
and proposed a heuristic scheme, which contains 
three consecutives phases: tree formation, slot 
assignment, and channel assignment. 

As mentioned earlier, a relaxed version of the 
MLAS problem, which takes into account only 
primary collisions, is equivalent to the broadcast time 
problem in a wired network. Specifically, in [8] 
authors define broadcasting from a vertex u to be the 
process of delivering one unit of information from a 
vertex u to every other vertex in connected graph G = 
(V, E). The broadcast number of u in G then is 
defined as the minimum number of time units to 
broadcast from u.  The authors proved that the 
problem of finding the broadcast number for an 
arbitrary vertex in an arbitrary graph is NP-hard. 
Moreover, they presented an O(N) algorithm for 
calculating the broadcast number of any vertex in any 
tree with N vertices. In [20] it is shown that the 
problem remains NP-hard even for 3-regular planar 
graphs. Polynomial-time algorithms for the exact 
solution are known only for few special graphs: trees 
[8], complete graphs [21], and unicyclic graphs [22]. 
An algorithm based on a combinatorial approach 
with an O(log n) approximated ratio were presented 
in [23]. As for heuristics, simulation results suggest 
that the best results are achieved by the algorithms 
presented in [24] and [25]. 
 
 
3 Problem formulation 
We consider a WSN consisting of stationary sensor 
nodes with one sink. All sensors are homogeneous. 
We use a protocol interference model [26], which is a 
graph theoretic approach that assumes correct 
reception of a message if and only if there is no 
simultaneous transmission within proximity of the 
receiver. For simplicity, we assume that the 
interference range is equal to the transmission range. 
Then the WSN with sink node s can be represented 
as a graph G = (V, E), where V denotes all the sensor 
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nodes and s ∊ V. An edge (u, v) ∊ E if and only if the 
distance between the nodes u and v is within the 
transmission range.  

The problem considered in this paper is defined as 
follows. Given a connected undirected graph 
G = (V, E), |V| = n, |E| = m and a sink node s ∊ V, find 
the minimum length schedule of data aggregation 
from all the vertices of V ∖ {s} to s under the 
following conditions: 

• at the same time slot any vertex can either 
receive or send a message; 

• each vertex can receive at most one message 
during one time slot; 

• each vertex can send  a message only once.  
Since it is convenient to consider the directed 

edges (arcs) when constructing an aggregation tree, 
we also introduce a directed graph Gor = (V, A) 
constructed  from G by replacing each edge with two 
oppositely directed arcs and excluding the arcs 
starting from s. 

In Fig. 1 an example of the considered problem is 
presented. The communication graph with 12 
vertices is presented in Fig. 1a. A feasible solution of 
the MLAS problem with primary collisions only is 
presented in Fig. 1b. The sink node is colored red, 
the arrows correspond to the arcs of the aggregation 
tree, and the dotted lines correspond to the edges of 
the communication graph. A number near an arc 
stands for the time slot when a message is sent along 
the arc. In this example the length of the data 
aggregation schedule equals 5. In Fig. 1c the 
telephone broadcasting schedule on the same graph is 
presented. Note that spanning trees and schedule 
lengths are the same for aggregation and 
broadcasting. 

 

 
a) Communication graph. 

 
b) A feasible solution to the MLAS problem with only 
primary collisions. The length of a schedule equals 5. 

 
c) A feasible solution to the telephone broadcasting problem. 
The length of a schedule equals 5. 
 
Fig.1. An example of communication network, convergecast 
without primary collisions and telephone broadcasting schedules. 
 
 
3.1 Integer Programming formulations 
3.1.2 IP formulation 1 
Tian et al. [9] proposed an IP formulation for the 
general problem when the elements use the same 
channel (frequency) and collisions between the 
vertices (not only between the children of the same 
parent) are taken into account. The IP-formulation of 
the problem with an unbounded number of channels 
may be obtained from this formulation by excluding 
the corresponding set of constraints as follows. 

Let us consider a directed graph Gor
ꞌ = (V ∪ {sꞌ}, 

A ∪ (s,sꞌ)) which is constructed from Gor by adding a 
fictive node sꞌ and an arc (s,sꞌ). Let us introduce the 
variables xa,t for any a ∊ A ∪ (s,sꞌ) and t ∊ {1, …, n}: 
xa,t = 1 if an arc a is scheduled to transmit a packet 
during the time slot t, and xa,t = 0 otherwise. Let us 
also denote the set of all arcs starting from v ∊ V as 
S(v) and all arcs ending at v ∊ V ∪ {sꞌ} as D(v). Then 
the problem is the following: 
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∑ 𝑡𝑡 ∗ 𝑥𝑥(𝑠𝑠,𝑠𝑠ꞌ),𝑡𝑡
𝑛𝑛
𝑡𝑡=0 → x min (1) 

∑ ∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡
𝑛𝑛
𝑡𝑡=0𝑎𝑎∊𝑆𝑆(𝑣𝑣) = 1, ∀v ∊V (2) 

∑ 𝑥𝑥𝑎𝑎 ꞌ𝑡𝑡ꞌ
𝑛𝑛
𝑡𝑡 ꞌ=𝑡𝑡+1 ≤ 1 − ∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡𝑎𝑎∊𝑆𝑆(𝑣𝑣) ,  

∀v ∊ V ∪ {sꞌ} ∀ aꞌ ∊ D(v) ∀t 
(3) 

∑ 𝑥𝑥𝑎𝑎 ,𝑡𝑡𝑎𝑎∊𝑆𝑆(𝑣𝑣) + ∑ 𝑥𝑥𝑎𝑎 ꞌ,𝑡𝑡𝑎𝑎 ꞌ∊𝐷𝐷(𝑣𝑣) ≤ 1 ∀v ∊ V ∪ 
{sꞌ} ∀t 

(4) 

 
In this formulation the time slot when s sends a 

message to sꞌ is taken as an objective function (1). 
Constraints (2) guarantee that each vertex can 
transmit data only once. Constraints (3) ensure that, 
once a vertex transmits, it can no longer receive 
messages. Constraints (4) hold the requirement that 
each vertex can only transmit or receive a message 
during each time slot. Note that the formulation (1)-
(4) contains O(nm) variables and O(n2 + nm) 
constraints. 
 
 
3.1.1 IP formulation 2 
The solution space of the formulation (1)-(4) is rather 
large: in the case of dense graph G the number of 
variables may be close to O(n3) as well as the number 
of variables of the dual problem. For the efficiency of 
branch and bound-based exact methods IP 
formulations of less size are more preferable. 
Therefore below we propose another IP formulation 
with O(n2) variables and O(n3) constraints. 

Let us number all vertices V = {v0 = s, v1, …, vn-1} 
and introduce the following variables. Let 
ti ∊ {1, …, n - 1} be the time slot of data sending by 
the vertex vi ∊ V; ui be the number of edges in the 
path from vi to s in the convergecasting tree (u0 = 0); 
L be the length of a schedule; xij be equal to 1 if vi 
sends a message to vj and 0 otherwise; yij is equal to 1 
if ti ≥ tj and 0 otherwise. Then the IP-formulation can 
be written in the following form: 
 

L → x, u, t, y, L min (5) 

L ≥ ti, i =1, ..., n (6) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=0 =1, i =1, ..., n (7) 

1 – (n + 1)(1 – xij) ≤ ui – uj ≤ 

≤ 1 + (n + 1)(1 – xij), (i,j) ∊ E 
(8) 

tj – ti ≤ –1 + (n + 1)(2 – xik – xjk) + (n+1)(1 – yij)  

i, j, k =1, ..., n, i < j 
(9) 

1– (n + 1) yij ≤ tj – ti ≤ (n + 1) (1 – yij),  (10) 

i, j =1, ..., n, i < j 

ti + 1 – (n + 1)(1 – xij) ≤ tj, (i, j) ∊ E (11) 
 
Constraints (7) guarantee that each vertex sends a 
message only once during the aggregation session. 
Constraints (8) ensure that the subgraph which is 
defined by the variables x is a tree. With the 
constraints (9) and (10) the conflicts between 
children of a same parent are eliminated. The 
constraints (11) hold the requirement that each vertex 
can transmit data only after receiving messages from 
all of its children in the aggregation tree. 
 
 
3.2 Comparison of the IP formulations 
We have tested both IP formulations using the IBM 
ILOG CPLEX package. We launched CPLEX on 
commonly used interconnection topologies: butterfly 
graph (BFd), cube connected cycle (CCCd) and 
shuffle-exchange graph (SEd) (Table 1). More 
detailed information about these graph classes can be 
found in [27]. We also launched CPLEX for 
instances generated randomly using GT-ITM Pure 
Random model [28]. Results of the experiments are 
presented in Table 1 and Table 2, respectively. 
CPLEXIP1 stands for the CPLEX using formulation 
(1)-(4) and CPLEXIP2 stands for the CPLEX using 
formulation (5)-(11). The calculation time was 
limited by 1000 seconds. If CPLEX failed to find an 
optimal solution during 1000 seconds, then the best 
found feasible solution was returned. In this case the 
objective value is marked in italics. 

The results of the experiment show that the both 
IP formulations are suitable to solve the considered 
problem in acceptable time in cases of small 
dimension (10-25 vertices and 20-50 edges). When 
n ≥ 40 and m ≥ 60 CPLEXIP2 is unable to complete 
the process during 1000 seconds (except one case 
when n = 40, m = 64), it always finds an optimal or 
near-optimal solution. This means that CPLEXIP2 
finds a near-optimal solution rather fast, and spends 
the majority of running time for the proof of its 
optimality. Although CPLEXIP1 appeared to 
outperform CPLEXIP2 in some cases, the results of 
CPLEXIP1 were significantly worse when the 
calculation process was aborted due to the time limit. 
Additionally, CPLEXIP1 was often unable to find any 
feasible solution (see, e.g. cases when n ≥ 50 in Table 
2). In summary, we conclude that the IP formulation 
(5)-(11) is more preferable in practice to solve the 
considered problem by CPLEX than the formulation 
(1)-(4). Even if CPLEX fails to find an optimal 
solution for the formulation (5)-(11) in a specified 
time, it always provides a decent near-optimal 
feasible solution. 
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Table 1. CPLEX performances on the popular network 
topologies. 

 n m 
CPLEXIP1 CPLEXIP2 

Time 
(sec.) Obj Time 

(sec.) Obj 

CCC3 24 36 8.92 6 4.99 6 
CCC4 64 96 1000 60 1000 10 
SE3 8 10 0.02 5 0.01 5 
SE4 16 21 0.67 7 0.19 7 
SE5 32 46 44.73 9 159.1 9 
BF3 24 48 96.44 5 87.49 5 
BF4 64 128 1000 58 1000 8 
 

Table 2. CPLEX performances on the pure random graphs. 

n m 
CPLEXIP1 CPLEXIP2 

Time 
(sec.) Obj Time 

(sec.) Obj 

10 29 2.329 4 2.16 4 
10 26 0.703 4 0.856 4 
25 35 3.96 5 0.85 5 
25 40 8.29 6 10.82 6 
25 47 10.99 5 119.1 5 
40 64 1000 30 965 7 
40 68 67,6 7 1000 7 
40 70 46,4 6 1000 6 
50 158 1000 42 1000 7 
50 127 1000 - 1000 6 
50 126 1000 - 1000 7 

100 232 1000 - 1000 9 
100 233 1000 - 1000 10 
100 367 1000 - 1000 9 

 
4 Heuristic algorithms 
In this section we propose two heuristic algorithms, 
one of which is based on the genetic algorithm 
approach [29] with a local search metaheuristic. 
Another algorithm is based on the variable 
neighborhood search [30] metaheuristic. 
 
 
4.1 Genetic Local Search 
Similar to a conventional genetic algorithm, GLS 
maintains a set of feasible solutions (population) and 
imitates an evolutionary process as follows: at each 
iteration the pairs of solutions are chosen from the 
population and reproduce an offspring.  As soon as a 
new solution is generated, it can be modified by the 
Mutation procedure. After this, the Local Search 
procedure tries to improve the current solution. Each 
time, the best solutions are kept in the population of 

the next generation. This process continues until 
some predefined stopping condition is met.  

The pseudocode of the GLS algorithm is 
presented in Fig. 2. The starting population is 
generated at the Initialization step in line 1. After that 
in lines 3-9 the following steps are sequentially 
repeated until a stopping condition is met: Selection, 
Crossover, Mutation, LocalSearch, 
FitnessCalculation and Join.  

As an input the algorithm takes a communication 
graph Gor and the following set of parameters:  

• PopSize – the size of population; 
• OffspSize – the size of offspring; 
• FPItCount – the number of iterations in the 

first population construction procedure; 
• SPProportion – the ratio of shortest-path 

trees in the starting population; 
• PM – the probability of mutation; 
• PLS – the probability of local search. 
• kmax – the maximum possible number of 

iterations in mutation procedure 
The next subsections contain detailed descriptions 

of the algorithm steps. 
 
 
4.1.1 Initialization 
At the Initialization step the first population is 
generated. The first tree, which is added into the first 
population, is the shortest-path tree constructed by 
the Dijkstra algorithm. After this tree is constructed, 
the length of the shortest path from each vertex to the 
sink is known. Let l(v) be the length (number of 
edges) of a shortest path from vertex v ∊ V. Let us 
consider a directed graph G1 = (V, A1), where 
A1 = {(u,v) | (u,v) ∊ A, l(u) = l(v) – 1}. Note that any 
spanning tree which is rooted in s and contains only 
arcs from A1 is a shortest-path tree. The next trees 
added to the population are generated by two 
procedures: RandomShortestPath and 
RandomMinDegree. The procedure 
RandomShortestPath 

    INPUT: Gor = (V, A) - communication graph, PopSize, 
OffspSize, FPItCoun, SPProportion, PM, PLS, kmax - 
additional parameters; 
    OUTPUT: T - spanning tree on G rooted in s; 

1. Initialization;  
2. FitnessCalculation(population); 
3. while (stop condition is not met) 
4.   Selection; 
5.   Crossover; 
6.   Mutation;  
7.   LocalSearch; 
8.   FitnessCalculation(offspring); 
9.   Join; 
10.   T = the best tree among the current population 
11. end while 

Fig. 2. Genetic local search (GLS). 
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starts with a tree T = (∅, {s}); an arc from A1 which 
connects a vertex from the current tree with a vertex 
from V which is not in the current tree and is 
sequentially chosen at random and added to the 
current tree. In the procedure RandomMinDegree, the 
tree is constructed in a similar manner, but with the 
following difference: at each step an arc is chosen 
randomly from A, and the probability of an arc 
choice is inversely proportional to the degree of a 
corresponding vertex in the current tree. A new tree 
is added to the population only if it is not a copy of 
an existing one. The Initialization step requires three 
parameters: PopSize – the maximum size of the 
population, SPProportion – an approximate part of 
the trees generated by the procedure 
RandomShortestPath, and FPItCount – the maximum 
number of successive attempts to generate a tree. The 
pseudocode of the Initialization step can be found in 
Fig. 3. 

    INPUT: Gor = (V, A) - communication graph, 
SPProportion, FPItCount, PopSize - additional 
parameters; 
    OUTPUT: p - population (a set of spanning trees on G 
rooted in s); 

1. i = 0;  
2. T0 = Dijkstra(); // Dijkstra algorithm  
3. p = {T0}; // population 
4. while (i < FPItCount and p.Size < PopSize) 
5.   p = random real value between 0 and 1 
6.   if (p < SPProportion) 
7.     T = RandomShortestPath(); 
8.   else 
9.     T = RandomMinDegree(); 
10.   if (p contains T) 
11.     i++; // clones are forbidden 
12.   else 
13.     p.add(T); 
14. end while 

Fig. 3. GLS: Initialization. 
 
 
4.1.2 Fitness calculation 
In order to estimate the quality of every solution in 
the population its fitness should be calculated. Fitness 
is a positive value which is higher when the solution 
is closer to the optimal solution. Let L(T) be the 
minimum convergecasting schedule length for a 
spanning tree T. Then the fitness is 1 / L(T). 

Note that the convergecasting schedule of 
minimum length on a spanning tree T can be found in 
time O(n), for example, using the procedure 
described in [8] with a small modification, because 
the position of the broadcast center is known in our 
case. 
 
 
 
 
 

4.1.3 Selection 
In the Selection step a set of parents is filled by the 
solutions from the current population in the 
following way. Sequentially a tree is taken from the 
current population with proportion to fitness 
probability. Note that the same solution can be added 
to the parent set several times. The number of 
elements in the parent set exceeds twice the 
maximum number of elements in offspring OffspSize, 
which is the parameter of GLS. 
 
 
4.1.4 Crossover 
First a set of parents is divided randomly into 
OffspSize pairs. After that each pair of parents 
Tp

1 = (V, Ap
1) and Tp

2 = (V, Ap
2) generates a child tree 

Tc in the following way. Let us consider a vertex 
v ∊ V ∖ {s} and two vertices v1, v2 ∊ V: a1 = (v, v1) ∊ 
Ap

1, a2 = (v, v2) ∊ Ap
2. The goal is to choose an arc 

from {a1, a2} and to add it to Tc. If v1 = v2 then the 
arc a1 is chosen. If adding of one arc from {a1, a2} to 
Tc leads to the appearance of cycles, then another arc 
is chosen. In the remaining case let us introduce the 
weight wi = 1 / δ(vi) + 1 / |l(v) – l(vi) – 2|, where δ(vi) 
is a degree of the vertex vi in the tree Tp

i, i ∊ {1, 2}. 
Then the arc is chosen randomly from {a1, a2} with 
probability P(ai) = wi / (w1 + w2), i ∊ {1, 2}. 
 
 
4.1.5 Mutation 
Mutation is a randomized procedure which is applied 
to the solutions in the current offspring. The 
Mutation procedure is applied with probability PM (a 
parameter of GLS) to each offspring. The Mutation 
procedure takes as an argument (an integer 
parameter) k – the maximum difference (number of 
different arcs) between the initial tree and the 
modified one. This parameter is taken randomly from 
the interval [0, ..., kmax], where kmax is another 
algorithm parameter, inverse to its value probability 
(i.e., smaller modifications are more possible). The 
pseudocode of the mutation procedure is given in 
Fig. 4. 

    INPUT: G = (V, A) – communication graph, T = (V, 
A(T)) – spanning tree on G rooted in s, k – an integer 
parameter; 
    OUTPUT: T - spanning tree on G rooted in s; 

1. do k times: 
2.   (i,j) = random arc from A \ A(T); 
3.   if (j is not descendant of i) 
4.     T.SetParent(i, j); 

Fig. 4. GLS: Mutation. 
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4.1.5 Local search 
In addition to mutation, the local search procedure is 
applied to a subset of offspring defined by the 
probability PLS – another algorithm parameter. The 
pseudocode of the local search procedure is 
presented in Fig. 5. At each iteration the procedure 
performs a search of such arc a = (v1, v2) ∊ A ∖ A(T) 
whose addition of T (together with detachment of v1 
from its parent in T) leads to the maximum decrease 
of the objective function. The method 
CalculateEffect(T, u, v) calculates the change of the 
schedule length after detachment of v from its parent 
in T and adding an arc (v, u). Method T.SetParent 
performs the mentioned reattachment. The whole 
procedure continues while the solution is improved. 

    INPUT: G = (V, A) – communication graph, T = (V, 
A(T)) – spanning tree on G rooted in s, k – an integer 
parameter; 
    OUTPUT: T - spanning tree on G rooted in s; 

1. improved = true; 
2. while (improved) 
3.   improved = false; 
4.   best_u = NULL; best_v = NULL; bestImpr = 0; 
5.   for each arc (u, v) in A \ A(T)  
6.     effect = CalculateEffect(T, u, v); 
7.     if (effect < bestImpr) 
8.       best_u = u; 
9.       best_v = v; 
10.       bestImpr = effect;  
11.       improved = true; 
12.     end if 
13.   end for 
14.   if (improved) 
15.     T.SetParent(best_u, best_v); 
16.     CalculateSchedule(T); 
17.     break; 
18.   end if 
19.  end while 

Fig. 5. GLS: Local search. 
 
 
4.1.6 Join 
At the join step PopSize solutions from the current 
population and the current offspring, which have the 
highest fitness, are chosen to fill the population of the 
next generation. 
 
 
4.2 Basic VNS 
As has been shown previously [1, 31], the variable 
neighborhood search metaheuristic is a rather 
efficient approach for approximate solving of NP-
hard discrete optimization problems where the 
solution space consists of spanning trees on a given 
simple connected graph. In this subsection we 
propose a new heuristic based on the basic variable 
neighborhood search (BVNS) approach. A 
pseudocode of this heuristic is presented in Fig. 6.  
Note that in this algorithm we used the same 

Mutation and Local Search procedures as in GLS. A 
shortest-path spanning tree obtained by the Dijkstra 
algorithm was taken as the first solution. The only 
parameter of the basic VNS algorithm is kmax – the 
maximum number of iterations in the mutation 
operator. 
    INPUT: G = (V, A) – communication graph, T = (V, 
A(T)) – spanning tree on G rooted in s, kmax – an integer 
parameter; 
    OUTPUT: T - spanning tree on G rooted in s;  

1. S = ScheduleLength(T); 
2. while (stop condition is not met) 
3.   k = 0;   
4.   While (k ≤ kmax) 
5.     T1 = Mutation(k, T); 
6.     T2 = LocalSearch(T1); 
7.     S1 = ScheduleLength(T2); 
8.     if (S1 < S) 
9.       S = S1; 
10.       T = T2; 
11.       k = 0; 
12.     else 
13.       k = k + 1; 
14.     end if 
15.   end while 
16.  end while 

Fig. 6. Basic VNS. 
 
 
5 Simulation 
The proposed algorithms have been implemented in 
C++. Also, we implemented two of the most efficient 
previous heuristics: the Round Heuristic (RH) [24] 
and the Tree Based Algorithm (TBA) [25] in order to 
compare them with our algorithms. As test instances, 
the following commonly used interconnection 
topologies have been considered: BFd – butterfly 
graph, CCCd – cube connected cycle, SEd – shuffle-
exchange graph. The results can be found in Tables 
3-5. In addition, we ran all algorithms on random 
graphs generated using three well-known network 
models: GT-ITM Pure Random, GT-ITM Transit-
Stub [28] and BRITE Top-Down Waxman [32], see 
Tables 6-8. OPT stands for the optimal value of the 
objective either known previously [27] or obtained 
by us using CPLEX launched on one of the IP 
formulations proposed in Section 3 (as for GT-ITM 
Pure Random model when n ≤ 25). If the optimal 
value of the objective is not known, then the lower 
bound (LB) is mentioned. For graphs CCCd and BFd 
the best known lower bounds are taken from [27]. 
For other models the maximum of the following two 
values are taken: (a) ⌈log2 n⌉ [27]; (b) a value 
obtained by calculating for each vertex its minimum 
receiving time plus the length of the shortest path to 
the root. The minimal values of convergecasting time 
are marked bold in the tables below.  
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The following GLS algorithm’s parameters allow 
us to get the best results: PopSize = 50, 
OffspSize = 25, FPItCount = 3, SPProportion = 0.6, 
PM = 0.6, PLS = 0.8, kmax = ⌊n/3⌋. In BVNS we took 
kmax = 100. As a stopping criterion in both algorithms 
we used the following rule: the minimum and the 
maximum values of fitness among all solutions in the 
current population are not changed during last 10 
iterations.  

For some reason in several cases we failed to 
reproduce the results of TBA presented in [25]. For 
example, in CCC6, CCC8, BF6, BF7, BF8, SE8, the 
length of the schedule yielded by TBA in our 
implementation appeared to be greater by 1 than the 
length of the schedule constructed by RH, although 
the authors of TBA state that they are the same in 
those cases. 

Table 3. Results in CCCd. 

d n m LB RH TBA GLS 
3 8 12 6 6 6 6 
4 24 36 9 9 9 9 
5 160 240 11 11 11 11 
6 384 576 13 13 14 13 
7 896 1344 16 16 16 16 
8 2048 3072 18 18 19 18 
 

Table 4. Results in BFd. 

d n m LB RH TBA GLS 
3 24 48 5 5 5 5 
4 64 128 7 7 7 7 
5 160 320 8 9 9 9 
6 384 768 10 10 11 10 
7 896 1792 11 12 13 12 
8 2048 4096 13 14 15 14 
 

Table 5. Results in SEd. 

d n m OPT RH TBA GLS 
3 8 10 5 5 5 5 
4 16 21 7 7 7 7 
5 32 46 9 9 9 9 
6 64 93 11 11 11 11 
7 128 190 13 13 13 13 
8 256 381 15 15 16 15 
 
The results of the experiment show that our 

algorithm GLS performs better or the same as the 
other known heuristics. The most noticeable 
advantage of GLS can be observed on the GT-ITM 
Transit-Stub model: in 10 cases out of 15 it 

outperforms at least one of the other algorithms, in 4 
cases it outperforms both of them, and in 2 cases its 
convergecasting time is less by 2 than the  

Table 6. Results in GT-ITM Pure Random model. 

n m LB OPT RH TBA GLS 
10 29 4 4 4 4 4 
10 23 4 4 4 4 4 
25 35 5 5 6 6 5 
25 40 6 6 6 7 6 
25 47 5 5 5 5 5 
25 42 5 6 6 6 6 

100 277 7 - 7 7 7 
100 232 7 - 8 8 7 
100 233 7 - 8 9 8 
500 1497 9 - 10 10 10 
500 1259 9 - 10 10 10 
 

Table 7. Results in BRITE Top-Down Waxman model. 

n m LB RH TBA GLS 
100 208 8 10 11 10 
100 307 9 11 10 10 
100 407 9 10 10 10 
500 1529 9 11 12 11 
500 1529 9 12 12 12 
500 1530 10 12 13 12 
1000 1028 22 22 22 22 
1000 2020 17 19 19 19 
1000 3027 10 13 14 13 
 

Table 8. Results in GT-ITM Transit-Stub model. 

n m LB RH TBA GLS BVNS 
100 287 7 8 9 8 9 
100 261 7 9 9 9 9 
100 267 7 9 11 9 9 
100 273 7 9 9 8 8 
100 275 7 9 8 9 9 
600 1004 11 14 14 14 14 
600 1208 10 14 13 13 13 
600 1250 10 15 14 13 13 
600 1234 10 15 14 14 14 
600 1235 10 13 13 12 13 
1020 2533 10 16 16 16 16 
1020 3366 10 17 17 16 16 
1020 3515 10 17 16 16 16 
1020 2563 10 18 17 17 17 
1020 2550 10 17 17 16 16 
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convergecasting time obtained by one of other 
algorithms. We found only one case when another 
algorithm outperforms GLS: in the fifth instance of 
the BRITE Transit-Stub model the aggregation 
latency obtained by TBA is less by 1 than the one 
obtained by GLS. In total, GLS appeared to be 
extremely efficient for all tested topologies and 
network models. 

BVNS appeared to not outperform RH and TBA 
in all tested cases except the Transit-Stub models. 
We did not include its result in the tables in those 
cases. As it follows from the Table 8, BVNS almost 
always yields solution of the same quality as GLS on 
Transit-Stub models. And, since BVNS runs 3-5 
times faster than GLS, its usage is more preferable 
for the Transit-Stub models. 

Obviously, GLS is more time-consuming than 
RH, TBA and BVNS, but its running time remained 
acceptable in all tested cases. Thus, it solves a 
problem with 100 vertices and 300 edges in about 1.5 
seconds, and it solves a problem with 1000 vertices 
and 3000 edges in about 30 seconds. It should be 
noticed that we launched it on one thread although it 
is well-parallelizable and therefore it may be 
significantly speeded-up according to the machine 
hardware and operation system properties. Moreover, 
the variety of parameters of GLS provides flexibility, 
and more thorough tuning of these parameters may 
also improve the algorithm. 
 
 
6 Conclusion 
In this paper, we addressed an aggregated 
convergecast problem in WSNs for the case when the 
number of channels is unbounded. The objective is to 
minimize data aggregation time. We proposed new 
heuristic algorithms, based on the genetic algorithm, 
local search and variable neighborhood search 
metaheuristics. Our scheduling algorithms have 
lower latencies than the previous best approaches, 
Round Heuristic [24] and Tree Based Algorithm [25] 
especially for such widespread network model as 
GT-ITM Transit–Stub. We also proposed a new IP-
formulation for this problem and compared it with a 
variant from [9] using IBM CPLEX package. Our 
formulation appeared to be more suitable for 
moderate-size instances (up to 100 vertices and 300 
edges), where it always finds a near-optimal feasible 
solution in a reasonable time. 
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