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Abstract: - Contemporary approaches to data compression vary in time delay or impact on application 
performance as well as in the amount of compression and loss of data. The very best modern lossless data 
compression algorithms use standard approaches and are unable to match spacetime high end requirements for 
mission critical application, with full information conservation (a few pixels may vary by com/decom 
processing). Advanced instrumentation, dealing with nanoscale technology at the current edge of human 
scientific enquiry, like X-Ray CT, generates an enormous quantity of data from single experiment. In previous 
papers, we have already shown that traditional Q Arithmetic can be regarded as a highly sophisticated open 
logic, powerful and flexible bidirectional formal language of languages, according to “Computational 
Information Conservation Theory” (CICT). This new awareness can offer competitive approach to guide more 
convenient, spatiotemporal lossless compression algorithm development and application. To test practical 
implementation performance and effectiveness on biomedical imaging, this new technique has been 
benchmarked by normalized spatiotemporal key performance index, and compared to well-known, standard 
lossless compression techniques. 
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1 Introduction 
Contemporary approaches to data compression vary 
in time delay or impact on application performance 
as well as in the amount of compression and loss of 
data. Two approaches that focus on data loss are 
lossless (no data loss) and lossy (some data loss for 
higher compression ratio). Lossless compression is a 
class of data compression algorithms that allows the 
original data to be perfectly reconstructed from the 
compressed data. By contrast, lossy compression 
permits reconstruction only of an approximation of 
the original data, though this usually improves 
compression rates (and therefore reduces file sizes). 
Lossless compression is used in cases where it is 
important that the original and the decompressed 
data be identical, or where deviations from the 
original data could be deleterious. Typical examples 
are executable programs, text documents, and 
source code. 

Advanced instrumentation, dealing with 
nanoscale technology at the current edge of human 
scientific enquiry, like X-Ray CT, generates an 
enormous quantity of data from single experiment 
[1]. Even in MicroCT or Discrete Tomography (DT) 

by electron microscopy, 2-D projection images are 
acquired from various angles, by tilting the sample, 
generating new challenges associated with the 
problem of formation, acquisition, compression, 
transmission, and analysis of an enormous quantity 
of data [2], [3]. During this time of exploding data 
growth, disk manufacturers have begun running into 
the physical limitations of current storage 
technology (e.g., disk platter bit density, data 
transfer, etc.) and to seek new technologies to rely 
on [4].  

Different from natural images, advanced 
technology imaging and medical images generally 
have two special issues that should be noted in 
compression. First, they are sensitive to 
compression errors. Large distortion arising from 
lossy compression may invalidate their 
interpretation and diagnostic values. Second, 
especially the monochromatic images usually have 
extended dynamic range. Each pixel typically 
contains 16 or 12 bits per channel, compared to the 
8-bit-depth pixels of common natural images. 
Nevertheless, both lossless and lossy compression 
schemes have been proposed to compression image 
application. Lossy compression (irreversible, i.e. 
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information dissipation) schemes can achieve much 
higher Compression Ratio (CR) than lossless ones, 
by allowing some distortion in reconstruction. 
However, for mission critical application, the lossy 
distortion level must have to be supervised by 
qualified experts to avoid possible legal and 
diagnostic problems, especially for medical 
application [5],[6]. 

Lossless compression (reversible, i.e. 
information conservation) schemes provide 
reconstructed images identical to the original ones, 
but suffer from relative lower compression ratio, 
typically between 1:2 and 1:4. Furthermore, a single 
compression ratio (CR) cannot serve as a guideline 
for the compression of medical images, as 
compression artifacts vary considerably with image 
content, scanning technique, and compression 
algorithm [7]. Traditional examples are executable 
programs, text documents, and source code. 

 
 

1.1 Basic Techniques 
Lossless compression is possible because most real-
world data exhibits statistical redundancy. Most 
lossless compression programs do two things in 
sequence: the first step generates a statistical model 
for the input data, and the second step uses this 
model to map input data to bit sequences in such a 
way that "probable" (e.g. frequently encountered) 
data will produce shorter output than "improbable" 
data. The second compression stage consists of 
replacing commonly used symbols with shorter 
representations and less commonly used symbols 
with longer representations. The best modern 
lossless compressors use probabilistic models, such 
as "prediction by partial matching." In a further 
refinement of the direct use of probabilistic 
modelling, statistical estimates can be coupled to an 
algorithm called "arithmetic coding."  

Many of the lossless compression techniques 
used for text also work reasonably well for indexed 
images, but there are other techniques that do not 
work for typical text that are useful for some images 
(particularly simple bitmaps), and other techniques 
that take advantage of the specific characteristics of 
images (such as the common phenomenon of 
contiguous 2-D areas of similar tones, and the fact 
that color images usually have a preponderance of a 
limited range of colors out of those representable in 
the color space). Therefore, current lossless 
compression methods can be grouped into two large 

development areas which address: a) Text or b) 
Signal & Image. 

 
1.1.1 A-Text 
1 Run Length Encoding (RLE) 
2 EntropyCoding 
3 Compressed Sensing 
4 Grammar-Based 

 
(A1-B1) Run Length Encoding (RLE) 
RLE replaces data by a (length, value) pair, where 
“value” is the repeated value and “length” is the 
number of repetitions. It is not useful with files that 
do not have many repetitions as it could greatly 
increase the file size [8]. In the case of image, it 
may have areas of color that do not change over 
several pixels; instead of coding "red pixel, red 
pixel, ..." the data may be encoded as "279 red 
pixels". This is a basic example of RLE. There are 
many schemes to reduce file size by eliminating 
redundancy. This technique is especially successful 
in compressing bi-level images since the occurrence 
of a long run of a value is rare in ordinary gray-scale 
images. A solution to this is to decompose the gray-
scale image into bit planes and compress  every bit-
plane separately. RLE method can undergo different 
variation implementatios [9]. 

 
A2 Entropy Coding 
Entropy represents the minimum size of dataset 
necessary to convey a particular amount of 
information. Huffman, LZ (Lempel-Ziv), and 
arithmetic coding are the commonly used entropy 
coding schemes. Huffman coding (HC) [10] creates 
an unprefixed tree of non-overlapping intervals, 
where the length of each sequence is inversely 
proportional to the probability of that symbol 
needing to be encoded. The more likely a symbol 
has to be encoded, the shorter its bit-sequence will 
be. In other words, HC utilizes a variable length 
code in which short code words are assigned to 
more common values or symbols in the data, and 
longer code words are assigned to less frequently 
occurring values. Modified Huffman coding [11] 
and adaptive Huffman coding [12] are two examples 
among many variations of Huffman’s technique.  

LZ (Lempel-Ziv) LZ  coding  replaces  repeated 
substrings in the input data with references to earlier 
instances of the strings. It had two major 
implementations: LZ77 and LZ78. They are the two 
algorithms published in papers by Abraham Lempel 
and Jacob Ziv in 1977 [13] and 1978 [14]. Several 
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compression methods, among which LZW (Lempel-
Ziv-Welch) [15] is one of the most well known 
methods, have been developed based on these ideas. 
Variations of LZ coding are used in the Unix 
utilities Compress and Gzip. To this category 
belongs also "Arithmetic coding" [16],[17] that 
represents a message as some finite intervals 
between 0 and 1 on the real number line. Basically, 
it divides the intervals between 0 and 1 into a 
number of smaller intervals corresponding to the 
probabilities of the message’s symbols. Then the 
first input symbol selects an interval, which is 
further divided into smaller intervals. The next input 
symbol selects one of these  intervals, and the 
procedure is repeated. As a result, the selected 
interval narrows with every symbol, and in the end, 
any number inside the final interval can be used to 
represent the message. That is to say, each bit in the 
output code refines the precision of the value of the 
input code in the interval. 

 
A3-B3 Compressed Sensing 
Compressed Sensing (CS), also known as 
compressed sampling technique for compressible 
and/or sparse signals that project a high-dimensional 
data in low-dimensional space using random 
measurement matrix [18]. CS theory enables to 
address the limitations of Nyquist sampling [19] 
theory and can perform data acquisition and 
compression simultaneously. This strength of the 
CS theory enables to detect anomalies in big data 
streams. The usual achievable compression ratio is 
from 1:3 to 1:5. 

 
A4 Grammar Based 
Grammar-based compression was proposed in 2000 
[20]. The basic task of grammar-based codes is 
constructing a context-free grammar deriving a 
single string. The class of grammar-based coding 
are gaining popularity because they can compress 
highly repetitive input extremely effectively, for 
instance, a biological data collection of the same or 
closely related species, a huge versioned document 
collection, internet archival, etc. For instance, 
Sequitur (or Nevill-Manning algorithm) is a 
recursive algorithm developed by Craig Nevill-
Manning and Ian H. Witten in 1996 [21],[22] that 
infers a hierarchical structure (context-free 
grammar) from a sequence of discrete symbols. The 
algorithm operates in linear space and time. 
Although it pre-dates grammar-based compression, 

LZ78 and LZW (but not LZ77) can be interpreted as 
a kind of grammar [23]. 

 
1.1.2 B-Signal & Image 
1 Run Length Encoding (RLE) 
2 Predictive Codimg 
3. Compressed Sensing 
4 Multiresolution Coding 

 
B1 See A1. 

 
B2 Predictive Coding 
Linear predictive coding (LPC) is a tool used mostly 
in audio signal processing and speech processing for 
representing the spectral envelope of a digital signal 
of speech in compressed form, using the information 
of a linear predictive model [24]. It is one of the 
most powerful speech analysis techniques, and one 
of the most useful methods for encoding good 
quality speech at a low bit rate and provides 
extremely accurate estimates of speech parameters. 
For images, it predicts the value of each pixel by 
using the values of its neighboring pixels. 
Therefore, every pixel is encoded with a prediction 
error rather than its original value. Typically, the 
errors are much smaller compared with the original 
value so that fewer bits are required to store them. 
As an example, DPCM (differential pulse code 
modulation) is a predictive coding underlying the 
base for lossless JPEG compression [25]. A 
variation of the lossless predictive coding is the 
adaptive prediction that splits the image into blocks 
and computes the prediction coefficients 
independently for each block to achieve high 
prediction  performance. It can also be combined 
with other methods to get a hybrid coding algorithm 
with higher performance [26]. 

 
B3 See A3. 

 
B4 Multiresolution Coding 
An example of multiresolution coding scheme based 
on sub-samplings is represented by HINT 
(hierarchical interpolation) [27]. It starts with a low-
resolution version of the original image, and 
interpolates the pixel values to successively generate 
higher resolutions. The errors between the  
interpolation values and the real values are stored, 
along with the  initial low-resolution  image. 
Compression is achieved since  both the low-
resolution image and the error values can be stored 
with fewer bits than the original image. 
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1.2 Advanced Requirements 
Some image compression schemes have been 
adopted by the DICOM standard [28], among which 
JPEG 2000 [29]. It is based on a reversible integer 
wavelet transform and it is considered to have the 
best performance and a few good properties. JPEG 
2000 provides both lossy and lossless compressions 
for images with bit depth no more than 16 bit per 
channel, and allows progressive transmission with 
SNR (Signal to Noise Ratio) and spatial scalability. 
In particular, it supports ROI (Region Of Interest) 
coding, so that image regions with diagnostic 
importance can have much higher quality than the 
other parts.  

The codestream obtained after compression of an 
image with JPEG 2000 is downscalable in nature, 
meaning that it can be decoded in a number of ways; 
for instance, by truncating the codestream at any 
point, one may obtain a representation of the image 
at a lower resolution, or signal-to-noise ratio. 
However, as a consequence of this flexibility, JPEG 
2000 requires encoders/decoders that are complex 
and computationally demanding. JPEG 2000 has 
been published as an ISO standard, ISO/IEC 15444. 
According to Wikipedia, as of 2013, JPEG 2000 is 
not widely supported in web browsers, and hence is 
not generally used on the Internet [30]. In general, 
traditional lossless compression techniques can be 
mapped to three main reference areas according to 
their compression underlining principle: a) Entropy 
encoding; b) Dictionary; c) Others. The very best 
modern lossless compressors use probabilistic 
models, such as prediction by partial matching. 
 
 
2 Contemporary Limitations 
As a matter of fact, we can say that almost all 
contemporary data compression techniques are still 
based on binary code uncertainty probabilistic 
evaluation, by treating messages to be encoded as a 
sequence of independent and identically distributed 
random variables, according to the probabilistic 
approach of the father of probabilistic 
communication theory [31]. Their major points of 
weakness for contemporary data compression 
techniques to be used for high demanding lossless 
applications are:  
 

1) context and data type compression 
effectiveness and efficiency strong 
dependence for algorithm optimization;  

2) centralized data size 
compression/decompression speed and space 
limitations;  

3) fixed bit depth for image com/decom 
processing or just downgrading.  

 
Third point is especially inadequate for discrete 
tomography and advanced biomedical imaging 
applications where high data reliability is required, 
at different bit depth output representation scenarios 
(for instance, a network with many different output 
devices with different output bit depth each).  
Our main interest is most focused on convenient 
zero-knowledge universal lossless comp/decomp 
algorithm for advanced applications as discrete 
tomography, computed tomography and medical 
images with true "Arbitrary Bit Depth" (ABD) 
resolution [5],[6]. No contemporary lossless 
comp/decomp algorithm is able to satisfy this kind 
of specification yet. Furthermore it would be a plus 
to use traditional BD (Bit Depth) settings of images, 
more efficiently, so that only a small part of the 
coded bit-stream is needed at the decoder to lossless 
regenerate and display the original image, with 
recommended BD parameters for specific need.  
 
 
3 True Lossless Compression 
Human biological transducers, by which we acquire 
information on the outer world interacting with it, 
are intrinsically discrete. This means that our 
perception of continuous shapes is just an illusion 
created by our mind. From this ground we can infer 
that an illusion of continuity can be achieved by 
discrete optimized support, without even noticing 
any difference, maintaining thus a maximum 
representation coverage property.  
     In general, optimization problems can be divided 
into two large categories depending on whether the 
variables are continuous or discrete. In solving a 
classical linear optimization problem (continuous), 
one can exploit the fact that, due to the convexity of 
the feasible region, any locally optimal solution is a 
global optimum.  
     An optimization problem with discrete variables 
is known as a combinatorial optimization problem. 
In a combinatorial optimization problem, we are 
looking for an object such as an integer, permutation 
or graph from a finite (or possibly countable 
infinite) set [32]. In many such problems, 
exhaustive search is not feasible. It operates on the 
domain of those optimization problems, in which 
the set of feasible solutions is discrete or can be 
reduced to discrete, and in which the goal is to find 
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the best solution. In finding global optima for 
integer optimization problems, one is required to 
prove that a particular solution dominates all others 
by arguments, other than the calculus-based 
approaches of convex optimization.  
     While in linear optimization problems, the 
feasible region is convex, the feasible regions of 
classical integer optimization problems consists of 
either a discrete set of points or, in the case of 
general MILP (Mixed Integer Optimization 
Problem), a set of disjoint convex polyhedra [33]. 
Some common problems involving combinatorial 
optimization are the Traveling Salesman Problem 
(TSP) and the minimum spanning tree problem. TSP 
is NP-hard problem in combinatorial optimization, 
notoriously, and P versus NP problem is a major 
unsolved problem in computer science [34]. 
Nevertheless, when a discrete optimized solution is 
obtained, the discrete approach reveals to be, in this 
sense, highly convenient because it strongly 
decreases the computational cost and the complexity 
of the system for representation modelling. 
According to computational information 
conservation theory (CICT) [35],[36], in Arithmetic 
the structure of closure spaces (across an Outer-
Inner Universe boundary) is self-defined by Natural 
Numbers Reciprocal Space (RS) representation 
[37],[38]. By this way, Natural Number can be 
thought as both structured object and symbol at the 
same time.  
 
 
3.1 Linear Arithmetic Closure 
As a simple example, let us consider a generic 
fraction N/D, where N and D ∈  Z, and D = 0.70 , L 
an integer counter, N the dividend, Q the quotients 
and R the remainders of the long hand division. In 
traditional arithmetic long division algorithm (the 
one you learn to divide at elementary school), usual 
dominant result (quotient, Q) is important, and 
minority components (remainders, R) are always 
discarded. We can write the L, N, Q and R 
sequences as from Table 1. 
 

Table 1. L, N, Q, R SEQUENCES. 
L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15… 
N 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150… 
Q 1 2 4 5 7 8 10 11 12 14 15 17 18 20 21… 
R 3 6 2 5 1 4 0 3 6 2 5 1 4 0 3… 
for L = 1, 2, 3, … 
 

In this specific case, we see that the remainder R 
sequence repeats itself after 7 remainders with R(L) 
given by: 
 
R(1+7n) = R1 = 3, R(2+7n) = R2 = 6, R(3+7n) = R3 = 2,  
R(4+7n) = R4 = 5, R(5+7n) = R5 = 1, R(6+7n) = R6 = 4,  
R(7+7n) = R7 = 0 for n = 0,1,2,3,… 
 
Accordingly, we can rearrange the quotients with 
respect to their cyclic remainder value respectively, 
obtaining the R1, R2, R3, R4, R5, R6, R7 
sequences as from Table 2. 
 
Table 2. R1, R2, R3, R4, R5. R6, R7 SEQUENCES. 
R1 Q1, Q8, Q15, Q22, Q29, Q36, Q43, Q50,… 
R2 Q2, Q9, Q16, Q23, Q30, Q37, Q44, Q51,… 
R3 Q3, Q10, Q17, Q24, Q31, Q38, Q45, Q52,… 
R4 Q4, Q11, Q18, Q25, Q32, Q39, Q46, Q53,… 
R5 Q5, Q12, Q19, Q26, Q33, Q40, Q47, Q54,… 
R6 Q6, Q13, Q20, Q27, Q34, Q41, Q48, Q55,… 
R7 Q7, Q14, Q21, Q28, Q35, Q42, Q49, Q56,… 
 
In a more compact modular format, we can write: 
R(L) = 3 L mod(07) and 
D Q(L) = N – R(L), where N = 10 L. 
We can interpret the remainders R(L) as the linear 
(unfolded) arithmetic closure to N with respect to D 
Q(L). 
 
 
3.2 Exponential Rational Closure 
For sake of simplicity, at elementary level, let us 
consider fraction 1/D, where D in Z, or Egyptian 
fraction, with no loss of generality for common 
fraction (common fraction is given by Egyptian 
fraction multiplied by N ∈  Z, where N is the 
Numerator) is considered a simple integer division. 
In traditional rational representation, rational proper 
quotient is represented by infinite repetition of a 
basic digit cycle, called "reptend" (the repeating 
decimal part) [39]. The first repetition of basic digit 
cycle corresponds to the first full scale interval 
where number information can be conserved; CICT 
calls it "Representation Fundamental Domain" 
(RFD) [40]. In general, D, the denominator of the 
considered OSR (Outer Symbolic Representation) is 
given by a finite decimal word of length WD digits. 
From IOR (Inner OpeRational Representation) X, 
the related RFDL can be obtained, by a word length 
of LX digits. Elementary number theory 
considerations give us the usual worst case word 
length LX for RFDL, with no loss of information, by: 
 
                            LX = D - 1                                   (1) 
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digits, if and only if 10 is a primitive root modulo D. 
Otherwise Lx is a factor of (D-1). If the period of 
the repeating decimal of 1/D for prime D is equal 
(D−1) then the repeating decimal part is called 
"cyclic number" and D can be referred as "primitive 
number" or "solid number" (SN) in CICT, or "full 
reptend prime" elsewhere [41]. Thus a SN is 
necessarily prime. It is a sufficient qualification, 
only. Conversely a prime number may not be a SN. 
So, the usual worst case word length LX for X, given 
by eq.(1), can get RFDL with no loss of information, 
related to D, just in case D is SN. With no loss of 
generality, let us consider, the first Integer to show 
SN property manifestly, that is number " 0.70 ". In 
this case D = 7, so that worst case length analysis 
gives LX = D–1 = 6 digits. 
By realizing that the remainder R1 is the fixed 
multiplicative ratio of a formal power series, the 
computation from generator 3n (mod7) for n = 1, 2, 
3,...., till its exponential closure, gives the sequence 
the "Fundamental Cyclic Remainder Sequence" 
(FCRS): 
 
R1 = 3, R2 = 2, R3 = 6, R4 = 4, R5 = 5, R6 = 1,       (2) 
 
from which the "Fundamental Cyclic Quotient 
Sequence" (FCQS) can be readily regenerated by 7 
* Rn (mod10): 
 
Q1 = 1, Q2 = 4, Q3 = 2,  Q4 = 8, Q5 = 5, Q6 = 7.     (3) 
 
So, quotient and remainder information can always 
be regenerated anew by remainder information only, 
but not vice-versa [40]. 
     Therefore, 7 is just a SN and its full information 
content is usually captured by a six-digit word 
length RFD6, for Q6 and the same for R6, and the 
full-information content of long division 1/7 would 
be stored into two decimal coupled words <Q, R> 
having length MQR = (6 + 6) digits in total, for exact 
arbitrary precision computation. As a matter of fact, 
for all rational sequences, the Remainder RL, at any 
computation evolutive stage LX (accuracy), is the 
fixed multiplicative ratio of a formal power series 
associated to the optimized decimal representations 
of their elementary generators [40]. Thus 1/7 
associated information content can be lossless 
compressed down to minimal MQR = (1 + 1) digits in 
total, in this specific case. As a matter of fact, any 
word couple <QL, RL> can be thought to be 
equivalent to and can represent a different real 
measurement instrument class, defined by RFD 
word length LX. It is easy to see that, in general for 
SN of order 1 (SN1 for short), the greater D, the 

lengthier LX, and higher the achievable compression 
ratio Ew.  
     In this simple case Ew = (2*6)/2 = 6:1, for 
number 7. By this way, finite length coupled words 
can provide both finite arbitrary computational 
precision and relative precision exact error 
computability in a finite amount of time. By 
remainder knowledge, it is always possible to 
regenerate exact quotient and new remainder 
information at any arbitrary accuracy, with full 
information conservation. Thanks to the above 
arithmetic properties, the division algorithm can 
become free from trial and error like in finite 
segment p-adic representation system, but with no 
usually associated coding burden [41]. According to 
our humble knowledge, this is the first time that 
these arithmetic properties allow this kind of 
numeric awareness for arithmetic computational 
system.  
     All the other members of the 1/7 RFD "Word 
Family Group" can be derived immediately, by 
cyclic permutation only, obtaining our result of Fig. 
1. So, the final SN1 Family Group overall 
information compression ratio is given by Ef = (2 * 
6 *6)/2 = 36:1. It does not take a large leap in 
imagination to suspect that the next larger prime 
number p to show SN property might be a good 
candidate for exhibiting cyclic-number property on 
an even larger scale. Unfortunately there does not 
seem to be any simple rule dictating which prime 
number p will have SN1 property and which will 
not, so that one just has to check each prime out by 
long division to see. It turns out that the next higher 
prime number with the desired SN1 property is p = 
D = 17 where Tp = 16 digits. A search for still larger 
prime numbers with the same cyclic properties 
reveals that they are not at all rare. In fact no less 
than seven more prime numbers smaller than 100 
generate cyclic numbers of order one or SN1. They 
are: 19, 23, 29, 47, 59, 61 and 97.  
     Till now we discussed a peculiar number 
property focusing our attention, for simplicity of 
presentation, on SN1 only, but it does not imply that 
a number has to be a SN1 in order to generate 
intriguing cycles. For instance, Family Group 1/13 
contains the smallest cyclic-numbers of order two or 
SN2. What about more second order cyclics? The 
basic ones are also generated by a subset of prime 
fractions 1/p. The other prime numbers smaller than 
100 which generate second order cyclics are 31, 43, 
67, 71, 83 and 89. In the same manner one can now 
go on to define, and find, cyclic numbers of order 
three, four, five, and higher and higher, according to 
his own computational needs. The smallest prime 
number producing the Family Group of third order 
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or SN3 cyclic-number is 103. In this case, Tp = 34 
digit string (so we have 3* 34 = 102, instead of the 
unique 102 digit string a first order cyclic would 
have).  

 
Fig. 1. Qn and Rn values for each component of SN1 
Word Family Group 1/7 [40]. 
 
The seven smallest primes generating cycles of 
order four through ten are respectively 53, 11, 79, 
211, 41, 73, and 281, but you must reach prime 
number 353 to get the first prime generating cycle 
of order 11 or SN11. All the prime numbers less than 
100 have now been covered with the exception of p 
= 37, with Tp = 3 digits. Therefore 37 is a cyclic 
number of order 12 or SN12. Multiplication 
composition of prime numbers can generate an 
entire universe of new number-cycles. So any 
modular group can be better represented by 
generators and relations. One of the earliest 
presentations of a group by generators and relations 
was given by the Irish mathematician William 
Rowan Hamilton in 1856, in his Icosian Calculus, a 
presentation of the icosahedral group [42], [43]. The 
first systematic study was given by German 
mathematician Walther Franz Anton von Dyck [44], 
student of German mathematician Christian Felix 
Klein, in the early 1880s, laying the foundations for 
combinatorial group theory [45]. Every group has a 
presentation, and in fact many different 
presentations; a presentation is often the most 
compact way of describing the structure of the 
group. In abstract algebra, the "fundamental theorem 
of cyclic groups" states that every subgroup of a 
cyclic group G is cyclic. Moreover, the order "k" of 
any subgroup of a cyclic group G of order n is a 
divisor of n, and for each positive divisor "k" of n, 
the group G has exactly one subgroup of order "k". 
This is just the first step to start an intriguing voyage 
from the concept of "presentation of a group" to the 

concept of "representation theory" for combinatorial 
modular group theory [46]. Traditional rational 
number system Q can be regarded as a highly 
sophisticated open logic, powerful and flexible 
formal language, with self-defining consistent words 
and rules, starting from elementary generators and 
relations [40]. 
 
 
4 Application Example 
The rich operative scenario offered by combinatorial 
modular group theory is full of articulated solutions 
to information processing problems.  

Table 3. PICTURE BENCHMARK DATABASE LIST [27]. 

N. NAME PIXELS SIZE (MB) BPP 

01 artificial 3072x2048 36.80 24 

02 big_building 7216x5412 223.36 24 

03 big_tree 6088x4550 158.50 24 

04 cathedral 2000x3008 34.42 24 

05 fireworks 3136x2352 42.21 24 

06 flower_foveon 2268x1512 19.62 24 

07 hdr 3072x2048 36.80 24 

08 leaves_iso_1600 3008x2000 34.42 24 

09 leaves_iso_200 3008x2000 34.42 24 

10 nightshot_iso_100 3136x2352 42.29 24 

11 nightshot_iso_1600 3136x2352 42.29 24 

12 spider_web 4256x2848 69.36 24 

 
For instance, Word Family Group SN1, discussed in 
the previous section, shows peculiar, cyclical 
properties that can be conveniently used to get 
interesting image lossless comp/decomp algorithm. 
Please, note from Fig.1 that remainder Rn = a = 1,2, 
…, p -1, can be thought as pointer to Qn+1 to get the 
beginning of a/D quotient cyclical string 
immediately, with no computation at all, but the 
initial one for SN1 Word Family p. Combinatorial 
optimization is achieved by finding the best SN1 = p 
which allow to minimize a desired constraint within 
a specified interval for each image. Then, a/p will 
be best in that no other rational in that specified 
interval will have a smaller numerator or a smaller 
denominator. To check our idea, we used an Internet 
public picture database for 24 bpp color images [47] 
as reported by Table 3 and Fig.2. Twelve original 
colour pictures with different dynamic range and 
different overall content were considered. They are 
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lossless compressed from 24 to 16 bpp by JPEG-LS 
(Lossless JPEG), JPEG 2000, HD Photo (JPEG XR) 
algorithms and by ours that is called UC (Universal 
Compression).  
 
 
4.1 Lossless Compression Details 
Lossless JPEG was developed as a late addition to 
JPEG in 1993, using a completely different 
technique from the lossy JPEG standard developed 
previously. It uses a predictive scheme based on the 
three nearest (causal) neighbors (upper, left, and 
upper-left), and entropy coding is used on the 
prediction error.  
 

 
Fig. 2. Pictures in Benchmark Database as from 
Table 1, for our application example [47]. 
 
The standard Independent JPEG Group libraries 
cannot encode or decode it, but Ken Murchison of 
Oceana Matrix Ltd. wrote a patch that extends the 
IJG library to handle Lossless JPEG. It has some 
popularity in medical imaging, and is used in DNG 
(Adobe) and some digital cameras to compress raw 
images, but otherwise was never widely adopted. It 
might be used as an umbrella term to refer to all 
lossless compression schemes developed by the 
Joint Photographic Expert group. They include 
JPEG 2000 and JPEG-LS. 
     JPEG-LS is a lossless/near-lossless compression 
standard for continuous-tone images. Its official 
designation is ISO-14495-1/ITU-T.87. It is a simple 
and efficient baseline algorithm which consists of 
two independent and distinct stages called modeling 
and encoding. It was developed with the aim of 
providing a low-complexity lossless and near-
lossless image compression standard that could offer 
better compression efficiency than JPEG. At the 
time, the Huffman coding-based JPEG lossless 
standard and other standards were limited in their 

compression performance. Total decorrelation 
cannot be achieved by first order entropy of the 
prediction residuals employed by these inferior 
standards. JPEG-LS, on the other hand, can obtain 
good decorrelation. Part 1 of this standard was 
finalized in 1999. Part 2, released in 2003, 
introduced extensions such as arithmetic coding. 
The core of JPEG-LS is based on the LOCO-I 
algorithm [48] that relies on prediction, residual 
modeling and context-based coding of the residuals. 
Most of the low complexity of this technique comes 
from the assumption that prediction residuals follow 
a two-sided geometric distribution (also called a 
discrete Laplace distribution) and from the use of 
Golomb-like codes, which are known to be 
approximately optimal for geometric distributions. 
Besides lossless compression, it also provides a 
lossy mode ("near-lossless") where the maximum 
absolute error can be controlled by the encoder. 
Compression for JPEG-LS is generally faster than 
JPEG 2000 and much better than the original 
lossless JPEG standard. Here JPEG-LS is used for 
historical reason comparison, JPEG 2000 provides 
lossless compressions for images with bit depth no 
more than 16 bit per channel, and allows 
progressive transmission with signal-to-noise ratio 
(SNR) and spatial scalability. In particular, it 
supports ROI (Region Of Interest) coding, so that 
image regions with diagnostic importance can have 
much higher quality than the other parts. The 
codestream obtained after compression of an image 
with JPEG 2000 is downscalable in nature, meaning 
that it can be decoded in a number of ways; for 
instance, by truncating the codestream at any point, 
one may obtain a representation of the image at a 
lower resolution, or SNR. However, as a 
consequence of this flexibility, JPEG 2000 requires 
encoders/decoders that are complex and 
computationally demanding.  
     HD Photo slgorithm is based on technology 
originally developed and patented by Microsoft. It 
supports deep color images with 48-bit RGB, both 
lossy and lossless compression, and is the preferred 
image format for Ecma-388 Open XML Paper 
Specification documents. HD Photo offers several 
major key improvements over JPEG, including 
better compression, lossless compression, tile 
structured support, more color accuracy, 
transparency map and metadata support. HD Photo 
is conceptually very similar to JPEG: the source 
image is optionally converted to a luma-chroma 
colorspace, the chroma planes are optionally 
subsampled, each plane is divided into fixed-size 
blocks, the blocks are transformed into the 
frequency domain, and the frequency coefficients 
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are quantized and entropy coded. In July 2007, the 
Joint Photographic Experts Group and Microsoft 
announced HD Photo to be under consideration to 
become a JPEG standard known as JPEG XR. On 
16 March 2009, JPEG XR was given final approval 
as ITU-T Recommendation T.832 and starting in 
April 2009, it became available from the ITU-T in 
"pre-published" form. On 19 June 2009, it passed an 
ISO/IEC Final Draft International Standard (FDIS) 
ballot, resulting in final approval as International 
Standard ISO/IEC 29199-2. The ITU-T updated its 
publication with a corrigendum approved in 
December 2009, and ISO/IEC issued a new edition 
with similar corrections on 30 September 2010. In 
2010, after completion of the image coding 
specification, the ITU-T and ISO/IEC also 
published a motion format specification (ITU-T 
T.833|ISO/IEC 29199-3), a conformance test set 
(ITU-T T.834|ISO/IEC 29199-4), and reference 
software (ITU-T T.835|ISO/IEC 29199-5) for JPEG 
XR. In 2011, they published a technical report 
describing the workflow architecture for the use of 
JPEG XR images in applications (ITU-T 
T.Sup2|ISO/IEC TR 29199-1). In April 2013, 
Microsoft released an open source JPEG XR library 
under the BSD licence. As of August 2014, there 
were still no cameras that shoot photos in the Jpeg 
XR (.JXR) format. 
UC provides lossless compressions for images with 
arbitrary bit depth (ABD) per channel, and allows 
progressive transmission with SNR and spatial 
scalability, at no extra cost. Specifically, it supports 
ROI (Region Of Interest) coding, so that image 
regions with diagnostic importance can have much 
higher quality than the other parts. The codestream 
obtained after compression of an image with UC is 
downscalable and upscalable in nature, meaning that 
it can be decoded in a number of ways; for instance, 
by truncating the codestream at any point, one may 
obtain a representation of the image at a lower 
resolution, or signal-to-noise ratio. Different from 
all other algorithms, this time, if you have local 
computational resources, you can regenerate the 
original information arbitrarily to higher BD. As a 
consequence of this flexibility, you do have to pay 
no extra cost!  
 
 
4.2 Results and Discussion 
Compression results for 24 to 16 bpp lossless 
compression of the twelve database pictures 
reported in Table 3, with different content and 
different extended dynamic each, show that, on 
average, UC takes about 17% more space than 

JPEG 2000. Nevertheless UC shows compression 
speed about 17% faster than JPEG 2000 on average.  
To achieve an overall evaluation and a fair 
comparison between so different algorithms, it 
involves determining a function that relates the 
length of an algorithm's input to the number of steps 
it takes (its time complexity) or the number of 
storage locations it uses (its space complexity) or 
both of them. An algorithm is said to be efficient 
when this function's values are small. Since different 
inputs of the same length may cause the algorithm 
to have different behavior, the function describing 
its performance is usually an upper bound on the 
actual performance, determined from the worst case 
inputs to the algorithm. For this reason, we define 
the patiotemporal, normalized key performance 
index (KPI) given by compressed bit-per-pixel (bpp) 
times compression time (s, in second) for each 
picture, where: 
 
               KPI = bpp x s/MAX(bpp x s)   .          (4) 
 
Our first raw results, with no further algorithm 
refinement out of cyclic family computation only, as 
described in Section 3.2, show that overall UC KPI 
compare quite well to HD Photo and it is better than 
traditional JPEG 2000, with no further algorithmic 
development effort or computational load. 
 

 
Fig. 3. Normalized KPI 24 to 16 bpp lossless 
compression result for JPEG-LS, JPEG 2000, HD 
Photo and UC algorithms (from back to front 
respectively): ordinate in KPI units, abscissa 
number ordering refers to picture list as from Table 
1. 
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The only image where UC KPI is greater than HD 
Photo KPI is picture number 12, the “spider_web” 
picture shown in Fig.4. As you can see from that 
picture, different from all other picture in our 
Benchmark Database, there are a lot of linear, finer 
details with delicate superpositions embedded in it 
and HD Photo algorithm can take advantage from 
them quite easily.  
     UC is a zero-knowledge universal lossless 
compression algorithm that does not use linear a 
priori knowledge to achieve better result. Therefore, 
for general purpose application raw UC on average 
can perform better than HD Photo, but for pictures 
full of superposed linear, finer details it cannot 
compete with HD Photo.  

 
Fig. 4. Spider_web picture as n.12 test picture in our 
Picture Benchmark Database (see Table 3 for image 
parameters). 
 
Nevertheless, raw UC algorithm parameters have 
not yet been quite tuned for overall optimum 
performance, so there is still room for further 
improvement. UC exploits arbitrary bit depth 
(ABD) per channel and full information 
conservation and regeneration by design. UC 
method differs from the existing ones in three main 
features. First, it is not a traditional extended bit 
depth encoding/decoding and does not use Gray-
Golomb coding to support progressive transmission 
as in VOI (Value Of Interest) approaches [49]. 
     Second, UC scheme can utilize dynamic BD 
settings for original images to support dynamic BD 
scalability, which allows pixels to be progressively 
reconstructed in the order according to their display 
importance. Pixel reconstruction can be centralized 
or decentralized, local or global. Third, we can 
consider end-user display computational resource 
availability, for end-point information regeneration 
and network bandwidth minimization. Different 
from all other algorithms, not only a downscaling, 
but even an upscaling is possible by UC information 
conservation and regeneration. For images with 

extended bit-depth, the pixel values can be 
displayed after BD mapping to fit the display bit 
depth. Thus only pixels with interested values can 
be visually important, under certain predefined BD 
parameters.  
 
 
5 Conclusion 
We have presented results on an universal zero-
knowledge combinatorial lossless compression 
scheme called UC, for extended dynamic range 
images, with arbitrary bit depth, based on 
information conservation and regeneration 
according to CICT by design. UC has an interesting, 
peculiar and operational property: the larger the 
image size the higher the achievable compression 
ratio. In this first operational implementation, its 
raw overall zero-knowledge lossless compression 
performance compare quite well to standard ones, 
but offering true ABD and achieving full image 
information conservation and regeneration, at no 
extra cost, without complex and computationally 
demanding encoders/decoders. 
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