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Abstract: The method of groping, to find the parameters of a regulator PI, is very tiring, because of that. In this paper, one
proposed a Pl adaptif regulator with reference model based on the optimization of a criterion performance to apply to the

Field-Oriented Control for asynchronous machine.
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1 Introduction

Effect, the asynchronous machines, because of their low
cost and their robustness, currently constitutes the machine
the most used to carry out drives at variable speeds. How-
ever, to effectively control the dynamics of the couple of
an asynchronous machine, it is necessary to employ more
elaborate strategies of control. Thus progresses them of
data processing, of the power electronics and of the au-
tomatic, changes caused significant in the systems design
of control/regulator. This development pushed several re-
search laboratories of automatic towards structures of con-
trol much more advanced based on methods of automatic
to knowing the vectorial - control, adaptive, nonlinear, pre-
dictive....

The bases of the theory on vectorial control or Field-
Oriented Control (FOC) were developed by BLASCHKE
[1], since 1972, this type of control makes it possible to
consider a decoupling between the couple and the flux of
the machine and to control lead comparable with that of
the machines with D.C. current.

Several research tasks use the method of groping
[2, 3, 4,5, 6, 7], to find the parameters of the regulators
but this technique is very tiring, or traditional method [8].
In this work, one proposed adaptif Pl with model of refer-
ence based on the optimization of a criterion performance
to apply to the FOC for the asynchronous machine. In the
following section, one synthesis FOC where we propose Pl
adaptif with model of reference based on the optimization
of acriterion of performance; after one studiesthe regulator
by simulation and one concludes with the results.
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2 Synthesis of Field-Oriented Con-
trol

For an asynchronous machine supplied with tension, ten-
sions stator V4 and V, are the variables of control, and
we consider rotor flux, the currents stator and the mechan-
ical speed like variables of state [9].

7/sd i - Ws % pKQ
Z.sq _ —Ws =7 _pKQ %
Yra 7 0 —7 ws — Pl
qu L 0 TMT - (ws - pQ) _TLT
[ isd a'is 0
lsq + 0 a}ls [ Vsa :|
Vra 0 0 Vsq
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The parameters are defined as follows:
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The stator pulsation is not exploitable since v,. is null
with the starting of the machine. We will use for establish-
ment, the following equation:
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In these equations:

L, : Stator inductance cyclic,

L, : Rotor inductancecyclic,

M Cyclic mutual inductance between stator and rotor
R, : Stator resistance,

R, : Rotor resistance,

o . Scattering coefficient,

T, : Timeconstant of the rotor dynamics,
J : Rotor inertia,

T; : Resistivetorque,

P : Pole pair motor,

I, :isthe2-dimensiona identity matrix,
Jo :isaskew - symmetric matrix.

The vectorial field-oriented control is based on an ori-
entation of the turning reference mark of axes (d, ¢) such
asthe axis d that isto say confused with the direction of ¢,.
[9].

The flux +,- being directed on the axis d, the equation
of state (1) us alowsto express Vg, Vsq, ¥ and w, with
Yrq = 0 and ¢4 = 1. The following equations are ob-
tained [10] :

isd —Yisd + Wsisg + 2 r + 57 Vad

7/sq = —Wslgg — 'Yisq - pKQ'QZ)r + %stsq

wr = %isd - TLTUJT (3)
0 = %isq - (ws - pQ) ¢r

0 = %LMTiSQ@Z’rd - fTUQ - %

Closely connected of uncoupled the two first equations
from the system (3). We define two new variables of order

Vsq aNd v,
Vsa =
Vsq =

Where v, and v, are the terms of coupling given by :

Usd — €sd
Usq — @sq

(4)

€sd = O'LS (wsisq + %’lﬂw) (5)
€sq = oL, (wsisd + pKQd}T)
and ordersit uncoupling
VUsd = ULS (st + ’yisd) (6)
Voq = 0Lg (isq + yisq)

Transfer functions of this system uncoupled while tak-
ing asin-putsvsq, vs, and asout-putsisg, is, and:

i 1

Vsd oLs(s+7)

, (7)
s _ 1

Vsq oLg (S + 7)

We will present the synthesis of each regulator sepa-
rately closely connected to clarify the methodol ogy of syn-
thesis of each one of them.
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Flux regulator :
The combination enters the third equation of the system (3)
and thefirst of the system (7), we will have

M 1
a LSTT”-(s—%T%) (s+7)

We wish to obtain in closed loop aresponse of thetype
274 order. To achieve this objective, one takes an adaptive
proportional-integral regulator with MRAC of the type:

Ur ©)

Usd

k; 0
“ =g+ 2 ©)
S S

We can represent the system in closed loop by the figure
(F1G6.1)

PIy(s) = kpy +

l//rm
Gym(s)
Adaptation law ew/\
+
U,
k M

o sh Vsd LT Y

- . >

g (s+T—)(s+y)
v

Figure 1: Diagram block in closed loop of Pl adaptive reg-
ulator with model reference of flux.

The reference model of the system in closed loop is
selected with a second-order transfer function:

Aopm
Gym(s) = ¢

s2 + 98 + aym

That is to say the optimality criterion J(e) of the adjust-
ment loop is expressed by the quadratic integral [11]:

(10)

Its derivativeis:

oJe) 0 (1 [T
de = & (5/0 62(T)d7'>
1 T b T
= 5/0 %62(7')617':/0 e(r)dr (11)

Let us compensate for the slowest pole by the numera-
tor of the transfer function of our regulator, which is trans-
lated by the condition:

1 ki 0
. ) _ 2] = 6, = 01
kpt// 01

T,

T (12)
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In open loop, the transfer function is written:

0Ky . M
Gpoy(s) = S5+ 7) with K, = I.T.o (13)
And in closed loop:
0, K,
GBF,/,(S) = 179 (14)

s2 + s+ 01K¢

If the condition (12) is not considered, therefore one will
have

(918 + 02) K’JJ

Gpry(s) = - (15
s (s+f) (s+7)+ Ky (015 + 62)
One calculates the adjustable parameters 8, and 6,:
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Taking into account (11), (16) and (17), one can write
the equation of gradient #; and 6,:
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And
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Speed regulator:
According to the mechanical equation of the machine
(3); we have:
1
Js+ fy

From where the expression of the el ectromechanical torque
is given by the formula:

(Tem - Tl) (22)

M .
Tem = pL—qu¢rd (23)

While replacing, i 5, the system (7) in the torque (23)

pM 1
Tem = —VYrg-——— Vs 24
LrdeLs(3+7)Uq 9
Therefore, equation (22) becomes::
pM
LI Vr 1
— O'LSLTL/} d (25)

Tst 1) (st )™ " Tov 7!

For closed loop speed it was proposed regul ator Pl with
MRAC of theform:
kig P

:'191—+-—
S S

Plo(s) = kpo + (26)

The functional diagram is given by the figure (FI1G.2)
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Figure 2: Diagram block in loop closed of Pl adaptive reg-
ulator to model reference speed .

The reference model of the loop system closed is se-
lected with a second-order transfer function:

o aQm
G (s) = 52 4+ vs + agm
Let us compensate for the slowest pole by the numerator
of the transfer function of our regulator, which istranslated
by the condition:
ﬁ _ kw _ U2 fo

= == Py = =19 27
Tk 0 2T gY @7
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In open loop, the transfer function is written:

V1 Kotra pM
Gpoa(s) s(s+7) e Ko JLsL.o (28)
Andin closed loop:
1 Ko,
GBra(s) = 1Katra (29)

2 +vs+ 1 Kq
If the condition (27) is not considered, therefore one will
have

Grro(s) = (V15 +U2) Katpra
T 5 (Ts+ £u) (5 +7) + Katbrd (ﬂlswégo)
The adjustable parameter is calculated ¥, and ), :
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Taking into account (11), (31) and (32), one can write
the gradient equation ¥, and ¥, :
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£ { dt } = TR T%e 9, (33)
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3 Simulation and results

The proposed regulator has been simulated for a three-
phase 1.5kw asynchronous machine(see [12]), whose pa-
rameters are depicted in Table 1.

Pole pair motor p |2

Frequency f | 50hz

Stator inductancecyclic | Lg | 0.464H
Rotor inductance cyclic L, | 0.464H
Cyclic mutual inductance | M | 0.4417H
Stator resistance R, | 5.717Q
Rotor resistance R, | 30

Rotor inertia J | 0.00049Nm
Coefficient of friction fv | 0.0001

Table 1: Asynchronous machine parameters used in simu-
lations.

The vector of machine state is initialized whit
[isd isg %ra ] =[0 0 02 0], andthe
results are given for the machine of which a direct start-
ing, i.e. aresistive torque null (77 = 0). We conceived
simulation by carrying out the diagram general in blocks as
the figure shows it (FIG.4). We show a detailed scheme
SIMULINK of the control with Pl adaptive regulator in
Fig.5.

The figure (Fi1G.3) show the pace of desired flux and
the flux of the machine; we notice that this last follows
very well the flux wished with small disturbances at the
moments¢ = 1.2s and ¢t = 2.5s where speed changes its
direction. The error mean of flux is equa to —3.6mWb
with avariance4.11 x 10~* to see thefigure (FIG.6).

T T T T T T T
' -=v
[] r

1F —

0.8 i P

Flux [Wb]

0.4

0.2

I I I I I
o 0.5 1 15 2 25
Time [s]

Figure 3: Flux performance.
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Figure 5: Simulink of FOC with PI adaptatif regulator with

reference model.
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The figure (FI1G.7) give the curve speed reference and
the machine speed ; it is noted that speed follows well the
instruction speed with shiftsin thetransient states (t = 1.2s
and ¢t = 2.5s). The average of error speed is equal to
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2.1620rad/s with a variance 260.0776 to see the figure
(FI1G.8).

Evolution of the adjustable parameters #, and 6, is
shown by the figure (F1G.9); ¥4, ¥> by (FIG.9).

T
0.0131
0.012f

- 00111

B

0.01

0.009

Time[s]

Figure 9: Parameters 6, and 6.

Time([s]

Figure 10: Parameters); and 9.

4 Conclusion

we clarified FOC control. The uncoupling control, us made
it possible to use adaptive regulators and to have an effect
uncoupled on the regulation from rotor flux and rotating
Speed.

The two regulators used are Pl adaptive in the control
loops of the rotor flux and of rotating speed. The results
are very well. Simulations show the effectiveness of adap-
tation.
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