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Abstract: In recent years, due to the relation between cognitive control and mathematical concept of control dynam-
ical systems, there has been growing interest in the descriptive analysis of complex networks with linear dynamics,
permeating many aspects from everyday life, obtaining considerable advances in the description of their structural
and dynamical properties. Nevertheless, much less effort has been devoted to studying the controllability of the
dynamics taking place on them. Concretely, for complex systems is of interest to study the exact controllability,
this measure is defined as the minimum set of controls that are needed to steer the whole system toward any desired
state. In this paper, a revision of controllability concepts is presented and provides conditions for exact controlla-
bility for the multiagent systems.
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1 Introduction
The brain structure is a deep recurrent complex neu-
ronal network.

Figure 1: Deep Recurrent Neural Network.

The term neural network refers to a particular
model for understanding brain function, in which neu-
rons are the basic computational units, and computa-
tion is interpreted in terms of network interactions.

As Kriegeskorte argues in [13], neural network
models mark the beginning of a new era of compu-
tational neuroscience, in which participants share in
real-world tasks that require extensive knowledge and
complex computations.

Neural systems allow humans to perform the mul-
tiple complex cognitive functions necessary for daily
life and these can alter their dynamics to meet the de-
mands of tasks. These capabilities are known as con-
trol. The concept of cognitive control is analogous to
the mathematical concept of control of dynamic sys-

tems used in engineering, where the state of a com-
plex system can be modulated by the energy input.
Neural network systems, such as the brain, are very
attractive systems for the study of control due to their
structure that predisposes certain components to spe-
cific control actions. The neuronal sets of the brain
can be interpreted as the nodes of a complex system
and the anatomical cables of interconnection as the
axes, this system exerts an impact on the neural func-
tion. It is therefore plausible that the brain regulates
cognitive function through a process of transient net-
work level control similar to technological systems
modelled mathematically as complex systems. Al-
though the complete understanding of the relationship
between mathematical control measures and the no-
tions of cognitive control of neuroscience are difficult
to achieve, small advances in the study can favour the
study and action against learning difficulties such as
dyscalculia or other disturbances like the phenomena
of forgetting, ([9, 8]).

In these recent years, the study of the control of
complex networks with linear dynamics has gained
importance in both science and engineering. Control-
lability of a dynamical system has being largely stud-
ied by several authors and under many different points
of view, (see [1], [2], [3], [11], [14], [7], [18] and
[5], for example). Between different aspects in which
we can study the controllability we have the notion
of structural controllability that has been proposed by
Lin [16] as a framework for studying the controlla-
bility properties of directed complex networks where
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the dynamics of the system is governed by a linear
system: ẋ(t) = Ax(t) + Bu(t) usually the matrix A
of the system is linked to the adjacency matrix of the
network, x(t) is a time dependent vector of the state
variables of the nodes, u(t) is the vector of input sig-
nals, and B which defines how the input signals are
connected to the nodes of the network and it is the
called input matrix. Structurally controllable means
that there exists a matrix Ā in which is not allowed
to contain a non-zero entry when the corresponding
entry in A is zero such that the network can be driven
from any initial state to any final state by appropriately
choosing the input signals u(t). Recent studies over
the structural controllability can be found on [17].

Another important aspect of control is the notion
of output controllability that describes the ability of
an external data to move the output from any initial
condition to any final in a finite time. Some results
about can be found in [7].

In this paper we revise system theoretic properties
of neural networks, and we analyze the exact control-
lability concept for multiagent neural network follow-
ing definition given in [21, 6]. This concept is based
on the maximum multiplicity to identify the minimum
set of driver nodes required to achieve full control
of networks with arbitrary structures and link-weight
distributions.

2 Preliminaries

2.1 Algebraic Graph theory

We consider a graph G = (V, E) of order N with the
set of vertices V = {1, . . . , N} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we consider a matrixG =
(gij) called (unweighted) adjacency matrix defined as
follows aii = 0, gij = 1 if (i, j) ∈ E , and gij = 0
otherwise.

(In a more general case we can consider a
weighted adjacency matrix is A = (aij) with aii = 0,
aij > 0 if (i, j) ∈ E , and aij = 0 otherwise).

The adjacency matrix corresponding to the graph
gven in figure 2 is as follows

A =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

a13 a12 0 0 0 0 0 0 0 0 0
0 0 a34 0 a54 0 0 0 0 0 0
0 0 a35 0 0 a65 0 0 0 0 0
0 0 a36 0 a56 0 0 0 0 0 0
0 0 0 a47 a57 0 0 a87 0 0 0
0 0 0 0 a58 a68 a78 0 0 0 0
0 0 0 0 0 0 a79 a89 0 0 0
0 0 0 0 0 0 a710 0 0 0 0
0 0 0 0 0 0 a711 a811 0 0


The Laplacian matrix of the graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni

0 otherwise
For more details about graph theory see [20].
A possible manner to study the control of the neu-

ral networks can be associating a dynamical system to
graph:

ẋ(t) = Ax(t) +Bu(t) (1)

where
x =

(
x1 . . . xn

)t
stands for the states nodes,

A = (aij) is the adjacency matrix to the graph
where aij represents the weight of a directed link
from node i to j, u is the vector of m controllers:

u =
(
u1, . . . , um

)t
andB is the n×m control matrix.

2.2 Controllability
Controllability is one of the most important proper-
ties of dynamical systems. A system is controllable
if we can drive the state variables from any initial to
any desired values within a finite period of time with
properly selected inputs, more concretely:

Definition 1 The system 1 is called controllable if,
for any t1 > 0, x(0) ∈ ICn and w ∈ ICn, there ex-
ists a control input u(t) sufficiently smooth such that
x(t1) = w.

The controllability character can be computed by
means of the well-known Kalman’s rank condition

The system 1 is controllable if and only if:

Proposition 2 ([12])

rank
(
B AB . . . An−1B

)
= n (2)

or by means the Hautus Test for controllability of lin-
ear dynamical systems.

Proposition 3 ([10])

rank
(
sI −A B

)
= n, ∀s ∈ IC

}
. (3)
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To ensure controllability with a minimal number
of inputs the brute force approach should generate
2N − 1 configurations of the B matrix [15]. To solve
this challenging task, Y. Y. Liu et al. proposed the
maximum matching algorithm based on the network
representation of the A matrix to select the control1
and observer2 nodes that ensure controllable and ob-
servable systems.

2.3 Exact controllability
Given a state space representation of a linear dynami-
cal system as in equation 1
that for simplicity, from now on we will write as the
pair of matrices (A,B). It is well known that There
are many possible control matrices B in the system 1
that satisfy the controllability condition.

The goal is to find the set of all possible matri-
ces B, havin g the minimum number of columns cor-
responding to the minimum number nD(A) of inde-
pendent controllers required to control the whole net-
work.

Definition 4 Let A be a matrix. The exact controlla-
bility nD(A) is the minimum of the rank of all possible
matrices B making the system 1 controllable.

nD(A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n (A,B)

controllable}.
If confusion is not possible we will write simply nD.

It is straightforward that nD is invariant under
similarity, that is to say: for any invertible matrix S
we have nD(A) = nD(S−1AS). As a consequence,
if necessary we can consider A in its canonical Jordan
form.

Example 5 1) If A = 0, nD = n

2) If A = diag(λ1, . . . , λn) with λi 6= λj for all
i 6= j, then nD = 1, (it suffices to take B =
(1 . . . 1)t).

3) Not every matrix B having nD columns is
valid to make the system controllable. For
example if A = diag(1, 2, 3) and B =
(1, 0, 0)t, the system (A,B) is not controllable,
(rank

(
B AB A2B

)
= 1 < 3, or equiva-

lently rank
(
A− λI B

)
= 2 for λ = 2, 3. Ob-

serve that, in this case, the matrixB corresponds
to an eigenvector of the operator A.

Proposition 6 ([21])

nD = maxi {µ(λi)}
where µ(λi) = dim Ker (A − λiI) is the geometric
multiplicity of the eigenvalue λi.

2.4 Structural controllability
We recall now the concept of structural
controllability[16]. Structural controllability is a
generalization of the controllability concept. It is
of great interest because many times we know the
entries of the matrices only approximately. Roughly
speaking, a linear system is said to be structurally
controllable if one can find a set of values for the pa-
rameters in the matrices such that the corresponding
system is controllable. More concretely, the definition
is as follows.

Definition 7 The linear system 1 is structurally con-
trollable if and only if ∀ε > 0, there exists a com-
pletely controllable linear system ẋ(t) = Ax(t) +
Bu(t), of the same structure as ẋ(t) = Ax(t)+Bu(t)
such that ‖A−A‖ < ε and ‖B −B‖ < ε.

Recall that, a linear dynamic system ẋ(t) =
Ax(t)+Bu(t) has the same structure as another linear
dynamical system ẋ(t) = Ax(t)+Bu(t), of the same
dimensions, if for every fixed zero entry of the pair of
matrices (A,B), the corresponding entry of the pair
of matrices (A,B) is fixed zero and vice versa.

3 Controllability of multiagent neu-
ral networks

The complexity of the brain drives that in order to
study control problems, the global model is divided
into several local submodels, each with its complex
and interrelated network structure. Structuring, in this
way, the brain as a neuronal multi-network with a
common goal.

Let us consider a group of k identical agents. The
dynamic of each agent is given by the following linear
dynamical systems

ẋ1(t) = A1x
1(t) +B1u

1(t)
...

ẋk(t) = Akx
k(t) +Bku

k(t)

(4)

xi(t) ∈ IRn, ui(t) ∈ IRm, 1 ≤ i ≤ k.
We consider the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V } ⊂ V × V

defining the communication topology among agents.
Writing

X (t) =

 x1(t)
...

xk(t)

 , Ẋ (t) =

 ẋ1(t)
...

ẋk(t)

 ,
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U(t) =

 u1(t)
...

uk(t)

 ,

A =

 A1

. . .
Ak

 , B =

 B1

. . .
Bk

 ,
Following this notation we can describe the mul-

tisystem as a system:

Ẋ (t) = AX (t) + BU(t).

and we are interested in take the output of the system
to a reference value and keep it there, we can ensure
that if the system is controllable. Clearly, this system
is controllable if and only if each subsystem is con-
trollable, and, in this case, there exist a feedback in
which we obtain the desired solution.

But, in our case, not all possible feedbacks are
available due the restriction of interconnection of
agents. So we are interested in a feedback K in such
a way that the with control

ui(t) = K
∑
j∈Ni

(xi(t)− xj(t)), 1 ≤ i ≤ k

the system has prescribed eigenvalues in order to take
a desired output of the system.

In our particular setup, we are interested in a so-
lution such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.

That is to say, founding solutions of each subsystem
arriving all, to the same point.

Proposition 8 Taking the control ui(t) =
K
∑

j∈Ni
(xi(t) − xj(t)), 1 ≤ i ≤ k the closed-loop

system can be described as

Ẋ (t) = (A+ BK(L ⊗ In))X (t).

where K =

 K
. . .

K

.

Computing the matrixA+BK(L⊗In) we obtain


A1 + l11B1K l12B1K . . . l1kB1K
l21B2K A2 + l22B2K . . . l2kB2K

...
...

. . .
...

lk1BkK lk2BkK . . . lkkBkK



Example 9 We consider 3 agents with the following
dynamics of each agent

ẋ1 = A1x
1 +Bu1

ẋ2 = A2x
2 +Bu2

ẋ3 = A3x
3 +Bu3

(5)

with A1 = A2 = A3 =

(
0 1
−0.1 −0.5

)
, 0 , and

B =

(
0
1

)
.

The communication topology is defined by the
graph (V, E):

V = {1, 2, 3}
E = {(i, j) | i, j ∈ V } = {(1, 2), (1, 3)} ⊂

V × V
The neighbors of the parent nodes are N1 =

{2, 3}, N2 = {1}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


Taking K =

(
k `

)
The matrix of the system is


0 1 0 0 0 0

2k − 1
10 2`− 1

2 −k −` −k −`
0 0 0 1 0 0
−k −` k − 1

10 `− 1
2 0 0

0 0 0 0 0 1
−k −` 0 0 k − 1

10 `− 1
2


Taking K =

(
−0.5 −0.2

)
the eigenval-

ues are −0.5500 + 1.1391i, −0.5500 − 1.1391i,
−0.2500 + 0.1936i, −0.2500 − 0.1936i, −0.3500 +
0.6910i, −0.3500 − 0.6910i, then the system has a
stable solution and the the three trajectories arrive at
a common point as we can see in the graphic.

As we can see in the example, all agents on the
multi-agent system, have an identical linear dynamic
mode. In this particular case proposition 8 can be
rewritten in the following manner (see [4, 19])

Proposition 10 Taking the control ui(t) =
K
∑

j∈Ni
(xi(t) − xj(t)), 1 ≤ i ≤ k the closed-loop

system for a multiagents having identical linear
dynamical mode, can be described as

Ẋ = ((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))X .
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Figure 2: Trajectories of each system.

3.1 Exact controllability
Let us consider a group of k agents. The dynamic
of each agent is given by the following homogeneous
linear dynamical systems

ẋ1(t) = A1x
1(t)

...
ẋk(t) = Akx

k(t)

(6)

xi(t) ∈ IRn, 1 ≤ i ≤ k.
We ask for minimum number of columns that a

matrix B must have for the system

ẋ1(t) = A1x
1(t) +Bu1(t)

...
ẋk(t) = Akx

k(t) +Buk(t)

(7)

to be controllable (the matrix B the same for aech
agent).

Let λi1 , . . . , λiri the eigenvalues of the matrix Ai

with geometrical multiplicities µ(λi1), . . . , µ(λiri ).
Then

Proposition 11

nD(A) =
max(µ(λ11), . . . , µ(λ1r1 ), . . . , µ(λk1), . . . , µ(λkrk )

Corollary 12

nD(A) = nD(Ai)

for some i = 1, . . . , k.

Remark 13 • Not all matrices B having nD(Ai)
columns and making the system ẋi = Aix

i +
Bui controllable are available for the multiagent
system.

• Taking all possible matricesB making the system
controllable we can consider the existence of the
matrix K.

Example 14 Suppose A1 =

(
2

3

)
, A2 =(

1
1

)
.

The matrix B =

(
1
1

)
make the system ẋ(t) =

A1x(t)+Bu(t) controllable but not ẋ(t) = A2x(t)+
Bu(t).

The matrix B =

(
1
0

)
make the system ẋ(t) =

A2x(t)+Bu(t) controllable but not ẋ(t) = A1x(t)+
Bu(t).

Nevertheless, the matrix B =

(
1
2

)
make both

systems controllable.

4 Conclusions
The exact controllability for multi-agent systems
where all agents have an identical linear dynamic
mode are analyzed with an important objective: To
help people with dyscalculia.
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