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Abstract: The parallel-distributed compensation (PDC) together with Takagi-Sugeno-Kang (TSK) fuzzy 
modelling proved to be a modern model-based systematic approach for the design of fuzzy nonlinear 
controllers from stability and robustness requirements. The usual local linear controllers comprise a state 
feedback. This requires measurements of the state variables or an observer design. The aim of the present 
investigation is to develop a fuzzy internal model controller (FIMC) for a nonlinear plant with time delay 
under uncertainties. The FIMC is PDC-TSK based with dynamic local linear controllers, which are designed 
on the principle of the internal model controllers to ensure local linear systems stability and robustness. The 
main contribution of the paper is a method for the design of a FIMC, designed FIMC for the control of the 
air temperature in a laboratory furnace and MATLAB based simulation investigations of the closed loop 
system stability and dynamic performance. The FIMC reduces the settling time and the overshoot and 
improves the system robustness compared to a linear PI controller.  
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1 Introduction 
The recent advances in fuzzy control are based on 
dynamic fuzzy Takagi-Sugeno-Kang (TSK) plant 
and controller models with common premises in the 
fuzzy rules [1-3]. This approach, known as Parallel 
Distributed Compensation (PDC), is systematic 
with emphasis on system stability and robustness 
with performance restrictions. It takes advantage of 
the well-developed linear control technique for 
designing of local controllers and solving the global 
nonlinear fuzzy system stability. Most industrial 
processes are inertial complex nonlinear time-
varying plants with time delay and model 
uncertainty [4-6]. Often the nonlinear plant can be 
represented by a finite number of linear models, 
each for a given operation sub-domain. In this case 
the fuzzy PDC-TSK has proven to be a suitable 
advanced and also simple approach for the control 
of such plants as it accounts for the plant time 
delay, nonlinearity, uncertainty and complexity in 
satisfying the high performance demands to the 
control system [1-5]. The PDC controllers have 
only a few rules – one for each plant model. 
Because of the nonlinear nature both of plant and 
controller, stability and robustness are essential for 
the practical feasibility of the designed control 
system and also difficult to ensure [7-12]. 

In the PDC structure the fuzzy logic controller 
design problem is decomposed into local linear 

controllers design and global fuzzy nonlinear 
system stability ensuring. The local controllers are 
developed first from the requirement to guarantee 
local linear systems stability and robustness. Then 
the global fuzzy nonlinear system stability is 
studied, employing Lyapunov stability direct 
method and Linear Matrix Inequalities (LMIs) 
numerical technique [1, 2] for solving the Lyapunov 
stability conditions. The usual local controllers 
comprise a state feedback. In case the state 
variables are not measurable, a fuzzy PDC state-
variable observer is developed. The design problem 
becomes complicated. This tendency deepens even 
more when plant time-delay and plant model 
uncertainties are to be considered [2-5, 7-12] – the 
local controllers design becomes difficult and the 
Lyapunov global system stability problem turns into 
a computationally hard and even impossible task 
because of the increased in number and complexity 
LMIs to be solved.  

The design of robust stable linear local control 
systems for local plants with time delay and 
uncertainty can be greatly simplified applying the 
internal model controller (IMC) approach [13, 14]. 
It often results in equivalent PI/PID controllers, 
which allows to successfully apply the derived in 
[15, 16] global system stability conditions.  

The aim of the present investigation is to 
develop a method for the design of a fuzzy internal 
model controller (FIMC) for a nonlinear plant with 
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time delay under uncertainties. The FIMC is PDC-
TSK based with dynamic local controllers, which 
are derived on the principle of linear internal model 
controllers to ensure local linear systems stability 
and robustness.  

 
2 Problem Statement 
In [15-17] a simple approach for the design of 
dynamic PI/PID local controllers for local plants 
with time delay and model uncertainties is 
suggested and the corresponding Lyapunov 
sufficient conditions for the global system stability 
are derived. 

The PDC approach assumes that the nonlinear 
plant can be described by a number of linear plant 
models usually in the state space, obtained either by 
linearisation of a known nonlinear plant model in 
several operation points (applicable mainly for 
mechanical systems) or as a result of experiments 
and identification. The linear plant models are 
supposed to be observable and controllable. They 
constitute the consequents in the fuzzy rules of the 
TSK plant model. 

The proposed TSK model derivation for 
industrial processes with time delay in [15-17] is 
based on identification. Step responses to plant 
input changes in different operation points are 
experimentally recorded and approximated by 
Ziegler-Nichols models. Then models with close 
parameters from adjacent step responses are 
grouped to determine sub-domains of linearisation, 
represented by average Ziegler-Nichols models with 

transfer functions 1o
i

-o
i

o
i )1.(e.)(

о
i −τ += sTKsP s , 

accepted as nominal local linear plants. Due to the 
smooth plant nonlinearity the plant model gain K, 
time constant T and time delay τ vary with the 
operation point. So, Ki, Ti and τi are different in 
each linear sub-domain. The sub-domains can be 
recognized by the plant output y(t) or its reference 
yr(t). When under closed loop control, the plant 
output follows the reference yr and smoothly passes 
through all sub-domains from the current to the 
final. So, the nonlinear plant changes its parameters. 
These parameter variations can be described in a 
multiplicative uncertainty model for each sub-
domain )(/)()( o

iii sPsPsl ∆= , where the additive 

uncertainty )()()( wi
o

ii sPsPsP −=∆  is determined 
on the basis of the “worst” perturbed plant )(wi sP  
for the sub-domain – collective virtual plant with 
the greatest gain Kwi=Kimax and time delay τwi=τimax, 
and the smallest time constant Twi=Timin, i=1…r, 
with worst effect on system stability.  

The local linear controllers for the linear plants 
in the sub-domains are dynamic PI/PID controllers 

with transfer functions )]/(11.[)( iipii sTKsC +=  

with gain Kpi and integral action time Tii as tuning 
parameters. Each control action is presented as 
incremental in state space form in the consequents 
of the corresponding fuzzy rule of the PDC fuzzy 
controller. The necessary integrator for the 
incremental control is included as augmentation of 
the local plant at its input. Thus the fuzzy rules in 
the TSK models of the plant and the controller 
respectively for i=1…r are determined as: 

 

Ri: IF y(t) is Mi1 AND e(t) is Mi2 AND )(te&  is Mi3  

THEN. )()(
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o
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Ri: IF y(t) is Mi1 AND e(t) is Mi2 AND )(te&  is Mi3 
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where: Mij are linguistic values, defined as 
membership function (MF) of fuzzy sets; x(t)∈Rn is 
the state vector; u(t)∈Rm is the input control vector; 
y(t)∈Rq is the output vector; )()( ii tyyte r −=  is 
the error in the local closed loop system for constant 
reference yr;  
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The PDC fuzzy controller has three inputs y(t), 
e(t) and )(te&  - zT=[y e e& ] (or y(t), yr and )(ty& ), and 
one output - the control rate )(tu& . Each local 
controller’s parameters are tuned from robust 
stability or robust performance criterion, 
considering local nominal plant and multiplicative 
plant model uncertainty [15-17].  

The linear system is robustly stable if for all 
significant frequencies ω [13]: 

 
ω∀<ωωΦ   ,1)().(o jlj                      (3) 

 
where |)(| o ωΦ j  is the magnitude of the frequency 
response of the closed loop system for nominal 
plant, obtained for s=jω from the closed loop 
system transfer function with respect to reference. 

Robust performance is defined as a bounded H∞-
norm of the magnitude of the system error e - 
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ω

je  for all significant frequencies ω. The 

linear system has a robust performance if:  
 

0   ,1)().()().( o
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where |)(| o ωjS  is the system sensitivity function 
for nominal plant and |)(| f ωjW  - the magnitude 
frequency response of the shaping filter for the 
disturbance at the plant output (usually 

)(f ωjW =0,3…0,9) [13]. 
Derived Lyapunov sufficient conditions in [15, 

16] allow proving the global closed loop system 
stability by solving the corresponding LMIs. They 
state that the closed loop system (1)-(2) is 
quadratically stable if there exist matrices P>0, 
and Q>0 such that the following matrix 
inequalities are satisfied for i, j=1…r, j>i: 
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These results make the basis of the research, 

described in the present paper. 
The aim here is to derive the internal model 

linear dynamic controllers of the PDC-based FIMC 
for the local linear plants with time delay and plant 
model uncertainty in order to ensure local systems 
robustness [13]. In this way the complexity of the 
local controllers design in [1-4, 7-12] will be 
reduced and both their tuning and the global 
stability problem will be simplified. 
 
 
3 Method for Design of PDC-based 

Fuzzy Internal Model Controller 
In Fig.1 is shown the i-th local linear system in a 
PDC-TSK structure of a fuzzy system, where by di 
and ni are denoted respectively the disturbance and 
the noise. It consists of the local plant )(i sP  and a 
local internal model controller (LIMC) Ri(s). The 
LIMC is based on a nominal plant model )(o

i sP  
and a controller Qi(s)=[ )(o

i sP ]-1.Fi(s), where 
[ )(o

i sP ]-1 is the inverse nominal plant model and 
Fi(s) is a filter, designed to make Qi(s) proper. The 
ideal controller transfer function Qi

o(s)=[ )(o
i sP ]-1 is 

derived in case the nominal plant model )(o
i sP  

precisely describes the plant and no noise and 
disturbances take place from the requirement that  

 

Qi(s) Pi(s) 

∆yi

yi  yri

di 

ni

-

-
Ri(s)

Po
i(s) 

 
Fig.1. Local internal model control system 

 

Qi(s) Pi(s) 

Po
i(s)

ei yi  yri 
di 

ni

-

Ri(s)

+

 
Fig.2. Transformed internal model control system 

 
the plant output y(t) follows the reference yr(t). 
However, the controller feasibility requires the filter 
Fi(s) since the inverse plant model is improper 
transfer function. 

In order to simplify the structure of the LIMC, 
the system in Fig.1 is equivalently transformed into 
the system, shown in Fig.2. Then the following 
transfer function Ri(s) for the LIMC can be derived: 
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The time delay in the inverse plant model can be 

neglected according to [13]. For nominal plant 
model 1o

i
-o

i
o

i )1.(e.)(
о
i −τ += sTKsP s  the inverse 

plant without the time delay becomes:  
 

o
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o
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K
s

K
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The filter Fi(s) to be added to make this transfer 

function (7) proper and also to ensure no steady 
state error in the closed loop system for step input 
changes, is of the type of a first order time lag - 
Fi(s)=1/(λis+1) [13].  

The substituting of the filter into (6) yields: 
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Considering (7) in (8), for Ri(s) it is obtained: 
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The LIMC is a PI controller CPIi(s) with only 

one tuning parameter λi, which is selected to satisfy 
the robustness criterion (3) or (4). 

The transfer function of the local closed loop 
system for perfect plant model, i.e. Pi(s)=Pi

o
(s) and 

di=0, ni=0, becomes: 
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This shows that Fi(s) entirely determines the 

system characteristics – the system behaves as a 
time lag with time constant λi. The bigger λi is - the 
longer the settling time ts and also the more robust 
the local system is. On the other hand, the 
sensitivity of the system Si(s) with respect to noise 
and plant model uncertainty, defined as: 

 
Si(s)=1-Φi(s), 

 
is )(1)( ii sFsS −= . The conclusion is that the closer 
Fi(s) to 1 is, the more precisely the system follows 
the reference input and the less sensitive it is to 
noise and plant uncertainties. 

The PDC-based FIMC is constructed as 
incremental accounting for (9) and (8). The fuzzy 
rules are of the type: 

 
Ri: IF yr(t) is Mi1 AND e(t) is Mi2 AND )(te&  is Mi3 

THEN )()/(1)()/()( o
ii

o
ii

o
ii teKteKTtu λ+λ= &&  (10) 

        or riiii )()( xGtxFtu +−=& , 
 
where )]/()/(1[ o

ii
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o
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By analogy with the PI-PDC controller (2) can 
be established that  

 

iipi
o
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o
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The FIMC-PDC has three inputs yr(t), e(t) and 
)(te&  - zT=[yr e e& ] and one output - the control rate 
)(tu& . The fuzzy rules are designed to estimate the 

degree of belonging of the operating point, defined 
by the measurement of yr to the different linear sub-
domains. The global FIMC-PDC output after a 
Centre-Of-Gravity defuzzification is obtained as: 

∑
∑

∑

=

=

= −=−=
r

i
iir

i
i

r

i
ii

txFtzh
tzw

txFtzw
tu

1

1

1 )())((
))((

)())((
)(&

, 

 

where 
0))((

0))(()),(())((
1

1 ≥

>= ∑∏ =
= tzw

tzwtzMtzw
i

r

i
i

j

p

j
iji  is 

the degree of fulfillment of the compound fuzzy 
condition in the premise, Mij(zj(t)) is the degree of 
match of zj(t) to Mij, 
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 is the strength 

of firing of the rule and is normalized, which 
implies that the MFs comprise an orthogonal 
system. 

An integrator (1/s) is used for computing the 
final control action u(t) from its rate )(tu& .  

The global system stability is confirmed by the 
existence of the matrices P>0 and Q>0 for i, j=1…r, 
j>i, which satisfy the derived in [15, 16] sufficient 
Lyapunov conditions (5) with the only modification 
– the new Fi and Gi: 
 
 
4 Design of PDC-based FIMC for Air 

Temperature Control  
 
4.1 Design of PDC-based FIMC  
The plant is the air temperature T, oC (y(t)=T(t)) in a 
furnace, shown in Fig.4. It is controlled by electrical 
heater via the voltage from the controller u(t), which 
is passed to a Pulse-Width-Modulator (PWM) in 
order to form the proper duty ratio. During the PWM 
pulses a Solid State Relay (SSR) connects the heater 
to net supply voltage. So, during the pulses the 
heater heats. The duty ratio that corresponds to a 
given controller output u(t), leads to a corresponding 
average heat, emitted to the air inside the furnace.  
 
 

Temperature 
sensor & 

transmitter 
Electrical 

heater 

Disturbance 

PWMu

~220V 

Furnace 

SSR

T

 
Fig.3. Electrical furnace as a controlled plant
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Fig.4. Nominal and varied plant step responses in different operation points 

 
Table 1. Average/worst plant and LIMC parameters 

Plant model 
parameters 

        Kiav,oC/V
        Ki w,oC/V

     Tiav, min
     Ti w, min

      τiav, min 
      τI w, min λ i 

Sub-domain 1 Kmax=K1av=66
         K1 w=80 

        T1av=8 
         T1 w=5

τmax=τ1av=14 
         τ1 w=18 10 

Sub-domain 2          K2av=10 
         K2w=20 

Tmin=T2av=6
         T2 w=4

         τ2av=10 
       τ2 w=15 25 

Sub-domain 3          K3av=50
         K3 w=70

          T1av=9
         T1 w=5

     τ2av=8 
       τ2 w=12 10 

 
 
 

 
 
Fig.5. Membership functions for the input – temperature 

reference yr(t) 
 

The experimentally obtained plant step responses 
in different operation points for nominal and varied 
plant are shown in Fig.4. Three linear sub-domains 

can be distinguished in Fig.4. In Table 1 are given 
the average and the worst Ziegler-Nichols local plant 
parameters for each sub-domain. 
The FIMC is designed using MATLABTM [18]. It is 
described by three fuzzy rules according to (10) – 
one for each linear sub-domain. As the conclusion 
in each rule is a different deterministic function of 
the inputs e and e& , the input yr(t) is used to 
distinguish the sub-domains. Its MFs are shown in 
Fig.5, where “H” is high, Nref  is normal and “H” is 
low. 

The temperature range is [0÷80], oC and the 
maximal expected error |emax|= 10,oC. The control 
action is bounded in the range [0÷2], V. The fuzzy 
unit inputs are normalized - the error and the 
derivative of error in the range [-1÷1], oC, and the 
reference temperature - in the range [0÷1], oC. The  
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Fig.6. Results from tuning of λi of the first local IMC – 

the robustness curves are mainly below 1 
 

derivative of error is obtained at the output of a 
noise resistive first order differentiator s/(s+1).  

The parameters λi of the LIMCs are tuned to 
satisfy (3) and (4) for the local nominal and worst 
plant parameters. The robustness curves – the left-
hand functions in (3) and (4), which should be 
below 1 for all significant frequencies 
ωi=(0.1÷10)*2π/To

iav, are shown for LIMC1 in 
Fig.6. The computed values for λi are given in 
Table 1. 

The denormalisation factor at the output of the 
fuzzy unit, which serves also as an integrator gain, 
is tuned empirically to Ka =3. 

 
 

4.2 System simulation and performance 
assessment 
The designed FIMC-PDC system is studied by 
simulation in MATLABTM [18]. The system 
Simulink model is shown in Fig.7. Its performance 
is assessed in comparison to a control system with 
ordinary linear PI controller with PID block instead 
of the FIMC- PDC. 

The PI controller is tuned for the worst plant 
from the three average plants to ensure a good 
tradeoff between minimal overshoot and minimal 
settling time using empiric-tuning method [6, 16]: 

 
                 Kpo=0.6Tmin/(Kmax τmax)=0.0036 
                 Tio=0.9Tmin=5.4 min.  
 
The plant model is the TSK model, given in 

Fig.8, which is built to reproduce the step responses 
of the nominal plant in Fig.4. It consists of a delay 
block of three units with the different sub-domains 
time delays to provide the necessary inputs u(t-τmi), 
i=1÷3, to the fuzzy unit. The fuzzy unit has five not 
normalized inputs - u(t-τo

mi), yr(t) and y(t), one 
output )(ty&  and the following rules: 

 
Ri: IF u1(t-τo

m1) is Li1 AND u2(t-τo
m2) is Li2  

AND u3(t-τo
m3) is Li3 AND yr(t) is Li4 AND y(t) is Li5  

THEN )()./1()()./()( i
o
mimii

o
mi

o
mii tyTtuTKty −τ−=& , (11) 

 
where Lik, k=1÷5 are the linguistic values for the 
inputs, defined as MFs of fuzzy sets.  

The local models parameters are: 
 
               τo

m=[14 10 8], min, 
              Ko

m/To
m=[10, 4, 6] and  

                1/To
m=[-0.125, –0.17, –0.5].  

 
An integrator after the fuzzy unit computes the 

final plant output y(t). 
Then a TSK perturbed plant model is also 

developed that differs from the nominal only in the 
parameters: 

 
               τv

m=[22 18 16], min, 
              Kv

m/Tv
m=[12, 6, 5] and 

                1/Tv
m=[-0.1, –0.05, –0.1]. 

 
The step responses of the FIMC-PDC system and 

the PI control system are shown in Fig.9.  
The simulation is carried out with nominal and 

perturbed plant in order to assess robustness. The 
reference changes ensure operation in different 
operation points, where the plant has different 
parameters. The main performance indices – 
settling time ts, min, overshoot σ, % and maximal 
deviation between systems outputs of systems with 
nominal and perturbed plants |∆ymax|, oC, as a 
measure for robustness, are given in Table 2.  

The comparison shows that the FIMC-PDC 
system shows better robustness, as the responses 
with the perturbed and with the nominal plant are 
close. The FIMC-PDC system has also shorter 
settling time for the low references and no or 
smaller (for perturbed plant) overshoots in the 
whole range of operation. The PI control system 
becomes critically stable with perturbed plant for 
low references. 

 
 

5 Conclusion 
The main contributions of this paper are the 
following.  

� A general, computationally simple and easy to 
implement method for the design of fuzzy PDC-
based internal model controllers is suggested. It 
ensures system stability and robustness in 
controlling nonlinear plants with time delay and 
model uncertainties avoiding the complexity of 
the existing methods.  
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Fig.7. Simulink model of a system with PDC-based FIMC 
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Fig.8. Simulink plant model 

 

Table 2. Comparison of performance indices of investigated systems 
 

Systems 
FIMC-PDC 
Nominal 

plant 

FIMC-PDC
Perturbed 

plant 

Robust-
ness 

estimate

PI 
Nominal 

plant 

PI 
Perturbed 

plant 

Robust-
ness 

estimate 
Reference 

oC 
ts 

min 

σ 
% 

ts 
min 

σ 
% 

|∆ymax|
oC 

ts 
min 

σ 
% 

ts 
min 

σ  
% 

|∆ymax| 
oC 

10 50 0 350 70 7 120 30 NA NA ∞ 

20 65 0 230 45 6 100 25 NA NA ∞ 

30 200 0 200 30 8 80 0 NA NA ∞ 

40 350 0 120 10 10 200 0 130 25 22 

50 100 0 110 0 12 100 0 110 20 15 
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a) FIMC-PDC control system 
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b) PI control system 
 

Fig.9. Step responses of systems with: a) FIMC-PDC and b) PI controller 
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The local controllers structure and parameters are 
determined from the nominal plant model. The 
only tuning parameter is computed to take the 
minimal possible value that satisfies the robust 
stability or robust performance criterion. These 
criteria are defined in the frequency domain, so are 
convenient to apply for plants with time delay. The 
minimal possible value ensures also fast transient 
response. 

� The application of the method is demonstrated for 
the design of FIMC-PDC of the air temperature in 
a laboratory furnace. The process is nonlinear with 
time delay and can be approximately described by 
a TSK model for three linearisation sub-domains. 

� The performance of the designed system is 
assessed via simulation in comparison with the 
performance of a well-tuned PI control system. 

� The FIMC-PDC system retains stability and 
remains robust at plant perturbations and also has 
reduced overshoot and settling time. The control 
action is smooth and economic.  

� Future work is envisaged in the real time 
application of the suggested method using 
MATLABTM facilities and industrial 
programmable logic controllers [19-24]. 
Comparison will be carried out with the design, 
tuning and implementation of PI/PID local 
controllers in PDC structure using the results in 
[15, 16]. 
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