
Mathematical models of epidemics in closed populations and their
visualization via web application PhaPl

IRINA ASTASHOVA
Lomonosov Moscow State University

Faculty of Mechanics and Mathematics
119991, GSP-1, Leninskiye Gory,

1, Moscow
RUSSIA

Plekhanov Russian University
of Economics

Faculty of Mathematical Economics,
Statistics and Informatics

117997, Stremyanny lane, 36, Moscow
RUSSIA

ast@diffiety.ac.ru

VICTORIA CHEBOTAEVA
Lomonosov Moscow State University

Faculty of Mechanics
and Mathematics

119991, GSP-1, Leninskiye Gory,
1, Moscow
RUSSIA

vickychebotaeva@gmail.com

ALEKSEY CHEREPANOV
Plekhanov Russian University

of Economics
Faculty of Mathematical

Economics, Statistics
and Informatics

117997, Stremyanny lane,
36, Moscow

RUSSIA
aleksey.4erepanov@gmail.com

Abstract: Mathematical modeling of the spread of epidemics is one of the main problems in mathematical biology.
In this paper, we will consider dynamical systems describing epidemics models, examine the stability of solution
to the system in the neighborhood of equilibrium points, and construct phase portraits for its special cases with the
help of PhaPl web application.
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1 Introduction
In 1927, Anderson McKendrick and William Kermak
published the first mathematical study on the issue of
epidemiology. Mathematically, the dynamics of the
epidemic process can be described by a system of dif-
ferential equations, and solutions of the system char-
acterize the dynamics of population changes in differ-
ent groups.

In its original form, the Kermak-McKendrick
theory divides an infected population into only two
classes: susceptible and recovered. Years later, it
was transformed into a susceptible-infected-recovered
model. In subsequent works by other authors, other
classes were introduced.

In this paper we consider two simple mathemati-
cal models of epidemics whose general case was con-
sidered in [1]. We discuss the problem of stability in
the epidemic process in closed populations and pro-
vide visualization via PhaPl [2].

PhaPl is a software to study and plot phase por-
traits of autonomous systems of two differential equa-
tions on a plane. It automates all steps of the so-
lution process: it finds equilibrium points, linearizes
the system at each equilibrium point, finds eigenval-
ues and determines stability. It is easy to use and

suitable for students and researchers. It has been de-
ployed for teaching purposes at Moscow State Univer-
sity of Economics, Statistics, and Informatics (MESI),
Lomonosov Moscow State University (MSU) since
2013, and in Plekhanov Russian University of Eco-
nomics since 2016. Results were described in [3].

The new version of PhaPl was produced as a web
application[2] with all computations performed on the
client side. So it is easy to host PhaPl on almost any
web server. And it is possible to download a local
copy to use PhaPl offline. To provide these proper-
ties, a full stack of technologies in PhaPl was replaced
by better options: SymPy is used to perform analyti-
cal research, MathJax is used for beautiful formulas,
PyPy.js is used to run SymPy inside a web browser.
PhaPl should work well in all web browsers with sup-
port for the canvas element of HTML5, thus covering
desktop and mobile users. New technologies allowed
the significant reduction of size of PhaPl. All com-
ponents and PhaPl itself are Free and Open Source
Software.

SymPy (cf. [4]) is a library for symbolic com-
putations comparable to advanced computer algebra
systems. It allows PhaPl to perform analytical cal-
culations without applying numerical methods, while
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the Euler method is used to plot phase portraits only.
Nevertheless, PhaPl cannot guarantee a perfect solu-
tion, so a researcher should check the correctness of
obtained results.

PhaPl chooses multiple random initial conditions
to plot representative phase trajectories automatically.
When the mouse pointer hovers a phase portrait in the
user interface, an additional temporary trajectory is
plotted using the position of the pointer as the ini-
tial condition. PhaPl allows one to study a system
with given constant coefficients quickly, which might
be helpful during research. Systems with parameters
are not supported yet. PhaPl provides information not
available in any other computer system to plot phase
portraits: on phase portraits dedicated to a single equi-
librium point, different colors are used for forthcom-
ing and recessive parts of phase trajectories in relation
to the equilibrium point.

All figures with phase portraits in this paper were
obtained via PhaPl. Violet shows parts of phase tra-
jectories where the trajectories go closer to the equi-
librium point. Green marks the movement outwards
from the equilibrium point. Light blue is used for the
eigenvectors. Red triangles point to the equilibrium
points. Respective equilibrium points may be out of
sight, so there may be odd number of triangles. Red
circles emphasize the equilibrium points within sight.
Black triangles mark the axes when 0 is within sight.
The axes are shown in violet, also there is grey grid
for integer values. There may be one temporary tra-
jectory shown in red and blue. Red is used for the part
where time proceeds forward in relation to the initial
condition. Blue is for the part of the temporary tra-
jectory where time goes in reverse in relation to the
initial condition.

In this paper, phase portraits are used to illustrate
behaviour of trajectories of a system on a plane. For
2D system, the phase portrait shows trajectories of the
system itself. It is said “plane (X,Y )” about a figure
to tell that OX is the horizontal axis and OY is the
vertical axis. For 3D system, a set of phase portraits
is constructed relying on additional restrictions: we
show special cases of the SEIRS model when one of
the variables is a constant.

2 The SIRS model

We consider a model of epidemics in a population
where individuals can only have one of the following
three states: S (susceptible) is the number of healthy
individuals that are susceptible to infection, I (infec-
tion) is the number of infected individuals and R (re-
cover) is the number of recovered individuals who re-
ceived immunity or died (cf. [5]).

This model is suitable only for a closed popula-
tion. It is also called a box model: each individual
belongs only in one “box”: healthy, infected or recov-
ered. From being healthy you can only go to infected,
from infected only to sick/die and then you can again
go to susceptible: S → I → R→ S.

A simpler version of such a model (S → I → R)
is described in [6].

N is the number of individuals in the population,
β is the parameter controlling how often a susceptible-
infected contact results in a new exposure, γ1 is the
rate at which an infected individual recovers, γ2 is the
rate at which an recovered individual becomes suscep-
tible.

This model is described by the following system
of differential equations:

Ṡ = −βSI + γ2R,

İ = βSI − γ1I,
Ṙ = γ1I − γ2R.

Since S + I + R = N , we obtain the following
system of equations:{

Ṡ = −βSI + γ2(N − S − I),
İ = βSI − γ1I.

This system has two equilibrium points: M1 =

(N, 0) and M2 =
(
γ1
β ,

βγ2N−γ1γ2
β(γ1+γ2)

)
.

The first equilibrium point M1 describes the situ-
ation in which there are no infected or recovered indi-
viduals.

We find the eigenvalues corresponding to this
equilibrium point λ1 = βN − γ1;λ2 = −γ2. Since
β, γ1,2, N are positive, λ2 is negative. If βN−γ1 > 0,
than this equilibrium point is a saddle, otherwise, if
βN − γ1 <, 0 it is a stable node.

Now consider the second equilibrium point M2.
The corresponding eigenvalues are:

λ1,2 =
1

2(γ1 + γ2)
·
(
− βγ2N − γ22

±
(
β2γ22N

2

+
(
−2βγ32 − 8βγ1γ

2
2 − 4βγ21γ2

)
N

+ γ42 + 4γ1γ
3
2 + 8γ21γ

2
2 + 4γ31γ2

) 1
2

)
.

Since the real parts of both eigenvalues are nega-
tive, our equilibrium point is stable. Note that βN −
γ1 > 0, otherwise the equilibrium point would lie out-
side the part of the plane considered by us, since S and
I are positive. Two different cases are possible here.
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1. If the radicand is positive, then M2 is a node.
To give an example, we consider the case β = 0.1,
γ1 = 5, γ2 = 2 and construct a phase portrait in the
neighborhood of the equilibrium point (see figure 1).

Figure 1: Example of stable node in SIRS model (the
plane (S, I))

2. If the radicand is negative, then M2 is a fo-
cus. As an example, we consider the case β = 0.01,
γ1 = 5, γ2 = 2 and construct a phase portrait in the
neighborhood of the equilibrium point (see figure 2).

Figure 2: Example of stable focus in SIRS model (the
plane (S, I))

3 The SEIRS model

It should be mentioned that many diseases have an in-
cubation period, which means that sick individuals be-
come infected only after some time. To describe this
phenomenon we introduce an additional class E (ex-
posed).

We introduce the infectivity function A(τ). It
contains the information about the infectivity of an in-
dividual that was infected τ units of time ago. For ex-
ample, if we assume that the probability of infection
by contact is p, the average number of contacts per
unit of time is c, and the individual is contagious at
intervals of time from τ1 to τ2, then

A(τ) =

{
cp if τ1 ≤ τ ≤ τ2,
0 otherwise.

We denote the number of new cases at time t by
i(t). Obviously, the equality i(t) = −Ṡ holds. Using
Formula (6.2), [6], p.158, we describe i as

i(t) =
S(t)

N

∞∫
0

A(τ)i(t− τ)dτ.

The integral on the right hand side of the equa-
tion describes the average number of contacts that are
leading to the transmission of infection at the time t.
The contacts are random, so only S(t)

N of them are with
individuals that are healthy at the time t. We rewrite
the equation in other terms:

Ṡ(t) =
S(t)

N

∞∫
0

A(τ)Ṡ(t− τ)dτ,

where N is the number of individuals in the pop-
ulation, β is the parameter controlling how often a
susceptible-infected contact results in a new exposure,
γ1 is the rate at which an infected individual recov-
ers, γ2 is the rate at which an recovered individual be-
comes susceptible, θ is the rate at which an exposed
person becomes infected,

A(τ) = βN
θ(γ1 + γ2)

γ1 + γ2 − θ

(
e−θτ − e−γ1τ − e−γ2τ

)
.

Then the class E is calculated as

E(t) = − 1

β

∞∫
0

A(τ)Ṡ(t− τ)dτ.

We change the limits of integration:

E(t) = − 1

β

t∫
−∞

A(t− τ)Ṡ(τ)dτ.
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We differentiate both sides of the equality:

d

dt
E(t) = − d

dt

1

β

t∫
−∞

A(t− τ)Ṡ(τ)dτ

= − d

dt

1

β

t∫
−∞

βN
θ(γ1 + γ2)

γ1 + γ2 − θ

·
(
e−θ(t−τ) − e−γ1(t−τ) − e−γ2(t−τ)

)
· Ṡ(τ)dτ

= − 1

β
A(0)Ṡ − 0 +

t∫
−∞

N
θ(γ1 + γ2)

γ1 + γ2 − θ

·
(
−θe−θ(t−τ) + γ1e

−γ1(t−τ) + γ2e
−γ2(t−τ)

)
· Ṡ(τ)dτ

= − 1

β
A(0)Ṡ +

t∫
−∞

N
θ(γ1 + γ2)

γ1 + γ2 − θ
Ṡ(τ)

· d
(
e−θ(t−τ) − e−γ1(t−τ) − e−γ2(t−τ)

)
= − 1

β
A(0)Ṡ +

(
N
θ(γ1 + γ2)

γ1 + γ2 − θ
Ṡ(τ)

·
(
e−θ(t−τ) − e−γ1(t−τ) − e−γ2(t−τ)

))∣∣∣∣∞
t

+

t∫
−∞

N
θ(γ1 + γ2)

γ1 + γ2 − θ

·
(
e−θ(t−τ) − e−γ1(t−τ) − e−γ2(t−τ)

)
dṠ(τ).

Thus, we obtain the following equation:

d

dt
E(t) = βSI − θE.

Consequently:
Ṡ = −βSI + γ2R,

Ė = βSI − θE,
İ = θE − γ1I,
Ṙ = γ1I − γ2R.

Since S+E+I+R = N , we obtain the following
system of equations:

Ṡ = −βSI + γ2R,

İ = θ(N − S − I −R)− γ1I,
Ṙ = γ1I − γ2R.

Equilibrium points of the system are the follow-
ing:

1. M1 = (N, 0, 0),

2. M2 = (γ1β ,
γ2θ(Nβ−γ1)

β(γ1θ+γ1γ2+γ2θ)
, γ1θ(Nβ−γ1)
β(γ1θ+γ1γ2+γ2θ)

).

As we have mentioned before, the first point M1 de-
scribes the situation where there are no infected or re-
covered individuals.

We can reduce the system by the following sub-
stitutions: 

S1 = AS,

I1 = BI,

R1 = CR.

Since all functions are functions of t, we may in-
troduce one more substitution: t1 = Tt.



1

T
AṠ1 = −βABS1I1 + γ2CR1,

1

T
Bİ1 = θ(N −AS1 −BI1 − CR1)− γ1BI1,

1

T
CṘ1 = γ1BI1 − γ2CR1.

We move T to the right hand side:


Ṡ1 = −βBTS1I1 +

γ2CT

A
R1,

İ1 =
θNT

B
− θAT

B
S1 − θTI1 −

θCT

B
R1 − γ1BI1,

Ṙ1 =
γ1BT

C
I1 − γ2TR1.

We perform the following change of variables:

γ1 = 1 +
B

A
,

γ2 =
A

CT
,

θ =
B

AT
,

β =
1

BT
.

Thus, we obtain the following system:
Ṡ1 = −S1I1 +R1,

İ1 =
N

C
− A

C
S1 − I1 −R1,

Ṙ1 = I1 −
A

C
R1.
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Figure 3: The evolution of the epidemic: the number
of individuals of each class in time

We again reduce the system by the following sub-
stitutions: 

S2 = S1 −
C

A
,

I2 = I1 −
(N − C)A
(C +A)C

,

R2 = R1 −
N − C
C +A

,

N = C + 2A.

Then the system looks as follows:
Ṡ2 = −

A

C
S2 −

C

A
I2 − S2I2 +R2,

İ2 = −S2 − I2 −R2,

Ṙ2 = I2 −
A

C
R2.

Hence, the linearization matrix of the au-
tonomous system is as follows:

J =

−A
C −C

A 1
−1 −1 −1
0 1 −A

C

 .

Now we calculate the characteristic polynomial:∣∣∣∣∣∣
−A
C − λ −C

A 1
−1 −1− λ −1
0 1 −A

C − λ

∣∣∣∣∣∣ = 0.

So we have the following equation for eigenval-

ues:

λ3 + λ2
(
1 +

2A

C

)
+ λ

(
1 +

A2

C2
+

2A

C

)
+

(
A2

C2
+
A

C
− 2

)
= 0.

We use the Lyapunov theorem on stability by the
first approximation:

If all the eigenvalues λi of the Jacobian J have
negative real parts, then the zero solution of the ini-
tial system and the linearized system is asymptotically
stable.

To find conditions which guarantee the negativ-
ity of the real parts of all eigenvalues of the resulting
system, we use the Routh-Hurwitz criterion:

1 +
2A

C
> 0,

1 +
A2

C2
+

2A

C
> 0,

A2

C2
+
A

C
− 2 > 0,∣∣∣∣1 + 2A

C + γ2 1
A2

C2 + A
C − 2 1 + A2

C2 + 2A
C

∣∣∣∣ > 0.

As A > 0 and C > 0, we have to consider only
the third condition:

A2

C2
+
A

C
− 2 > 0.

That is (A− C)(A+ 2C) > 0. As A+ 2C > 0,
the condition is the following:

A− C > 0,

where

A = −1 +

√
β2(1 + γ1)2

γ2
+N,

C =
A2β(1 + γ1)

γ2
.

This gives us the following result.

Theorem 1 If A > C holds, then in the SEIRS
model there exists an asymptotically stable equilib-
rium point.

Now we show an example of such a point forN =
1000, β = 1

100 , γ1 = 5, γ2 = 3, θ = 2, S(0) = 999,
I(0) = 1.

Figure 3 shows the evolution of the epidemic over
a period of time t.
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Figure 4: Saddle on the plane (S, I) with R = const

Figure 5: Stable focus on the plane (S,R) with I =
const

To visualize the behavior of functions, we con-
struct phase portraits for particular cases in which one
of the functions (S, I or R) is a constant.

1. The plane (S, I) with R = const (Ṙ = 0) is
shown on figure 4.

2. The plane (S,R) with I = const (İ = 0) is
shown on figure 5.

3. The plane (R, I) with S = const (Ṡ = 0) is
shown on figure 6.

If A < C then we have the following options.

Figure 6: Stable focus on the plane (S,R) with I =
const

Figure 7: Stable node on the plane (S, I) with R =
const and A < C

1. If λ1 > 0, λ2,3 = x ± iy, x > 0, where
λ1, x, y ∈ R, then the equilibrium point is an unstable
node-focus.

Figure 7 shows a sample phase portrait on the
plane (S, I) with Ṙ = 0 in the neighborhood of the
equilibrium point.

Figure 8 shows a sample phase portrait on the
plane (S,R) with İ = 0 in the neighborhood of the
equilibrium point.
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Figure 8: Stable focus on the plane (S,R) with I =
const and A < C

Figure 9: Stable focus on the plane (R, I) with S =
const and A < C

Figure 9 shows a sample phase portrait on the
plane (R, I) with Ṡ = 0 in the neighborhood of the
equilibrium point.

2. If λ1 < 0, λ2,3 = x ± iy, x < 0, where
λ1, x, y ∈ R, then the equilibrium point is an unstable
node-focus.

3. If λ1 < 0, λ2,3 = ±iy, where λ1, y ∈ R, then
the equilibrium point is an unstable node-center.

4. If λ1 < 0, λ2,3 > 0, then the equilibrium point

is an unstable saddle-node.
We have no other options because of constraints

on A and C.

4 Conclusion
In this paper we have deduced the condition for a sta-
ble solution in two models of the epidemic. We found
the line of change in stability for instability βN = γ1
in the model SIRS andA = C in the model SEIRS.
This shows that in diseases there are parameters that
we can influence, so that the epidemic does not turn
into a cycle. The general case of these models were
described in [1]. However, we were able to add a vi-
sual representation of the trajectories in the neighbor-
hood of the equilibrium points of the system.

The models considered are fairly simple, they do
not take into account neither mortality nor fertility. In
subsequent works, we plan to consider the effect of
vaccination, extend the model to an non-closed popu-
lation and look at the simultaneous course of two dif-
ferent diseases in one group.
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