**AUTHORS:**Darina Jasikova, Michal Kotek, Simona Fialova, Vaclav Kopecky

**Download as PDF**

**ABSTRACT:**
The branch of fluid mechanics is also familiar with biomechanics recently. The combination of hydrodynamic and mechanical specification of the flow can reach the complex description of the liquid flow in the hydraulic system. The hydraulic system can represent the airways and ventilation system, and external blood circulation. An important role in the study of hemo-transport has its interaction with walls. Contribution of fluid mechanics can imagine the equivalent of flow in arteries as the pipe flow, hence the Poiseuille's flow, with appropriate viscoelasticity and wettability against Newtonian liquids. The initial condition is the flexible wall and hydrophobic surface of the model. The simplification of the system leads to primary setup focused in one direction. It is the hydrophobic surface in our case. Here we present the study based on four various set of samples. We worked with hydrophobic surfaces, with contact angle (CA) above 90°, and with ultra – hydrophobic surfaces with CA above 120°. Increasing the contact angle leads from bubbles conglomeration to uniform air film. The existence of symmetrical air film close to hydrophobic surface has an effect on the character of the velocity profile and its boundary slip condition. The resulting velocity profiles give us information of velocity disturbance close to the wall and contribution of vorticities in the flow.

**KEYWORDS:**
hydrophobic surface, particle image velocimetry, boundary condition, slip effect, pipe flow

**REFERENCES:**

[1] T. Hayat, F. M Abbasi, B. Ahmad, A. Alsaedi, Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects, Plos One 9 (4), 2014.

[2] P. Crosetto, P. Reymond, S. Deparis, Kontaxakis, N. Stergiopulos, A. Quarteroni, Fluid–structure interaction simulation of aortic blood flow, Comp&Fluids 43, 2013, pp. 46-57.

[3] J. Janela, A. Moura, A. Sequeira, A 3D nonNewtonian fluid–structure interaction model for blood flow in arteries, J Comp App Marth 234, 2010, pp. 2783-2791.

[4] D. Tang, Z. J. Yang, P. K. Woodard, G. A. Sicard, J. E. Saffliz, C. Yuan, 3D MRI-based multicomponent FSI models for atherosclerotic plaques, Ann Biomed Eng. 32, 2004, pp. 947- 960. 0 0,2 0,4 0,6 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1 Umax/Uy y/W Re 13000 Ceramic Surface Steel 0 0,2 0,4 0,6 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1 Umax/Uy y/W Re 13000 Ceramic Surface + UH Steel +UH

[5] H. Schlichting, K. Gersten, Boundary Layer Theory, Springer, Berlin 2000.

[6] A. J. M. Spencer, Constitutive theory for strongly anisotropic solids. Continuum Theory of the Mech of FibreReinf Compos, Springer Verlag: Vienna, Austria, 1984.

[7] B. Schmandt, H. Herwig, Loss Coefficients for Periodically Unsteady Flows in Conduit Components: Illustrated for Laminar Flow in a Circular Duct and a 90 Degree Bend., J.Fluids Eng 135(3), 2013, pp. 031204/1-031204/9.

[8] M. Campolo, M. Simeoni, R. Lapasin, A. Soldati, Turbulent Drag Reduction by Biopolymers in Large Scale Pipes, J. Fluids Eng 137(4), 2015, pp. 041102/1-041102/10.

[9] H. Stel, A. T. Franco, S. L. M. Junqueira, R. H. Erthal, R. Mendes, M. A. L. Gonçalves, R. E. M. Morales: Turbulent Flow in D-Type Corrugated Pipes: Flow Pattern and Friction Factor, J. Fluids Eng 134(12), 2012 pp. 121202/1- 121202/9.

[10] W. T. Wu, N. Aubry, M. Massoudi, J. Kim, James F. Antaki, A numericalstudy of blood flow using mixture theory. International Journal of Engineering Science 76, 2014, pp. 56–72.

[11] M. Massoudia, J. Kimb, J. F. Antakib, Modeling and numerical simulation ofblood flow using the theory of interacting continua, International Journal of Nonlinear Mechanics 47 (5), 2012, pp. 506–520.

[12] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions. New York: Academic Press; 1994.

[13] J. Jung, A. Hassanein, R. W Lyczkowski, Hemodynamic computation using multiphase flowdynamics in a right coronary artery, Ann Biomed Eng 34, 2006, pp.393–407.

[14] F. E. R. Corredor, M. Bizhani, E. Kuru, Experimental investigation of drag reducing fluid flow in annular geometry using particle image velocimetry technique, Journal of Fluids Engineering 137 (8), 2015, pp. 1070-1078.

[15] H. Ozohul, P. Jay, A. Magnin, Slipping of a viscoplastic fluid flowing on a circular cylinder, J. of Fluids Engineering 137(7), 2015.

[16] K. J. Hammad, The Flow Behavior of a biofluid in a separated and reattached flow region, J. of Fluids Engineering 137(6), 2015.

[17] P. Skacel, J. Bursa, Comparison of constitutive models of arterial layers with distributed collagen fibre orientation, Acta of Bioengineering and Biomechanics 16 (3), 2014.

[18] P. Skacel, J. Bursa, Poisson´s ratio of arterial wall – inconsistency of constitutive models with experimental data, Journal of the Mechanical Behavior of Biomedical Materials. 54, 2016, pp. 316-327.

[19] S. Polzer, T. C. Gasser, K. Novak, V., Man, M. Tichy, P. Skacel, J. Bursa, Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue, Acta Biomaterialia 14, 2015, pp. 133-145.

[20] S. Polzer, T. C. Gasser, J. Swedenborg, J. Bursa, The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms, Eur J Vasc Endovasc Surg, 41, 2011, pp. 467-473.

[21] S. Polzer, J. Bursa, T. C. Gasser, R. Staffa, R. Vlachovsky, A numerical implementation to predict residual strains from homogenous stress hypothesis with application to abdominal aortic aneurysms, Ann Biomed Eng. 41, 2013, pp. 1516-1527.

[22] S. Polzer, T. C. Gasser, C. Forsell, H. Druckmüllerova, M. Tichy, R. Staffa, R. Vlacovsky, J. Bursa, Automatic Identification and Validation of Planar Collagen Organization in the Aorta Wall with Application to Abdominal Aortic Aneurysm, Microsc Microanal 19, 2013, pp. 1395-1404.

[23] S. Fialová, M. Hudec, F. Pochylý, et al., Experimental Verification of the Use of Ultra Hydrophobic Materials for, Water Aeration, Internationa Journal of Advancements in Technology 6 (2), 2015, pp. 1000141-1000147

[24] S. Fialova, F. Pochyly, Identification and experimental verification of the adhesive coefficient of Hydrophobic Materials, Wasserwirtschaft 1, 2015, pp.125-129.

[25] F. Pochyly, H. Krausova, S. Fialova, Application of the Shannon – Kotelnik theorem on the vortex structures identification, Earth and Environmental Science.IOP Conference Series: Earth and Environmental Science. Montreal: IOP Publishing, 2014, pp. 1-11.

[26] F. Pochyly, E. Malenovsky, L. Pohanka, New approach for solving the fluid-structure interaction eigenvalue problem by modal analysis and the calculation of steady-state or unsteady responses, J. of Fluids and Structures 37, 2013, pp. 171-184

[27] E. E. Meyer, Recent progress in understanding hydrophobic interactions, PNAS 103, 2006, pp. 15739-15746

[28] C. Tropea, A. L. Yarin, J. F. Foss, Handbook of Experimental Fluid Mechanics, SpringerVerlag Berlin Heidelberg, 2007.

[29] N. I. Kolev, Multiphase Flow Dynamics 3, Springer-Verlag Berlin Heidelberg, 2007.