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Abstract: We show that modified Wigner projector technique and generalized Bloch theorem approach yield max-
imally efficient diagonalization of the Hamiltonian of the large symmetrical systems. For the sake of illustration,
we perform a case study of the simplified DNA molecule model and solve the energy eigenproblem analytically
by using the unit symmetry cell (symcell) and the corresponding low-dimensional subspaces only. Relevant dy-
namical parameters are automatically obtained, enabling direct interpretation of the result. Effectiveness of the
procedure is based on the two key points: (1) replacing infinite sums over the group elements by modified group
projectors which are inherently determined by the group generators only; (2) reducing the dynamics of the system
(from the infinite dimensional state space) to the low-dimensional symcell subspace, taking the benefit from the
induced structure of the state space. Unlike the original Wigner projectors, the modified group projector technique
is directly numerically applicable.

Key–Words: Deoxyribonucleic Acid (DNA), Symmetry, Wigner Group Projectors, Modified Group Projector Tech-
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1 Introduction
Symmetry, being one of the fundamental concepts in
nature, plays a crucial role in science and technology.
In the fields of quantum chemistry and biophysics,
in particular, the ubiquitous application of symmetry
is in diagonalization of the Hamiltoinan, via reduc-
ing the dimension of its eigenproblem and getting the
eigenstates (the so called symmetry adapted basis) and
the corresponding eigenenergies labeled by the con-
served quantum numbers, which are suitable for the
analysis and interpretation of the properties of the sys-
tem, and for the further calculations of the more com-
plex processes (optical absorption, Raman scattering,
thermal transport, electric conductivity etc.)

The usual procedure of the determination of
the symmetry adapted basis of a Hamiltonian in-
clude Wigner projectors and Wigner transfer oper-
ators [1], which are the sums (over the symmetry
group elements) of the operators acting in the state
space. However, both the dimension of the state
space and the number of the symmetry transforma-
tions are in many scientifically interesting systems,
macromolecules e.g., too large (or even infinite), even
in the simplest approximations, making obstacles for

the direct diagonalization or application of the stan-
dard Wigner projector technique. However, instead
of the standard unit cell, the full symmetry unit cell
(symcell) can be used, as the latter is the minimal part
of the system from which the whole system can be
built by the group action.

The Bloch theorem [4] shows that the transla-
tional symmetry of the crystals enables to reduce the
calculations to the elementary cell only. Its gener-
alization [2] to the arbitrary (nonabelian) group jus-
tifies heuristic (but intuitively clearly founded) as-
sumption that the symmetry and symmcell determine
the properties of the entire system. This can be re-
alized by means of the modified Wigner operators,
which for Hamiltonian eigenproblem of the whole
system provide its isomorphic image in the symcell
state space (of finite dimension in standard model).
Further, the relevant observable, expanded over the ir-
reducible tensor components, obtain its counterpart in
the symmcell space. Apart from the much lower di-
mensionality the reduction of the problem is substan-
tial as now only the transformations leaving symmcell
invariant are to be considered.

Many important biomolecules are quasi-one-
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dimensional, with large symmetry (at least approx-
imately), which rarely reduces to translations only,
since symmetry of the quasi-one-dimensional struc-
tures is not subjected to the crystallographic restric-
tions. Hence, the line groups [3] describe the sym-
metry of these molecules. In a combination with the
modified group projector technique, the line groups
offer the theoretically maximally efficient framework
for investigations of such systems. The method is
quite general, approaching the standard models of
ionic, electronic and spin dynamics in unified manner;
this also includes the relaxation techniques of struc-
tural optimization, where minimal independent set of
parameters is singled out.

2 Generalized Bloch Theorem
Within the quantum theory, syntagma system with the
symmetry connotes: the state space S of the system,
symmetry group G along with the Hamiltonian H of
the system and the group representation D(G) (ho-
momorphic image of G) acting in the state space. Re-
flecting particular problem under the consideration,
state space is an (in)finite-dimensional Hilbert space,
Hamiltonian is a Hermitian operator determining evo-
lution of the system, and representation of the group
is a set of unitary operators.

Though the (modified) Wigner projector method
is applicable to any type of symmetry groups (includ-
ing Lie groups), here we consider only the groups
relevant for quantum chemistry of (bio)molecules
and (bio)polymers. Besides point groups, for com-
plex highly symmetric structures (in particular poly-
mers with or without translational periodicity) this
includes line groups (LGs) [3]. These are the sub-
groups of the Euclidean group E(3) of geometrical
transformation in R3, in Koster-Seitz notation given
as g = ( A | v ), where A is element of the or-
thogonal group O(3) and v is a vector in R3, map-
ping arbitrary point r into ( A | v )r = Ar + v;
notation is extended to sets R = {r1, r2, . . . } as
(A |v )R = {(A |v )r1, (A |v )r2, . . . }. Thus, in pro-
totypical Lebesgue state space L(R3) the symmetry
transformations act by the coordinate representation:
D(g)f(r) = f(g−1r).

Invariance of the system under the symmetry
transformations in the quantum formalism reads as
commutation of the (represented) symmetries with the
Hamiltonian of the system:

[H,D(g)] = 0, ∀g ∈ G. (1)

As unitary, representation D(G) is decomposed
onto the orthogonal sum of its (unitary) irreducible

components each appearing fµ (frequency numbers)
times:

D(G) = ⊕C
µ=1f

µD(µ)(G); (2)

this accompanies orthogonal decomposition S =
⊕µSµ of the state space onto the isotypic spaces, each
being orthogonal sum, Sµ = ⊕fµ

t=1 S
(µ)
tµ of fµ repli-

cas of irreducible subspaces S(µ) (of the dimension
|µ|). Joining the subbases {|µtµm⟩ |m = 1, . . . , |µ|}
(multiplets) of all S(µ)

tµ , the standard [1] or symmetry
adapted basis (SAB) of S is built. Obviously,

D(g) |µtµm⟩ =
∑
m′

D
(µ)
m′m(g) |µtµm′⟩, (3)

and in this basis D(G) is block-diagonal, with blocks
being the matrices of the irreducible representations
D(µ)(G).

Decomposition S = ⊕ESE of the state space
onto the eigensubspaces of H (energies E are its
eigenvalues), due to (1) means that S(µ)

tµ are subspaces
of SE , i.e. that there is stationary symmetry adapted
basis (SSAB) (3) composed of the Hamiltonian eigen-
vectors:

H |µtµm⟩ = Eµtµ |µtµm⟩. (4)

Note that in this way energies are assigned by the
quantum numbers inferred by the irreducible trans-
formation laws of the symmetry group. It remains
to represent Hamiltonian in the SAB. In the simple
case of the Abelian translational group, this reduces
to the Fourier transform of H (Bloch theorem), since
irreducible representations are one-dimensional and
SSAB consists of the Bloch functions. Generaliza-
tion, modified group projector technique [2], is we
briefly review in the rest of the section.

In order to find a part of SAB corresponding
to irreducible representation D(µ)(G), a conjugated
(dual) irreducible representation D(µ∗)(G) is used:
the auxiliary composite space Aµ = S ⊗ H(µ∗)

({|µ∗m⟩ |m = 1, . . . , |µ|} is the basis of the latter) is
equipped with the representation

Γµ(G) = D(G)⊗D(µ∗)(G). (5)

Each vector | x ⟩ fixed by this representation (i.e.
Γµ(g) | x⟩ =| x⟩, ∀g ∈ G) is correlated: it is com-
posed of the vectors from S entangled to those from
H(µ∗) in the way that the group actionD(G) in S can-
cels with the (irreducible) action in H(µ∗). Therefore,
the S-factors are from Sµ. Clearly, all the fixed points
form the subspace Fµ of Aµ, being the range of the
modified projector

G(Γµ) =
1

|G|
∑
g∈G

D(g)⊗D(µ∗)(g). (6)
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Dimension of this space is trace of G(Γµ), and char-
acter theory shows that this equals the frequency num-
ber fµ of (2). Thus, arbitrary orthonormal basis in Fµ

can be denoted as {| µtµ⟩ | tµ = 1, . . . , fµ}. How-
ever, the partial scalar product with the basis vectors
in H(µ∗) yields the entangled SAB vectors in S:

|µtµm⟩ = ⟨µ∗m | µtµ ⟩, m = 1, . . . , |µ|. (7)

As this shows that choice of basis in Fµ is biu-
niquely related to the choice of SAB |µtµm⟩ in Sµ, it
remains to find |µtµ⟩ corresponding to SSAB. To this
end we define operatorHµ = H⊗1µ in Aµ. Namely,
this is a unique extension of H in Aµ, not affecting
the eigenenergies (reflecting the physics) by the (triv-
ial) action in the artificial space H(µ∗). Clearly, (1)
implies that Hµ commutes with Γµ(G). Finally, it is
straightforward to prove that |µtµ⟩ are eigenvectors of
Hµ from the range of G(Γµ),

Hµ |µtµ⟩ = Eµtµ |µtµ⟩, G(Γµ) |µtµ⟩ =|µtµ⟩, (8)

if and only if the resulting SAB vectors (7) are eigen-
vectors (4) of H for the same eigenvalues. Thus, as
the auxiliary HamiltonianHµ commutes with G(Γµ),
the eigenproblem of the restricted operator G(Γµ)Hµ

is to be solved in Aµ, and the obtained eigenvectors
are used as | µtµ⟩ in (7). Note that all the geomet-
rical groups have finite number of generators gi (i =
1, . . . ,K) and that each group element is an ordered
monomial over them: g = gα1...αK = gα1

1 · · · gαK
K .

Obviously, |x⟩ belongs to Fµ if and only if

Γµ(gi) |x⟩ =|x⟩, i = 1, . . . ,K. (9)

Therefore, this homogeneous linear system suffices to
find Fµ without summation over the group, which
resolves the difficulty in application of the standard
Wigner procedure [1] with infinite groups.

3 Tight-binding in Inductive Spaces
Another problem is typically infinite dimension of the
state space. In the standard dynamical models of the
symmetric infinite systems, it is resolved due to pos-
sibility to build S as a subspace of L(R3) which is
direct sum of the subspaces associated to the atoms.
Namely, the group action infers the decomposition of
the system atoms into the orbits: the set of the posi-
tions of the atoms is finite disjoint union R =

∪
P RP

of the orbits RP =
∪

g gr
P
0 . The orbit representa-

tives form symcell, R0 = {r10, r20, . . . }, the minimal
set of atoms sufficient to generate the whole system
by the group action. Each orbit representative defines
its stabilizer F P (subgroup of G fixing rP ). Rep-
resentatives zPp of the cosets of this subgroup suffice

to regain the whole orbit in the form rPp = zPp r
P
0 ;

they form transverzal ZP , and the action of G on the
atomic position is manifested as the ground action on
the transverzal: gzPp = zPgpf

P (g, p), where zPgp and
fP (g, p) are elements of the transverzal and stabilizer
uniquely determined by Lagrange theorem.

The tight-binding state space is modeled by tak-
ing for each atom rPp a finite dimensional space SP

p ,
with the basis |Pp;ψ⟩ (ψ = 1, . . . , |SP

p |); the symme-
try requires that it is same space for the atoms within
the same orbit. The state space becomes direct sum
S = ⊕PpSP

p (though it is not necessary for further re-
sults [2], in the following we assume that these atomic
spaces are mutually orthogonal). Its subspace is sym-
cell space S0 = ⊕PSP

0 .
In the basis | PP ;ψ⟩ the Hamiltonian is a ma-

trix H =
∑

PQpq E
Pp
Qq ⊗ hPp

Qq; here |R|-dimensional

matrices EPp
Qq have all zero elements except 1 in the

intersection of the row Pp with the column Qq, while
⟨Pp;ψ| H |Qq;ϕ⟩ are matrix elements of |SP

0 |×|SQ
0 |-

dimensional blocks hPp
Qq . Usually these essential part

of the dynamical model are estimated by various ap-
proximations (density-functional, Hartree-Fock, etc.).
Note that hQq

Pp = (hPp
Qq)

+, as Hamiltonian H is a Her-
mitian operator.

The representation D(G) is naturally derived
from the obvious requirement that D(zPp ) maps SP

0

into SP
p . This shows that each orbit space SP =

⊕pSP
p is invariant; also, SP

0 is invariant under the
stabilizer F P , and the action of F P in SP

0 de-
fines the interior representation δP (F P ). Altogether,
this means that the group action is the direct sum
D(G) = ⊕PD

P (g) of the orbit representations
DP (G), each of them being induced from δP (F P )

by the ground action EP,gp
Pp of the group on the corre-

sponding transverzal ZP :

DP (g) =
∑

EP,gp
Pp ⊗ δ(fP (g, p)). (10)

The commutation relation (1) implies

δP (fP (g, p))hPp
Qqδ

Q+
(fP (g, q)) = hP,gpQ,gq, (11)

imposing a number of constraints to the blocks hPp
Qq .

They are technically important to prove[2] the follow-
ing

Theorem 1 Let γPµ(F P ) = δP (F P )⊗D(µ)∗(F P ).
Operator Zµ =

∑
Pp

1√
|ZP |

EPp
P0 ⊗ 1δ ⊗ D(µ)∗(zPp )

is partial isometry from the symcell auxiliary space
Aµ

0 = S0⊗H(µ∗) into the range of ZµZµ+
in Aµ. The
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modified group and stabilizer projectors are linked as

Ẑµ†
G(Γµ)Ẑµ =

∑
P

EP0
P0 ⊗ F P (γPµ), (12)

while the operator Ẑµ†
G(Γµ)HẐµ is equal to

H↓
0µ =

∑
PQ

EP0
Q0 ⊗

√
|F P |
|FQ|

F P (γPµ)Hµ
PQ, (13)

Hµ
PQ =

∑
p

χPp
Q0 ⊗ dP (z̄Pp )h

Pp
Q0 ⊗D(µ∗)(z̄Pp ).

The block Hµ
PQ describes interaction of the whole or-

bit P with the orbit representative rQ0 ; hence, the sum
takes into account only the atoms from rPp within ra-
dius of interaction of rQ0 .

This finalizes the prescription: for each irre-
ducible representation the eigenproblem of H↓

0µ is to
be solved in the range of the projectors (12) (commut-
ing with H↓

0µ). As in the range of the partial isometry,
the eigenvalues coincide, while the eigenvectors are
related by Zµ. Hence, the whole problem is solved
in the finite dimensional symcell space, with help of
the stabilizer projectors. Besides the obvious techni-
cal advantages, the method can be used to find out the
independent intraction parameters, which is essential
in building relevant models for complex systems.

4 Symmetry of the DNA Model
Double helix of deoxyribonucleic acid (DNA)
molecule, the backbone, is formed of two helical
chains composed of alternating 5-carbon sugar (de-
oxyribose) and phosphate group, and the pairs of
bases, adenine (A), guanine (G), cytosine (C) and
thymine (T), inside of the double-helix, which are,
via glycosidic bonds, connected to the deoxyribose,
stabilizing the whole structure. As suggested by Wat-
son and Crick in 1953 [5], the most abundant type of
the DNA molecule in nature is of the B-helix form,
i.e right-handed with ten pairs of nucleotides per turn
and translational period of 3.4 nm. Such a molecule
is complex enough for precise numerical calculations,
and in order to illustrate the application of the sym-
metry, here we simplify the B-DNA molecule, con-
sidering the model which preserves the symmetry and
some of the basic structural properties.

As for the bases (adenine pairs with thymine, and
guanine pairs with cytosine), although their positions
follow the helical regularity, the sequence of the TA
and GC pairs is inherently irregular and represents the
most important property of the DNA molecule for its

biological function. Nevertheless, the bases are mu-
tually physically very similar (AT and GC pairs dif-
fer in mass and geometry up to 6%), and neither the
overall geometrical structure, nor many of the phys-
ical and chemical properties of DNA depend on the
specific code which the DNA sequence carries. Also,
the generic engineering as well as some natural pro-
cesses show that substitution of the one pair of the
bases by another is possible and does not influence the
global biochemical characteristics and primary func-
tion of the DNA in a living cell. Thus, insight into
the properties of DNA can be obtained considering
the model consisting of only one pair of bases, which
can be taken as the first approximation, improvement
of which would be consideration of the model of the
DNA molecule with a particular regular arrangements
of the both pairs of bases. Further improvement would
be taking a random average over a large set of differ-
ent DNA-models of the latter type. Finally, DNA is
in general very long molecule, allowing to be well ap-
proximated by the infinite structure generated by the
helical line group.

Figure 1: Model: interior and outer helices corre-
spond to basic and backbone units. The units at rPts
interacting with the symcell units are indicted as Pts
(e.g. the orbit representatives are A00 and B00).

Accordingly, the DNA model considered here
(Figure 1) has the symmetry of 5th line group family
L(5) = TQ(f)D2 and consists of two orbits: each ba-
sis is considered as a single unit A, while the other unit
B generates the backbone [6]. The group generators
are ℓ1 = (CQ |f ) (rotation for 2π/Q around z-axis is
followed by translation for f along it), ℓ2 = (Cn |0)
(rotation for 2π/n around z-axis), ℓ3 = (U |0) (rota-
tion for π around x-axis) and the group elements are
ℓtsu = ℓt1ℓ

s
2ℓ

u
3 , where t = 0,±1, . . . ; s = 0, . . . ,−1;

u = 0, 1. The double-helix structure (accompanied by
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the bases pairing) imposes n = 2, while the parameter
Q of the helical group can take different (continuously
many) values, allowing to accommodate to the vari-
ety of the structural forms of DNA. In a case of the
B-DNA helix, Q approximately equals ten (namely,
there are several close values reported [7]), i.e. in
a good approximation ten turns makes a single pure
translation (irrational value of Q defines incommen-
surate structure, lacking the translational periodicity).

The orbit representative units A and B, exhausting
the symcell, are taken to be along the x-axis: rP0 =
(xP , 0, 0) (P = A,B). Their stabilizers are FA =
FB = {e, U}; the both orbits (bases and backbone)
are generated by the same transversal ZA = ZB =
L(1) = TQ(f)C2, with elements ℓts = ℓts0 forming
a subgroup (from the first line grops family) of L(5).
Hence, the general position of the base and backbone
unit is rPts = ℓtsr

P
0 .

The choice of orbitals spanning the space SP
p

is arbitrary in this context, since the model is built
out of the units being not the atoms, but the radi-
cals. Therefore, the constraints are imposed by the
symmetry solely, through a requirement that the or-
bit representative interior spaces are invariant un-
der the action of the stabilizer, the only nontrivial
element of which is the rotation U . In the irre-
ducible representation of the weight l of the rota-
tional group the matrix of U in the standard basis
| l,m⟩ (m = l, . . . ,−l) is D(l)(U) = (−1)lo2l+1,
where on is n-dimensional off-diagonal unit matrix.
Obviously, one-dimensional invariant subspaces of
this matrix are V l

m+ = Span(| l,m⟩+ | l,−m⟩)
(m = 0, . . . , l), V l

m− = Span(| l,m⟩− | l,−m⟩)
(m = 1, . . . , l). In each of the subspaces V l

m±, repre-
sentation D(l)(U) is reduced to the one-dimensional
representation ±(−1)l. Hence, the invariance is pro-
vided by taking any subset of these subspaces. In
the simplest model, with single orbital per unit, it
can be taken for example | A; 10⟩ and | B; 10⟩ (pz
orbitals), corresponding to the alternating represen-
tations of F P (P = A,B), i.e. δP (e) = 1 and
δP (U) = −1.

There are two types of irreducible representations
of LGs [3] and to allow for the possible incommen-
surability, the more general, helical irreducible repre-
sentations are used [3]:

kA
Π
m(ℓtsu) = Πuei(kft+m 2π

n
s), (14)

k̃Em̃(ℓtsu) =
(

ei(k̃tf+m̃ 2π
n s) 0

0 e−i(k̃tf+m̃ 2π
n s)

)
( 0 1
1 0 )

u
,(15)

here, for one-dimensional irreducible representations
k = 0, πf with m = 0, n2 , Π = ±1, while for the two-

dimensional ones k̃ ∈ (0, πf ) is accompanied by m̃ ∈
(−n

2 ,
n
2 ] (except that m̃ is positive when k̃ = 0, π/f ).

5 DNA Model Dynamics
Very well justified nearest neighbor approximation is
applied. Namely, as long-range interaction between
the monomers of the DNA would induce a particu-
lar long range order in the DNA chain, preventing the
well known almost free interchange between the basic
pairs, the approximation used is perfectly natural. The
first neighbors (given in terms of the transverzal ele-
ments) of rA0 are NA = {rA10, rA−10, r

A
01, r

B
0 }, while

the neighbors of rB0 are NB = {rA0 , rB10, rA−10}.
According to the above theory, the relevant Hamil-
tonian blocks are one-dimensional, hP,tsQ0 , where for

each Q, the neighbors of rQ0 from the orbit P (in-
tersection of NQ and the P -th orbit) are counted by
indices t and s. The constraints (11) (commutativ-
ity of the Hamiltonian with the group elements), as
well as the fact that Hamiltonian is a Hermitean op-
erator, impose functional relations between interac-
tion parameters hP,tsQ0 : the action of ℓ−100 implies

hP,10P,00 = hP,00P,−10 = (hP,−10
P,00 )∗ and hB,00

A,00 = (hA,00
B,00)

∗;

also, (hP,01P,00)
∗ = hP,00P,01 = hP,01P,00 due to the invariance

under ℓ010. This leaves one complex (hB,00
A00 ) and five

real parameters (hA,01
A00 , hA,00

A00 , hB,00
B00 , hA,10

A00 , hB,10
B00 )

which define the dynamics. If it is not assumed that
the orbitals associated to the different units are mutu-
ally orthogonal, then the overlap matrix S is defined
by the four complex parameters: SA,10

A00 , SA,01
A00 , SB,00

A00 ,
SB,10
B00 .

Figure 2: Energy bands of the model. Different panels
correspond to the indicated combinations of values of
the interaction parameters hA,00

A,00 and hB,00
B,00. The other

parameters are introduced in the text.

Now we apply Theorem 1 for two-dimensional ir-
reducible representations (14). The modified group
projector of the stabilizer is F P

k̃,m̃
= 1

2

(
1 −1
−1 1

)
and the pulled-down hamiltonian is four-dimensional,
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consisting of the two-dimensional blocks HP
Q :

H↓
0;k̃m̃

=
(

HA
A HA

B

HB
A HB

B

)
=

(
χA
A χA

B

(χA
B)∗ χB

B

)
⊗

(
1 −1
−1 1

)
,(16)

χA
A =

1

2
(hA,00

A,00 + eiπm̃hA,01
A,00 + eik̃fhA,10

A,00) (17)

χB
A = (χA

B)
∗ =

1

2
hB,00
A,00 , (18)

χB
B =

1

2
(hB,00

B,00 + eik̃fhB,10
B,00). (19)

The eigenvalues are given as energy bands εm̃(k),
which are parameterized by the mean values and
differences of the intra-orbit interaction, 1

2(h
A,ts
A,00 ±

hB,ts
B,00), and inter-bases and base-backbone contribu-

tions. Namely, introducing

χ±
m̃(k̃) =

1

2
hA,01
A,00 cos(m̃π) +

1

2
(hA,00

A,00 ± hB,00
B,00)

+ cos(k̃f)(hA,10
A,00 ± hB,10

B,00), (20)

the following expressions for the energy bands are ob-
tained:

ε±m̃(k̃) = χ+
m̃(k̃)±

√
|hB,00

A,00 |2 + χ−2

m̃ (k̃). (21)

In order to get a physical insight, we estimate
roughly the relative magnitudes of the interaction pa-
rameters. As the pairs of bases are unique, while back-
bone structure and nesting of the bases unit within it
are DNA type independent, we assume that param-
eters hA,01

A,00, hB,10
B,00 and hB,00

A,00 are considerably larger

than hA,10
A,00, enabling somewhat arbitrary order of the

bases pairs. The results are illustrated in Fig. 2, where
to the latter parameter the value of one arbitrary unit is
assigned, while to the each element of the former set
of parameters the five arbitrary units are ascribed. The
remaining parameters are self-energies of the isolated
radicals.

6 Conclusion
Modified group projectors method [2], which general-
izes the Bloch theorem (from the translational to arbi-
trary symmetry group) is applied to a simplified model
of DNA molecule. Such an application illustrates that
the method is theoretically maximally efficient as the
full symmetry of the system is employed to reduce the
eigenproblem of the Hamiltonian into the subspace
of the symcell, in order to diagonalize it in a maxi-
mally efficient way (in same cases even analytically).
Besides, the relevant set of dynamical parameters is
automatically obtained, which enables direct analyses

of the considered physical, chemical and biological
properties. The presented procedure is suitable for di-
rect numerical implementation and it has been incor-
porated into the numerical code POLSym [8].
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