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Abstract: - Tuberculosis (TB) is global health problem and is the leading cause of mortality. Global TB control 
is a difficult task due to the prevalence of multidrug resistant (MDR) and extensively drug resistant (XDR) 
strains of TB. New tools for faster and accurate diagnosis of drug-resistant TB are urgently needed as early 
detection of drug resistance allows starting of an appropriate treatment. Need for faster assessment can be 
addressed by genomic signal processing based methods. In this paper, a graphical method has been used to 
compare the DNA(deoxyribonucleic acid) sequences of different strains of tuberculosis that predict the nature 
of the mycobacterium tuberculosis (MTB) strains thus saving time for initiating adequate therapy. 
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1 Introduction 
Human tuberculosis is caused by an intracellular 
pathogen, mycobacterium tuberculosis and it 
replicates rapidly in the lungs where oxygen 
concentration is high as MTB is aerobic. Resistance 
of MTB to anti-TB drugs is caused by chromosomal 
mutation. Surveys conducted by the World Health 
Organization and the International Union against 
Tuberculosis and Lung Disease give the most recent 
estimates on the prevalence of anti-TB drug 
resistance. According to WHO statistics [1], 8.6 
million people fell ill with TB in 2012 in EU, 
including 1.1 million cases among people infected 
with HIV. The Region accounts for 39% of the 
global burden of TB in terms of incidence, and India 
alone accounts for 26% of the world’s TB cases. It 
is estimated that about 3.4 million new cases of TB 
continue to occur each year and that about 4,50000 
people died of TB in 2012, most of these in five 
countries, namely Bangladesh, India, Indonesia, 
Myanmar and Thailand [2].  

One of the major challenges associated with drug 
resistant tuberculosis is the lack of diagnostic 
capacity. WHO puts the number of MDR-TB cases 
detected globally around 18% and an even smaller 
fraction of detected cases of XDR-TB. This lack of 
diagnostic capability is due to critical gaps in 

laboratory capacity for culture and drug 
susceptibility testing (DST). Therefore there is a 
need to expedite the efforts needed for the global 
surveillance and control of drug-resistant TB which 
can be achieved by the expanded capacity to 
diagnose MDR and XDR TB.  

Adequate treatment of patients with TB starts 
with a preliminary diagnosis, obtained by 
identifying Mycobacterium Tuberculosis from 
clinical specimens and conducting DST of the 
organism to confirm or exclude resistance.  
Conventional laboratory methods for preliminary 
diagnosis require 3-4 weeks of culture of sputum 
samples. Apart from conventional methods, 
sequence-based diagnostic methods have been 
developed that detect specific mutations associated 
with drug resistance. These tools have the advantage 
of being rapid, high throughput, and easily 
compared between laboratories. However, the 
development of such diagnostic tools relies on 
detailed information about the mutations that lead to 
drug resistance and their relative frequency. 

In comparison to the laboratory based methods 
and sequence based diagnostic methods, genomic 
signal processing based methods offer the advantage 
of faster analysis and assessment due to the 
availability of whole genome sequence information. 
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Genomic signal processing methods help in 
visualization of whole genomic data by completely 
understanding the underlying biological functions 
and are capable of extracting relevant embedded 
information, in comparison to standard methods of 
laboratory testing [3]. One such graphical 
representation method of genomic signals had been 
used in analysing MTB resistance to rifampicin 
based on the assessment of rpoB gene [4]. Graphical 
representations of genomic sequences can be used 
as a tool to determine local and global similarities, 
identify repetitive motifs, and differentiate between 
coding and non-coding regions in genomic 
sequences [5]. 

DNA is the main nucleic genetic material of the 
cells with a double helix structure and two 
antiparallel intertwined complimentary strands. 
There are four kinds of nitrogenous bases found in 
DNA that constitute the genomic sequences: 
thymine (T) and cytosine (C) - called pyrimidines, 
adenine (A) and guanine (G) - called purines. Base 
A always pairs with base T while base C always 
pairs with base G. Hence, the two strands of a DNA 
helix are complementary and contain exactly the 
same number of A,T bases and the same number of 
C,G bases. There are three main biochemical 
properties of nitrogenous bases [6] according to 
which they can be categorized: 
1. Molecular structure— bases A and G are purines 

(R), while C and T are pyrimidines (Y) 
2. Strength of links— bases A and T are linked by 

two hydrogen bonds (W- weak bond),    while C 
and G are linked by three hydrogen bonds (S-
strong bond). 

3. Radical content— bases A and C contain the 
amino (NH3) group in the large groove (M 
class), while T and G contain the keto (C=O) 
group (K class). 
In order to apply graphical representation 

techniques, DNA sequences need to be mapped into 
their corresponding numerical values for 
visualization and analysis with digital signal 
processing methods. Numerical representation gives 
the DNA sequences a characteristic signature in the 
composition and distribution of the nucleotides 
throughout the whole genome. Mutations however 
cause deviation from uniqueness which can be 
easily visualised by signal processing methods.  

Several mathematical representations for 
genomic sequences have been reported in literature 
such as Voss representation [7], tetrahedral 
representation [8], DNA walk [9], Z-curves [10], 
Fourier transforms [11] and wavelet transforms 

[12]. Numerical representations of a DNA sequence 
and graphical analysis facilitates sequence 
identification and comparison of similarities and 
dissimilarities of sequences [13]. Frequency domain 
analysis of Voss representations has been used to 
determine coding regions in genomic sequences 
[14]. DNA walk has been used as a tool to visualize 
changes in nucleotide composition, locating coding 
and non coding regions, identifying periodicities 
and large scale local and global features present in 
many genomes [15], [16]. Fourier transforms have 
been used to determine periodicities in proteins, 
identification of protein coding DNA regions and 
open reading frames [17]. Wavelet transforms have 
been used to determine long-range correlations, 
locating periodicites in DNA sequences [18]. Z-
curves have been used in identifying replication 
origins of archeal genomes [19]. 

Table1 Different Categories of MTB Sequences  
 

Sequence 
Number 

MTB Genome/ 
Genbank Accession 
Number 

Type of 
MTB 
Sequence 

1 H37Rv / NC_000962.3 DS 
2 H37Ra / NC_009525 DS 
3 F11/ NC_009565 DS 
4 CDC1551/ NC_002755 DS 
5 CCDC5079 /CP002884 DS 
6 CCDC5079/NC_021251 DS 
7 KZN605/NC_018078 XDR 
8 KZN1435/NC_012943 MDR 
9 KZN1435/ CP001658 MDR 

10 CCDC5180/ CP001642 DR 
 
 
2 Method 
This paper discusses the plotting (3-dimensional, 2-
dimensional and 1-dimensional) of the whole 
genome sequences of different strains of MTB to 
determine the deviations in the patterns of the 
resistant and susceptible sequences. The 3-
dimensional plots are called Z-curves. The DNA 
sequences of MTB are first converted to 
mathematical representations and then plotted. The 
graphical representations show patterns which can 
be compared visually while highlighting significant 
features for further analysis. 

Z curve constitutes a unique representation of a 
DNA sequence in three-dimensional space that 
contains all the information which reflects their 
symmetry, periodicity and global features of the 
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distribution of bases along the length of the entire 
DNA sequence. Z-curve helps to analyse a DNA 
sequence by visualising both global and local 
compositional features of genomes. The values of x-
axis, y-axis and z-axis represent the purine minus 
pyrimidine (R–Y) distribution, amino minus keto 
(M–K) distribution and weak minus strong 
hydrogen bonded nucleotide (W–S) distribution 
respectively along the sequence. These values on the 
curve are represented by a series of nodes P0, P1, P2, 
..., PN each with coordinates xn, yn and zn , n = 0, 1, 
2, …, N ; where N is the length of the DNA 
sequence [10] and xn, yn, zn are defined as 
xn=(An+Gn) – (Cn+Tn)= Rn – Yn  
yn=(An+Cn) – (Gn+Tn)= Mn – Kn 
zn=(An+Tn) – (Gn+Cn)= Wn – Sn 
xn , yn , zn ϵ [– N, N ]; 
An, Gn, Cn, Tn are the cumulative values of 
occurrences of the bases A, G, C and T respectively. 
Two more significant values namely AT and GC 
disparity can also be calculated from the values of 
xn, yn and zn. AT disparity, defined by (xn + yn)/2 
determines excess of A over T whereas GC 
disparity, defined by (xn – yn)/2 determines excess of 
G over C along the sequence length. 

Ten different MTB sequences listed in Table 1 
[20] were downloaded from NCBI [21] (National 
Centre for Biotechnology Information) database. 
Whereas sequences 1-6 were drug susceptible (DS), 
sequence 7 was XDR, sequences 8 and 9 were 
MDR, sequence 10 was DR. Different graphical 
representations such as 3-dimensional plots (Z 
curves), 2-dimensional plots showing R minus Y 
versus M minus K disparity and 1-dimensional plots 
showing R minus Y disparity, M minus K disparity, 
W minus S bond disparity, GC content and AT 
content with respect to the sequence length were 
plotted and compared.  
 

 
 

 

 
 
 
 
 
3 Results 
The 3-dimensional Z-curve representations of the 
sequences were plotted as shown in figs. 1-3. From 
these figures it is observed that 
i) DS sequences 1-6 (seq1-6) show overlapping 

plots (figures 1 and 2). The overall shape of the 
curves being similar, suggests global similarity 
in these sequences. The MDR sequences 8 and 9 
and XDR sequence 7 show identical and 
overlapping plots but are significantly deviating 
from the Z-curve of the DR sequence 10 as 
shown in figure 3. Despite the fact that the 
sequences 7, 8 and 9 have different resistance 
characterisations, they exhibit similar Z- curves 
suggesting that they have significant underlying 
similarity along the whole genome. However the 
plot of the DR sequence (sequence 10) is 
different from the plot of the XDR and MDR 
sequences. 

ii) The peak values of the 3-dimensional curves of 
 DS strains (sequences 1-6) and DR strain 
 (sequence 10) are similar but the peak values of 
 MDR and XDR sequences are significantly 
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Fig. 1 Z Curves for Sequences 1,2,3 

Fig. 2 Z Curves for Sequences 4,5,6 

Fig. 3 Z Curves for Sequences 7,8,9,10 
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 higher than those of DS and DR sequences. Thus 
 while MDR and XDR sequences form one 
 cluster, the DR and DS sequences form a 
 separate cluster. 

 
 
 

 
 
 

 
 

 
 
 
 
From the 2-dimensional plots of M minus K content 
with respect to R minus Y content for all the 
sequences as shown in figs. 4, 5 it is observed that 
i) The plot for DS sequences 1-6 and DR 
 sequence 10 shows peak value of R–Y content is 
 approximately 1.9x104 and the corresponding M-
 K value is -5.2x104 while the peak value of R-Y 
 content of XDR and MDR strains is 
 approximately 2.7x104 and the corresponding 
 M–K value is -6x10-4. Thus  XDR and MDR 
 sequences apparently have  higher purine 
 content and higher keto content than the DR and 
 DS  sequences.  
ii) Visual comparison of the plots for DR and DS 
 sequences also suggest that DR and DS 
 sequences exhibit similarity. 
From the 1-dimensional representations of R minus 
Y content (figs. 6, 7), M minus K content (figs. 8, 
9), W minus S bond content (figs. 10, 11), GC 
disparity (figs. 12, 13) and AT disparity (figs. 14, 
15) it is observed that  
i) The R-Y curve divides the whole sequence into 
 two regions: Purine rich and Pyrimidine 
 rich. Purine rich region exists from beginning of 
 the sequence upto approximately 2.25M 
 bases (depicted by rising curve) and pyrimidine 
 rich region beyond 2.25M bases (depicted by 
 falling curve). Peak value of R–Y content for 
 DS and DR sequences was significantly 
 lower than the peak value for XDR and 
 MDR sequences. 
ii) The M–K plots show two different regions of the 
 sequences: Keto rich and Amino rich. Keto rich 
 region for DR and DS sequences exists from 
 beginning of the sequence to approximately 2M 
 bases but for XDR and MDR sequences keto rich 
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Fig. 4 R–Y vs M–K Representation: 
Sequences 1-6 

Fig. 5 R–Y vs M–K Representation: Sequences 
7-10 

Fig. 7 R–Y Content: Sequences 7-10 

Fig. 6 R–Y Content: Sequences 1-6 
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 region occurs upto 2.25M bases. Amino rich 
 region for DR and DS sequences exists beyond 
 2M bases whereas for XDR and MDR 
 sequences, it exists beyond 2.25M bases. Keto 
 content in XDR and MDR sequences is more 
 than the keto content of DR and DS strains. 
iii) Comparison of the plots of W–S bond for all the 
 sequences do not show any deviation in the 
 curves suggesting that the GC content in all the 
 sequences is identical.  
iv) Comparison of the cumulative GC disparity 
 profile curves for all the sequences shows that 
 the XDR and MDR sequences have a higher 
 cumulative GC profile (peak value of 4.5x104) 
 than those of the DS and DR sequences (peak 
 value of 3.5x104).  
v) Plots of Cumulative AT profiles suggest the peak 
 value of the curve for XDR and MDR sequences 
 is higher than that for DS and DR sequences. 
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Fig. 11 W–S bond content: Sequences 7-10 
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Fig. 10 W–S bond content: Sequences 1-6 
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Fig. 8 M–K content: Sequences 1-6 

 

Fig. 9 M–K content: Sequences 7-10 

 

Fig. 11 W–S bond content: Sequences 7-10 

Fig. 12 Cumulative GC profile: sequences 1-6 
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Thus it is observed from 3-D, 2-D and 1-D plots 
of whole genome sequences that XDR and 
MDR sequences can be differentiated from the 
DR and DS sequences by visual 
comparison.While MDR and XDR strains form 
one cluster, DR and DS together form a 
separate cluster. MDR and XDR TB sequences 
show higher peaks in 3-dimensional 
representations in comparison to DS and DR 
strains. 2-dimensional and 1-dimensional 
representations also show that XDR and MDR 
strains in comparison to DR and DS strains 
have higher values of purine content, keto 
content, cumulative GC content and cumulative 
AT content. Thus these representations can be 
used to differentiate between MDR, XDR and 
DR, DS strains 
 
4 Conclusion  
Global TB control is a difficult task due to the 
emergence of MTB drug resistance (MDR and 
XDR) in response to inadequate anti-TB therapy. 
This hampers the further choice of adequate 
treatment. But the conversion of genomic sequences 
into mathematical representations followed by 
signal processing methods can be used for faster 
processing and analyzing of genomic data. These 
graphical representation methods allow predicting 
possible strains of MTB by direct comparison so 
that different treatments for different strains of MTB 
can be initiated. Thus, the described method can be 
used in addition to the variety of pre-existing 
techniques for faster analysis and resistance 
assessment.  
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