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Abstract: - The aim of this paper is to check in practice to what extent an ensemble forecast based on averaging 

the outcomes of several forecasting methods provides better results than single forecasts. Therefore, we use data 

of monthly new car registrations in the Netherlands and car sales in the USA. The performances of seven popular 

forecasting methods are assessed and the results are combined into Ensemble forecasts. Several common 

performance metrics are applied on the results of the test data and it is shown that the Ensembles perform slightly 

better than each of the forecasting models separately. This confirms the idea, found in literature, that under certain 

conditions, a combination of several forecasts leads to more accurate results.  
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1 Introduction 
The automotive industry is one of the world’s most 

important economic sectors by revenue. It is 

characterized by long development and production 

processes and therefore long-term forecasts for sales 

of new cars provide valuable information to its many 

stakeholders. Car developers and manufacturers, but 

also car dealers, marketeers and national licensing 

authorities benefit from reliable forecasts of the 

future demand for new cars. Not surprisingly much 

effort has been invested in attempts to develop 

reliable forecasting models. 

In a paper by Brühl et al. [1], the time series 

consisting of the number of newly registered German 

automobiles in the period 1992 to 2007 was used to 

train Multilinear Regression and Support Vector 

Machine forecasting models. Comparing the 

performance results, they found that the Support 

Vector Machine model with a Gaussian kernel 

performed better. Furthermore, it was found that 

models based on quarterly data were better than those 

based on monthly or yearly data. In Hülsmann et al. 

[2] several forecasting models were considered and 

used to forecast the number of new registered cars in 

Germany and the USA. It was found that the results 

of [1] could be further improved by using market-

specific absolute, normalized exogenous parameters.  

In [3] Sa-ngasoonsong et al. found a long-run 

equilibrium relationship between automobile sales 

and some economic indicators. They estimated a 

vector error correction model which outperformed 

other time series forecasting methods. Fantazzini and 

Toktamysova [4] found that forecasting models for 

monthly new registered cars in Germany which 

included Google search data as an exogenous 

variable had better performances than other models.  

Unlike in the beforementioned papers, the main 

aim of this contribution is not to consider the 

performances of models separately but rather to see 

whether an ensemble of forecasting models is 

beneficial in this case.  

Ensemble forecasting is a method to combine the 

results of forecasts of several models into one in order 

to achieve a better accuracy [5]. Usually, different 

models capture different aspects of reality and 

therefore they have different biases. When the 

forecast errors are not positively correlated the errors 

of these models will, to a certain extent, cancel out 

when the individual forecasts are averaged. This 

results in better forecasts. 

In this paper 7 forecasting methods are applied on 

the time series consisting of two data sets. Its 

accuracy is evaluated and compared with the 

individual model results and that of a naive method 

based on the seasonal component.   

 

2  Data Pre-processing 
In this study two data sets are used. The first set is 

new car registrations in the Netherlands during the 

period 2012 to 2017. The second set is the set of total 

vehicle sales in the USA between 1992 and 2017. 

 

2.1 Dutch New Car Registrations  
New cars have to be registered with the national 

authorities before they may be sold on the Dutch 
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automobile market. For this research, monthly data of 

new car registrations ranging from January 2007 until 

April 2017 were used.  

Visual inspection of the original time series 

(dashed line) in Fig. 1 reveals a seasonal component 

and several notable spikes in June 2012 and in 

December of the years 2012 to 2016. These special 

effects are followed in the next months by remarkable 

low figures. This unusual pattern in the time series is 

the result of government intervention. In the months 

after each of these spikes, previously announced tax 

measures were enforced by the Dutch government in 

an attempt to discourage the use of certain types of 

cars and/or to encourage others.  

The spikes are therefore regarded as a result of 

stocking-up behavior by car dealers in order to avoid 

the new tax measures coming into force the next 

month. 

 

 
Figure 1: In the original time series of new registered 

cars (blue dashed line) large spikes as a result of 

government tax measures have been removed and 

spread out over the following 4 months resulting in 

the solid black line.  

 

The occurrences of these  spikes are easy to 

predict due to the fact that tax measures are 

announced in advance. However, they do not fit the 

time series models considered here. Because spikes 

are a temporarily disturbance of the dynamics of the 

time series and because they can be simply forecasted 

by hand, these contaminating effects are eliminated 

from the time series.  

It is reasonable to assume that the extra car 

registrations at the time of these spikes would have 

occurred in later months in case there had been no 

change in the tax regime. The extra number of 

registrations as compared to the average of that 

particular month are spread out equally over the 4 

months following the peak. The analysis done in this 

paper concentrates on the resulting corrected time 

series. 

 

2.2 USA Vehicle Sales 
The second data set is the total vehicle sales in the 

USA in the period between January 1992 until 

August 2017 (see Fig. 2). Contrary to the Dutch data 

set this time series is analyzed in its original form 

without further corrections. 

 

 
Figure 2: Monthly total vehicle sales in the USA in 

millions of units in the period 1992 until 2017. The 

effect of the global financial crisis of 2007-2008 on 

this time series is clearly visible. 

 

3 Forecasting Methods 
In this study the following forecasting models were 

applied on the two data sets.   
 

3.1 Exponential Smoothing 
Exponential smoothing (ETS) is a popular 

forecasting method in business because of its 

simplicity and relative good performance. In the 

ETS-model future values of a time series are 

weighted averages of all past values. The weights 

decrease exponentially into the past so that more 

weight is given to the most recent values.  

Because our time series has an additive seasonal 

component we use the Holt-Winters exponential 

smoothing method also called triple exponential 

smoothing [6]. The prediction formula is as follows. 

     

 𝑌̂𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠[𝑡−𝑚]∗ (1) 

 

with 𝑌̂𝑡+ℎ the estimation of the ℎ step ahead value of 

the time series under consideration and level 𝑙𝑡 =
𝛼(𝑦𝑡 − 𝑠𝑡−12) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), trend 𝑏𝑡 =
𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1, seasonal component 

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−12 and where 
[. ]∗ indicates that from the data the most recent 

corresponding month should to be taken. Optimal 

values for the parameters 𝛼, 𝛽  and 𝛾  are estimated 

during the training process.   
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3.2 Autoregressive Integrated Moving 

Average 
Autoregressive Integrated Moving Average 

(ARIMA) models are generalizations of the simple 

AR model. The AR part of ARIMA indicates that the 

dependent variable is regressed on its own lagged 

values. The “I” indicates that the dependent variable 

may be differenced (once or more times) in the case 

the time series of the dependent variable is not 

stationary. Finally, the MA part indicates the option 

that the regression errors may be a linear combination 

of past values of errors. An ARIMA(p,d,q) model for 

a time series of 𝑌𝑡 may be written as 

 

 
𝑌̂𝑡

′ = ∑ 𝛼𝑖𝑌𝑡−𝑖
′

𝑝

𝑖=1
+ ∑ 𝛽𝑖𝜖𝑡−𝑖

𝑞

𝑖=1
+ 𝜖𝑡 (2) 

 

where 𝑌𝑡
′ = ∆𝑑𝑌𝑡 , the difference of 𝑌𝑡 of order d. 

Furthermore, p and q denote the number of maximal 

lags in 𝑌𝑡 and 𝜖𝑡 respectively and 𝜖𝑡 is the regression 

error.  

 

 
 

Figure 3: Schematic view of an Artificial Neural 

Network consisting of 3 input cells, 5 cells in the 

hidden layer and one output cell. During the training 

of the network the weights of the connections 

between the cells are optimized. 

 

3.3 Artificial Neural Network 
Artificial Neural Networks (ANN) are nonlinear 

autoregression models, biomimetically inspired by 

the neurons in the biological brain. An ANN consists 

of a number of artificial neurons that can pass signals 

of varying strength to each other (see Fig. 3). If the 

combined incoming signals are strong enough, the 

neuron becomes activated and the signal travels to 

other neurons connected to it.  

ANN’s have to be trained from examples, and 

cannot be explicitly programmed. That is why this 

model is often applied to problems where the solution 

is difficult to express in a traditional computer 

programming language. 

 

3.4 Vector Auto Regression 
The Vector Auto Regression (VAR) model is a 

multivariate generalization of the AR model. The 

VAR-model allows the inclusion of time series which 

are expected to be linearly interdependent of each 

other. Each variable has its own equation containing 

its own lagged values and those of the other variables 

in the model and is therefore explained by its own 

history and that of the other variables.  

An example of a VAR-model based on 3 variables 

𝑌1,𝑡, 𝑌2,𝑡 and 𝑌3,𝑡 is shown in (3). 

  

 
𝑌̂1,𝑡 = 𝑐1 + ∑(𝛼1,𝑖𝑌1,𝑡−𝑖

 + 𝛽1,𝑖𝑌1,𝑡−𝑖
 + 𝛾1,𝑖𝑌1,𝑡−𝑖

 )

𝑝

𝑖=1

+ 𝜖1,𝑡

𝑌̂2,𝑡 = 𝑐2 + ∑(𝛼2,𝑖𝑌2,𝑡−𝑖
 + 𝛽2,𝑖𝑌2,𝑡−𝑖

 + 𝛾2,𝑖𝑌2,𝑡−𝑖
 )

𝑝

𝑖=1

+ 𝜖2,𝑡

𝑌̂3,𝑡 = 𝑐3 + ∑(𝛼3,𝑖𝑌3,𝑡−𝑖
 + 𝛽3,𝑖𝑌3,𝑡−𝑖

 + 𝛾3,𝑖𝑌3,𝑡−𝑖
 )

𝑝

𝑖=1

+ 𝜖3,𝑡

 

 (3) 

In [3] and [4] economic variables were used as extra 

variables. Economic variables reflect the state of the 

economy and it is assumed that this influences 

potential customers in their decision whether or not 

to purchase a new car. For this research several 

combinations of economic time series were 

considered to be included in the model.  

In the case of the Dutch data set Job Vacancies Index 

and Car Prices Index were selected as explanatory 

variables in this model whereas in the case of the 

USA data set Unemployment Rate, GDP index and 

Consumer Price Index were chosen.  

3.5 Theta 
The theta method [7] has caught interest in academic 

circles and among forecast practitioners due to its 

remarkable good performance for monthly series at 

the M3-forecasting competition [8]. The original 

description of this univariate model is rather 

involved. It is based on decomposition of the time 

series through second order differences into so-called 

Theta-lines to capture long-term behavior and short-

term features separately. Hyndman and Bilah [9] 

however, found that for a large training set the Theta 

method is equivalent to simple exponential 

smoothing with drift.  

3.6 Random Forest 
Random Forest [10] regression (RF) is a tree-base 

supervised learning algorithm that is often applied for 

solving classification problems and non-linear 

regression. The method operates by constructing an 

ensemble of decision trees whose individual results 
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are combined with each other so that outliers and 

missing values have less influence on the outcome. 

3.7 Generalized Linear Model 
A generalization of the well-known simple linear 

regression model is the generalized linear model 

(GLM) [11] which is suitable for using several 

explanatory variables and which allows non-normal 

error distributions. The GLM is often used for the 

study of the underlying structure of data in terms of 

its explanatory variables but it can also be used for 

time series forecasting. The GLM formula can be 

written as 

  

 𝐸𝑌 = 𝑔−1(𝑋𝛽) (4)  

 

Where the expected value of the outcome 𝐸𝑌 is 

modeled as a linear combination of to be estimated 

parameters 𝛽 and the independent explanatory 

variables 𝑋. The link function 𝑔 provides the 

relationship between the linear predictor and the 

mean of the chosen distribution function. 

3.8 Naive Seasonal 
In the Dutch data set there is clearly a seasonal effect. 

Therefore, as a benchmark to evaluate the 

performance of the prediction models, the average 

monthly figures are used as a naive forecast.  

In an activity as future prediction it is 

recommendable to check if a sophisticated model is 

indeed an improvement with respect to simpler 

methods because, not rarely, simple models perform 

better than complicated ones.  

Several common performance metrics (see 

Section 5) for the results of the models described 

above are calculated and compared to those of the 

naive seasonal model.  

 

4 Results 
Both data sets were split into a training set and a test 

set. The Dutch data set was divided in a training set 

of monthly data from January 2007 to April 2016. 

This time series contains 112 data points. The above 

explained forecasting methods were applied to the 

training set to estimate the parameters of these 

models. After this, the trained models were used to 

create forecasts for the test set, the 12 months period 

from May 2016 to April 2017.  

In the USA case, the training set consists of the 

monthly data from January 1992 until September 

2014. The remaining 36 months were used as test set.  

The results were calculated using the statistical 

open source language R. The univariate Holt-Winters 

ETS, ARIMA, NNET, Theta models and the GLM 

model have been estimated using the forecast 

package [12] while the RF and VAR models were 

established using randomforest [13] and vars [14] 

package functions respectively.  

In the following section the model checks in the 

case of the Dutch data is shown. Similar checks have 

been done with the models based on the USA data. 

4.1  Check of the Model Output Properties 
To see whether the predictive models could be 

improved a few checks have been conducted on its 

residuals. 

  

 
Figure 4: The residuals of the Holt-Winters model 

have more or less a constant variance, no significant 

autocorrelations and approximately a Normal 

distribution with mean zero.  

 

In the top left of Fig.4 the in-sample residuals of 

the Holt-Winters model forecast are displayed. One 

can visually establish that the variance is more or less 

constant over time. Furthermore, in the top right of 

Fig. 4 one can see that no autocorrelations at lags 1-

20 of the in-sample forecast errors greatly exceed the 

significance bounds at the dotted lines. This indicates 

that there is little evidence of non-zero 

autocorrelations at lags 1-20.  

 

 
Figure 5: The ARIMA model residuals have more or 

less a constant variance, no autocorrelations and 

approximately a Normal distribution with mean zero.  
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In the lower part of the figure a histogram of the 

residuals with overlaid normal curve and a QQ-plot 

is displayed.  

From these pictures it seems plausible that the 

forecast errors are normally distributed with mean 

zero. We may conclude that the Holt-Winters model 

fits the new car registrations appropriately well and 

that it provides a forecast that probably cannot be 

improved. 

The same analysis as above has been conducted 

with respect to the other models. 

For establishing the ARIMA model, the Box-

Jenkins methodology [15] was applied which lead to 

an ARIMA(2,1,0)(1,0,0)12 model i.e. a differenced 

second order autoregressive model with a first order 

seasonal component of 12 months. The in-sample 

residuals and its properties are displayed in Fig.5. 

A neural autoregressive network was estimated 

with 4 hidden nodes, 7 time lags and a seasonal 

component. See Fig.5 for its residual properties. 

Again the conclusion can be drawn that the model fits 

the data quite well and probably cannot be further 

improved without changing the model itself.  

The VAR model used for the Dutch data set 

contains 2 explanatory economic variables, namely 

Job Vacancies Index (JVI) and Car Prices Index 

(CPI). The rationale behind this choice is that 

demand for new cars tends to raise when more people 

acquire a (better) job and/or when car prices are low.  

Several conditions are necessary to be fulfilled 

when creating a VAR model. First, it was checked 

whether these three time series are stationary. Using 

the Augmented Dickey Fuller test it was found that 

differencing was required in the case of JVI and CPI 

to acquire stationarity. 

 

 
Figure 6: In-sample residuals plots of the ANN 

model.  

 

Secondly, the autocorrelations of each of the time 

series were checked. See Fig. 7 for the 

autocorrelation plots of the new car registrations. It 

shows that 3 lags seem appropriate for the AR part of 

the model.  

 

 
Figure 7: Plots of the autocorrelations and partial 

autocorrelations of the deseasonalized time series of 

the number of new car registrations. 

  

 
Figure 8: The residuals of the VAR model have more 

or less a constant variance, no autocorrelations and 

approximately a Normal distribution with mean zero.  

 

This choice was confirmed by Akaike’s Information 

Criterion (AIC). Finally, the model was estimated 

using the training data and its residuals were analyzed 

(see Fig. 8). From the figure the residual properties 

are deemed satisfactory. 

 

 
Figure 9: Several displays of the residuals of the 

Theta model to show its properties. The residuals 

seem more or less to have the necessary properties. 
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In the case of the USA data the same procedure 

was followed using the explanatory variables 

Unemployment Rate, GDP index and Consumer 

Price Index. A model with 4 lags gave the best AIC 

value.  

Then the Theta model was estimated. As with the 

other models the residuals were checked graphically 

(see Fig. 9) and it was concluded the model cannot be 

further improved. 

As shown in Fig. 10 the Random Forest model 

residuals gives less favorable diagnostics. The 

residuals are symmetrical around zero but despite 

fine tuning efforts, it is unlikely that they are 

normally distributed. As can be seen in the results 

section the model provides not the most accurate 

forecasts in comparison with most of the other 

models considered here. 

 

 
Figure 10: The residuals of the RF model seem more 

or less symmetrically distributed around 0 but are not 

normally distributed. 

 

Finally, the Generalized Linear Model residuals are 

shown in Fig. 11 where it is shown that they behave 

as required.  

In short, the residuals of almost all 7 estimated 

models have the same desirable properties (zero 

mean, constant variance, Normally distributed). 

 

 

 
Figure 11: The residuals of the GLM model seem to 

have the necessary properties. 

4.2  Establishment of the Ensembles 
In [5] it was recommended to average the results of 

at least 5 different forecasting models which do not 

correlate positively. In such a case forecasting errors 

tend to single each other out which would result in a 

more accurate forecast. The correlations between the 

individual model forecasts were calculated and 

displayed in Fig. 12 and Fig. 13.  

 

 
Figure 12: Correlogram of the forecast errors of the 

models under consideration in the case of the Dutch 

data set. The graph illustrates that the test set errors 

of the 7 models are not highly correlated.  

 

 

 
Figure 13: Some of the forecast results of the models 

under consideration are highly correlated. It was 

decided to remove the VAR model from the 

Ensemble forecast. 

 

After checking these correlograms and the 

performance metrics in Table I and Table II it was 

decided to leave out the least performing and most 

sophisticated two models (i.e. ARIMA and VAR) 

and combine the remaining 5 models into an 

ensemble forecast for the Dutch time series. 

In the case of the USA data, it was decided to 

discard the VAR model only.  

The real data of the test period, the forecasts of the 

selected models and the Ensembles have been plotted 

in Fig. 13 and Fig. 14 for visual inspection.  
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5 Performance Evaluation 
In this section the model forecasts and the forecast of 

the combined models at the test data period are 

compared with the real outcomes. This gives an 

impression about the performance capability of these 

models if they were to be used for real forecasts.   

 

 
Figure 13: Forecast results of 5 selected models on 

the Dutch 12 months test set. The thick black line 

represents the real outcome of the new car 

registrations time series and the brown line is the 

Ensemble forecast. 

 

 
Figure 14: Forecast results of 6 selected models on 

the 36 months USA test set. The thick black line 

represents the real outcome of the car sales time 

series and the brown line is the Ensemble forecast. 

 

The models’ performances are compared with each 

other using several standard evaluation metrics which 

are based on the forecast errors 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 .  

 

The Mean Error 

 
𝑀𝐸 =

1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)

𝑛

𝑡=1
 (5) 

 

The Mean Absolute Error 

 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1
 (6) 

 

 

The Mean Absolute Prediction Error 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑

|𝑦𝑡 − 𝑦̂𝑡|

|𝑦𝑡|

𝑛

𝑡=1
100% (7) 

   

The Root Mean Square Error 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1
 (8) 

 

The Maximum Absolute Error 

 𝑀𝑋𝐴𝐸 = max
𝑡

|𝑦𝑡 − 𝑦̂𝑡| (9) 

 

The Mean Directional Accuracy 

 
𝑀𝐷𝐴 =

1

𝑛
∑ 𝟏𝑠𝑔𝑛(Δ𝑦𝑡)=𝑠𝑔𝑛(Δ𝑦̂𝑡)   

𝑛

𝑡=1
 (10) 

   

Where 𝟏 is the indicator function, Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 is 

the difference of time series 𝑥𝑡 at time t and t-1, and 

𝑠𝑔𝑛(𝑥) extracts the sign of 𝑥. 

 

Forecasting Performance Metrics 

Calculated over a 12 Months Test Set 
          

                   Metric          
 

 Model 
ME MAE MAPE 

ETS -3188 3580 11.7% 

ARIMA* -5790 5790 19.1% 

NNET 1104 4215 12.6% 

VAR* -4463 4517 15.6% 

THETA -3080 3796 13.1% 

RF -3730 4257 14.7% 

GLM 1799 3431 10.0% 

NAIVE* -3706 3722 12.9% 

ENSEMBLE -1455 3117 10.3% 

          

                   Metric          
 

 Model 

RMSE MXAE MDA 

ETS 5079 10200 0.73 

ARIMA* 7018 12994 0.73 

NNET 5041 9469 0.91 

VAR* 5785 9841 0.80 

THETA 4975 9989 0.73 

RF 5630 11530 0.82 

GLM 3810 6622 0.82 

NAIVE* 4991 9555 0.82 

ENSEMBLE 3944 8426 0.82 

Table I: Comparison of the forecasting performances 

of the 7 models individually, the Naive seasonal 

model and the Ensemble. Models indicated with an 

“*” are not included in the Ensemble. The best 

performance figures are printed in italics. 
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The lower the outcomes of metrics (5)-(9) the better 

the performance of the corresponding model. 

Contrarily, the MDA metric (10) should be as high as 

possible as it compares the forecasted direction with 

the actual realized direction of the time series.  

The metrics are applied to each model result of 

both data sets and the outcomes are listed in Table I 

and Table II for easy comparison.  

 

5.1 Forecasting Performance Dutch Data 
Table I shows the outcomes of the performance 

metrices for all individual models and their 

combination, the Ensemble. According to two of the 

metrices the Ensemble performs better than all the 

other models. In 3 other cases the Ensemble is the 

second best performer. The relatively good 

performance can also be seen in Fig. 13.  

 

Forecasting Performance Metrics 

Calculated over a 36 Months Test Set 
          

                   Metric          
 

 Model 
ME MAE MAPE 

ETS -0.61 0.74 4.26% 

ARIMA 0.24 0.51 2.84% 

NNET -0.045 0.52 2.53% 

VAR* 0.54 0.75 4.21% 

THETA 0.60 0.67 3.75% 

RF 0.46 0.60 3.35% 

GLM -0.23 0.54 3.09% 

ENSEMBLE 0.016 0.46 2.63% 

          

                   Metric          
 

 Model 

RMSE MXAE MDA 

ETS 0.99 2.89 0.37 

ARIMA 0.59 1.05 0.49 

NNET 0.52 1.19 0.37 

VAR* 0.84 1.65 0.46 

THETA 0.80 1.09 0.46 

RF 0.72 1.29 0.34 

GLM 0.72 1.89 0.37 

ENSEMBLE 0.55 1.37 0.40 

Table II: Comparison of the forecasting 

performances of the 7 models individually and the 

Ensemble. The best performance figures are printed 

in italics. 

 

5.2 Forecasting Performance USA Data 
In the case of the USA data of total vehicle sales the 

Ensemble also performs relatively well. In Table II it 

can be seen that 3 of the 6 performance metrices are 

much better than those of the other models while 

remaining metrices are also satisfying.  

 

6 Conclusion 
In this paper 7 common forecasting models have been 

applied on two different data set concerning car sales. 

Despite their relative simplicity ETS and GLM 

outperformed more complicated models in the Dutch 

data set. Furthermore, the naive seasonal model 

performed better than ARIMA and VAR, which are 

remarkably the most sophisticated models in this 

study.  

Most importantly, it was shown in this paper that, 

for these two data sets, Ensemble forecasts based on 

sets of forecasting models perform consistently better 

than individual models. This is a confirmation of [5] 

and shows that with only a few available models, one 

can improve forecasting accuracy.  
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