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Abstract: This Paper presents a periodic approach with scalable walking trajectory based on gait characteristic 
parameters including length, maximum height and time cycle. The proposed methodology is split in two parts: 
robot trajectory and dynamic stability examination. The lower body is in charge of general bipedal walking 
trajectory where a limited number of breakpoints in both stable and unstable phases are identified. 
Consequently, three joints (hip, knee and ankle) positions are derived for a seven link biped robot. Considering 
the fields of Computational Intelligence and Soft Computing leads to an efficient non-conventional approach to 
generate a smooth walking trajectory. The methodology for walking pattern planning based on Artificial Neural 
Networks using Radial Basis Function intends to fit a curve on derived breakpoints. The biped robot stability 
during walking cycles is investigated by the Zero Moment Point (ZMP) criterion. For the dynamic stability 
study, the ZMP for a stable condition in a determined polygon of support in every single gait step is calculated. 
For trunk motion adjustment and lower limb movement compensation, a Linear Inverted Pendulum model and 
ZMP criterion are employed to obtain upper body trajectory satisfying whole robot walking dynamic stability. 
 
Key-Words: Neural Networks, Radial Basis Functions, Bipedal Robot Walking, Trajectory Planning 
 
1 Introduction 
In recent years, dynamic bipedal walking and in 
general legged locomotion have inspired growing 
interests. The reason is partly the demand for robots 
enabled to operate in human oriented environments. 
Biped robot structure allows the body to travel along 
a different trajectory than the feet such that the 
whole body walking pattern is smooth, despite the 
roughness of the environment. As the applications 
are widespread, reasons to analyze and derive 
counterpart models of human being behavior in real 
life sound persuasive. There is a huge amount of 
potential applications in patients’ mobility, 
rehabilitation, and video games industries which 
could benefit from a reliable humanoid robot 
walking method. The starting point for biped robot 
locomotion is using an efficient method of trajectory 
planning. Ideally, it is featured with a simple 
implementation and fast calculation in addition to 
compatibility with real time applications. Moreover, 
the proposed trajectory implementation needs to 
intake input parameters such as gait length, gait time 
period and maximum foot height to facilitate 
manipulating the speed and position of the robot’s 
joints. A significant number of efforts focus on 
bipedal walking development in both real and 
virtual environments. Generally, approaches to 

bipedal walking concern with two major issues: 
kinematic smoothness and dynamic balance. 
Kinematics describes motion of joints, linkages and 
whole body of the robot without consideration of the 
causes of the motion. However, Dynamics is 
studying of forces and torques and their effects on 
motion. 
     Motion data obtained from either motion capture 
or manual calculation are Kinematics techniques 
basis. Respectively, derived points of motion are 
interpolated in order to build a motion trajectory. 
This method gives smooth and continuous walking 
pattern that might be different from the original 
input sequences. This method of locomotion 
appropriately responds to input parameters 
justifications, and follows desired paths through 
different environments with obstacles avoidance 
capability. In this study, Inverse Kinematics (IK) 
provides a computation tool for manual calculations 
of joints positions on a Cartesian plane to locate 
biped linkages as desired. Bipedal Motion is 
inherently unstable; hence, to control locomotion 
skills the first objective is to balance maintenance. 
Balance is categorized as static or dynamic. In static 
balance, the projection of the Center of Mass 
(COM) on the ground is always kept within the 
support area of stance feet. COM within area of 

WSEAS TRANSACTIONS on SYSTEMS Mohammadreza Ranjbar, Rene V. Mayorga

E-ISSN: 2224-2678 299 Volume 16, 2017



support results in stable gaits but a very low walking 
speed [1]. Static balance disadvantages led 
researchers to dynamic walking methods [2,3]. Zero 
Moment Point algorithm suggested by Vukobratović 
[4] is one of the most popular dynamic bipedal 
walking methods. The algorithm has evolved since 
it was first proposed and been utilized in numerous 
full-sized humanoid robots for walking purposes. In 
Dynamic balance, ZMP is retained within the 
margin of support polygon. This approach makes 
faster gaits than static balance; but, disturbances 
may easily tip over a biped robot. 
     Stable walking pattern synthesis received many 
researchers’ attentions. Huang et al [5] efficiently 
identified key points and foot motion parameters 
constraints in single and double support phases of 
gait cycles. Consequently, constraints formulation 
led to an adaptive foot trajectory generation by third 
spline periodic interpolation. They then applied an 
iterative computation to derive the hip trajectory by 
formulating the problem of the smooth hip motion 
with the largest stability margin. In this approach, 
the trunk of body is considered in parallel with Z 
axis in gait cycles. A similar approach has been 
utilized by Mousavi et al [6,7] for various surfaces 
and combined paths. Fattah et al [8] presented a 
simplified comparable method by keeping hip joint 
at a constant height. They also developed an 
optimization method using Genetic Algorithm for 
maximum stability and minimum energy 
consumption. Kim et al [9] developed an approach 
for dynamic bipedal walking on uneven floors 
including an off-line walking trajectory planning 
and six on-line controllers for Upright pose, landing 
angular momentum, landing timing, landing 
position, and vibration reduction and landing shock 
absorber. A number of researchers have presented 
methods employing forward kinematic approach; for 
example, Zhang et al [10] parameterized Denavit-
Hartenberg (D-H) formulation for an off-line 
kinematics model with on-line adjustment ability 
where homogeneous transformation matrices deduce 
the kinematics equations. And Deng et al [11] 
developed a virtual environment for biped robot 
simulation utilized D-H for biped locomotion and 
dynamic balance. 
     Kajita et al [12] used a simple linear dynamic 
analysis, the 3D Linear Inverted Pendulum Mode, 
for real time control of a biped robot. Kajita et al 
[13] made use of preview control theory to 
compensate for the ZMP error caused by the 
differences between a simple model and the precise 
multi-body model for walking on spiral stairs. In a 
similar way, Suleiman et al [14] proposed an 
algorithm to identify a quadratic system. This 

algorithm is based on using multiple walking 
patterns in order to identify an accurate model. The 
limitation of the proposed model is that when the 
walking trajectories are curved the ZMP behavior of 
the robot cannot be captured accurately. 
     Conventional approaches to bipedal walking did 
not really succeed in complicated environments 
particularly for real-time applications. This is 
mainly due to using a set of immutable kinematic 
equations to demonstrate the physical movements of 
the robot. Soft computing and artificial intelligence 
offer an alternative approach. Farzaneh et al [15] 
implemented Takagi–Sugeno (T–S) fuzzy systems 
for finding Finite Fourier series constants in order to 
overcome time consumption problem of the off-line 
method of trajectory generation such that the 
approach be applicable to real time bipedal walking 
planning. Luo et al [16] used a periodic function to 
plan the biped moving trajectory in sagittal plane. 
To assure short response time in trajectory tracking, 
a Fuzzy Sliding Mode controller including two 
independent controllers for positive and negative 
compensation was implemented. Park et al [17] used 
Fuzzy Logic to reduce the swing motion of the trunk 
and minimize disturbances. A posture control also 
using Fuzzy algorithm was proposed by Choi et al 
[18] in order to improve walking stability. Ferreira 
et al [19] proposed an Adaptive Neural-Fuzzy 
walking control of a biped robot. The implemented 
system was trained with expert-knowledge-driven 
data set of the biped motion control. Fan et al [20] 
developed a supervised learning Fuzzy Neural 
Network (FNN) for fast humanoid robot gait 
generation. To overcome the limitation of 
processing time of an eight-link biped robot 
dynamic equations Ferreira et al [21] proposed two 
alternative intelligent computing control techniques, 
Support Vector Regression (SVR) and a first-order 
Takagi–Sugeno–Kang (TSK) type Neuro-Fuzzy 
Network. Both methods aimed to correct robot’s 
torso for balance in sagittal plane. The SVR and the 
TSK NF controllers exhibited similar stability; but, 
the SVR controller runs faster. Inherent complexity 
and imprecision in the collected environmental data 
led Vundavilli et al [22] to utilize soft computing 
methods to solve ascending and descending gait 
generation problems for biped robots. They 
developed Genetic-Neural and Genetic-Fuzzy 
approaches to model biped walking trajectory where 
Genetic Algorithm optimizes the weights and 
knowledge-bases in Neural Network and Fuzzy 
Logic Controller respectively. Cardenas-Maciel et al 
[23] presented a Takagi-Sugeno Fuzzy Logic 
Controller using a Neuro-Fuzzy learning algorithm 
to generate walking motions. Sabourin et al [24] 
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improved the stability of dynamic gait of a biped 
robot in existence of external disturbances with two 
phases control strategy. After dynamic gait 
sequences generation, Neural Networks is trained on 
joint trajectories of the reference gait. In the second 
step, the Neural Networks generates trajectories as 
learned during the first step. This approach also 
makes walking on irregular grounds possible. 
Locomotion through kinematic techniques highly 
depends on the amount of data. On the other hand, 
capturing the full range of human motions is giving 
infinite ways of trajectory planning. Moreover, 
computational performance, ease of implementation 
and motion smoothness are considered as main 
factors for the locomotion synthesis. However, these 
attributes may sometimes contradict each other. 
     In the following sections, the proposed 
methodology is discussed in detail. The ankle, hip, 
and knee joints positions at five key frames in a 
single gait cycle are calculated in section 2. Then, 
these point sets are fed into a modified architecture 
of the RBFNs to generalize the robot motion 
kinematic. A novel technique for the robot upper 
body trajectory planning satisfying whole structure 
dynamic balance is also proposed in this section. In 
section 3, robot motion simulation demonstrates 
reliability and efficiency of the proposed method. 
And finally, a conclusion is given in section 4. 
 
 
2 Trajectory Generation Methodology 
Stable bipedal walk on various surfaces demands 
adaptation and maintenance of stability. Adaptation 
is robot capability to employ different appropriate 
patterns of motion as the condition changes. An 
anthropomorphic biped robot is considered as a 
reference model where each leg consists of a thigh, 
a shank, and a foot. The under study model has six 
degree of freedom in sagittal plane including two 
DOF in the hip joint, one in each knee joint, and one 
in each ankle joint. 
 
 
2.1 The Robot Kinematics 
Bipedal walking is a periodic incident composed of 
Double Support Phase (DSP) which is followed by 
Single Support Phase (SSP). In human locomotion, 
the DSP time length is about 20% of a whole gait 
cycle [5]. In the proposed methodology, both feet 
and hip joints trajectories are initially derived; 
consequently, all the other components such as knee 
joint and sole of foot trajectories are determined by 
taking the biped robot kinematic constraints into the 

consideration. Therefore, a unique walking pattern 
is formed by the foot and hip joints trajectories. 
 

Fig. 1 The robot model specification 
 
 
2.1.1 Bipedal Walking On an Ideal Flat Surface 
By human gait studying during a gait cycle, a 
limited number of ankle and hip joints positions in 
both double support phase and single support phase 
can be identified with respect to the XZ coordinate 
system origin (0,0). For instance, consider ankle 
joint of the swinging leg during a gait cycle on a flat 
surface. First, the foot is in full contact with the 
surface (first step) then the toes of the swing foot 
leaving the ground with angle  𝒒𝒒𝒃𝒃 (second step). 
The ankle joint would reach its maximum height 
(𝑳𝑳𝒂𝒂𝒂𝒂,𝑯𝑯𝒂𝒂𝒂𝒂) at the third step. When it comes to 
landing, heal of the swing foot touches the ground 
(fourth step) followed by full contact of swing foot 
(fifth step) with displacement of 𝟐𝟐𝑫𝑫𝑺𝑺 along X-axis. 
Therefore, five key points are distinguished. The 
coordinates of these several points are 
mathematically computed through relationships of 
the robot’s structure specifications and key 
assumptions. Once positions of all these featured 
points are first formulated and then calculated, the 
pattern of robot walking for the whole gait cycle can 
be generalized (or interpolated). The generalization 
is further discussed in section 2.3. Analytical set of 
equations or finding approximated points in between 
of each pair of available points are examples of 
other methods than interpolations. However, these 
mathematically complicated techniques lack desired 
level of accuracy and take relatively higher 
computation time. 
 

Fig. 2 Five identified key frames in a gait cycle 
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A robot requires trajectories for both swing and 
stance legs to accomplish the procedures of one 
single gait. Although the stance foot (ankle joint) is 
fixed during a gait, the knee joint position of stance 
leg is varying. The left and right legs in the seven-
links biped model are conjunct in hip joint; 
therefore, a constant ankle joint position and the 
varying trajectory of hip joint result in a moving 
pattern of knee joint. By calculating all the joints 
positions at the key frames, joints’ angles at these 
specified points/times in sagittal plane are 
determined. 
     In fig. 2, robot’s posture at five distinguished 
moment during a single gait cycle is illustrated 
where DS represents gait length which refers to the 
distance between ankle joints of swing and stance 
legs at initial time (𝑡𝑡 = 0) or at the end of a gait 
cycle (𝑡𝑡 = 𝑇𝑇𝐶𝐶). 𝑇𝑇𝐶𝐶  stands for a gait cycle time (or 
period) and 𝑇𝑇𝑑𝑑  is DSP duration. The swing foot 
obtains its maximum height at 𝑇𝑇𝑚𝑚 . In order to 
facilitate adaptation to various surface modes for the 
biped robot, the robot’s foot (ankle joint) trajectory 
must first be specified. During the walking cycles, 
the swing leg ankle joint displacements along X-axis 
and Z-axis are represented by 𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆  and 𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆  
respectively. Following equation formulations is 
extracted from trigonometric ratios of foot 
specifications. As an example, below the 
formulation of swing ankle joint position along X-
axis at 𝑡𝑡 =  𝑇𝑇𝑑𝑑  is illustrated. 
 

Fig. 3 Illustration of formulation 
 

𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

0
𝐿𝐿𝑋𝑋𝑎𝑎 sin 𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 (1 − cos 𝑞𝑞𝑏𝑏)

𝐿𝐿𝑋𝑋𝑎𝑎
2𝐷𝐷𝑆𝑆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin 𝑞𝑞𝑎𝑎 − 𝐿𝐿𝑋𝑋𝑏𝑏 �1 − cos 𝑞𝑞𝑎𝑎�

2𝐷𝐷𝑆𝑆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�  (1) 

 
     In Eq. (1), 𝐿𝐿𝑋𝑋𝑎𝑎  is the length of link connecting 
the ankle joint to the sole of foot, 𝐿𝐿𝑋𝑋𝑎𝑎  and 𝐿𝐿𝑋𝑋𝑏𝑏  
represent the rear and front parts of the foot as 
shown in Fig. 1. 𝑞𝑞𝑏𝑏  and 𝑞𝑞𝑎𝑎  are angles between the 

swing foot and the ground as it leaves and touches 
down the ground respectively. At a point within a 
gait, ankle joint reaches a maximum height.  𝐿𝐿𝑋𝑋𝑎𝑎  is 
the position of swing ankle joint along X-axis as the 
joint’s height reaches 𝐻𝐻𝑋𝑋𝑎𝑎 , its maximum point along 
Z-axis. The projected swing ankle joint positions on 
Z-axis in a gait time interval are parameterized in 
Eq. (2). 
 
𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

   

𝐿𝐿𝑋𝑋𝑎𝑎
𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑏𝑏

𝐻𝐻𝑋𝑋𝑎𝑎
𝐿𝐿𝑋𝑋𝑏𝑏 sin𝑞𝑞𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑎𝑎

𝐿𝐿𝑋𝑋𝑎𝑎

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
   𝑡𝑡 = 𝑇𝑇𝑚𝑚
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

            𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� (2) 

 
And, Eq. (3) represents sole of the swing foot angle 
variations. The swing foot sole is assumed to be 
completely in contact with the walking surface at 
the end of gait period (t =  Tc) and DSP of next 
cycle (t =  Tc + Td). 
 

𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) = �   
0
𝑞𝑞𝑏𝑏
−𝑞𝑞𝑎𝑎

0

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

           𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� (3) 

 
     The hip joint motion pattern in sagittal plane can 
be particularly identified by calculation of 𝑋𝑋ℎand 𝑍𝑍ℎ  
indicating the hip joint positions along X-axis and 
Z-axis respectively. 
 

𝑋𝑋ℎ(𝑡𝑡) = �   
𝑥𝑥𝑒𝑒𝑑𝑑

𝐷𝐷𝑆𝑆 − 𝑥𝑥𝑠𝑠𝑑𝑑    
𝐷𝐷𝑆𝑆 + 𝑥𝑥𝑒𝑒𝑑𝑑    

𝑡𝑡 = 0
 𝑡𝑡 = 𝑇𝑇𝑑𝑑
 𝑡𝑡 = 𝑇𝑇𝐶𝐶

�  (4) 

 
 

 
Fig. 4 𝒙𝒙𝒆𝒆𝒆𝒆 and 𝒙𝒙𝒔𝒔𝒆𝒆 illustration 

     Where 𝑥𝑥𝑒𝑒𝑑𝑑  and 𝑥𝑥𝑠𝑠𝑑𝑑  illustrated in Fig. 4 represent 
distances from hip joint to stance ankle joint at 
initial and final points of the double support phase 
respectively. 𝑥𝑥𝑒𝑒𝑑𝑑  and 𝑥𝑥𝑠𝑠𝑑𝑑  can be manually modified 
in appropriate intervals as given in Eq. (5) [5]. 
 

�   0 <  𝑥𝑥𝑒𝑒𝑑𝑑 < 0.5𝐷𝐷𝑆𝑆
   0 <  𝑥𝑥𝑠𝑠𝑑𝑑 < 0.5𝐷𝐷𝑆𝑆

�  (5) 
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     The projected hip joint positions on Z-axis for 
three key frames in a gait period are formulated in 
Eq. (6). In a gait duration, it is assumed that the hip 
joint obtains its maximum value with respect to the 
origin of the system coordinate along Z-axis, 𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥 , 
at the middle of single support phase and the lowest 
position, 𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎 , occurs at the middle of the double 
support phase. 
 

𝑍𝑍ℎ(𝑡𝑡) =  �   
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎
𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎

𝑡𝑡 = 0.5𝑇𝑇𝑑𝑑
   𝑡𝑡 = 0.5(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑑𝑑)
     𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 0.5𝑇𝑇𝑑𝑑

�      (6) 

 
     Since ankle and hip joints are connected at the 
knee joint through thigh and shank links in a human 
leg structure, calculation of the ankle and hip joints 
trajectories can simply result in a unique knee 
trajectory. 
 

 
Fig. 5 The swing knee joint trajectory by 

intersecting circles Chi and Cai 
 
In Fig. 5 illustration, the point with greater X-value 
of circles Chi and Cai intersection is the desired knee 
joint position in each step during a gait period. Chi is 
a circle centered at the hip joint with radius of thigh 
length, and Cai represents a circle with center at the 
swing ankle joint with radius of shank length [25]. 
Since the leg hardly gets completely straight up 
which means tangent circles do not exist, there are 
always two intersection points. The point with 
greater value along X-axis between two points of 
circles Chi and Cai intersection is selected because 
human leg is only bent forward. 
     During a gait cycle, position of stance ankle joint 
is constant as it has no movement. The horizontal 
distance of support ankle joint (X𝑋𝑋) from the origin 
of coordinate system equals to the gait length(D𝑆𝑆). 
The joint height (Z𝑋𝑋) is the length of the link 
connecting ankle joint to the foot(L𝑋𝑋𝑎𝑎 ). 

 

�   X𝑋𝑋  =  D𝑆𝑆
  Z𝑋𝑋   =  L𝑋𝑋𝑎𝑎

0 ≤  𝑡𝑡 ≤  T𝐶𝐶
0 ≤  𝑡𝑡 ≤  T𝐶𝐶

�  (7) 

 
     Since the hip joint is moving forward due to 
swing leg motion, knee joint of stance leg adopts a 
varying motion pattern. The stance knee joint 
trajectory is identified by the aforementioned 
technique of intersecting circles. 
     By all the joints trajectories for a single gait 
period, the joints trajectories can be just repeated for 
the next cycles to proceed walking in similar ground 
conditions. The task of replication for achieving 
successive gait cycles is accomplished through 
trajectories replacement in turn. For instance, if the 
left leg is assumed to be the swing leg in the first 
cycle, then it is the stance leg during the second 
cycle and the origin of coordinate system is 
horizontally shifted forward by a gait length(𝐷𝐷𝑆𝑆). 
Therefore, left leg trajectory in previous cycle is the 
right leg trajectory during the next consecutive gait 
cycle. Otherwise, if the robot encounters a different 
ground condition, the whole procedure of joints 
motion planning must be repeated such that updated 
trajectories adapting the new circumstance are 
obtained. Variation of several bipedal walk 
parameters such as gait length (𝐷𝐷𝑆𝑆), gait period 
(𝑇𝑇𝐶𝐶), maximum height of swing ankle joint (𝐻𝐻𝑋𝑋𝑎𝑎 ), 
𝑇𝑇𝑚𝑚 , 𝑇𝑇𝑑𝑑 , 𝑥𝑥𝑒𝑒𝑑𝑑 , 𝑥𝑥𝑠𝑠𝑑𝑑 , 𝑞𝑞𝑏𝑏 , and 𝑞𝑞𝑎𝑎  can desirably modify 
trajectory of the whole robot body locomotion. 
 
 
2.1.2 Walking on Inclined Surfaces 
Similar with trajectory planning for bipedal walking 
on a flat surface, in a gait cycle of the robot’s 
walking on an inclined surface, with slope of 𝜆𝜆, 
several specified ankle and hip joints positions and 
consequently knee joint positions in both DSP and 
SSP can be identified. Eqs. (8)-(12) result in 
positions of swing ankle 
(𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 ,𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 ,𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆,𝐼𝐼𝑎𝑎𝐼𝐼 ) and hip 
(𝑋𝑋ℎ ,𝐼𝐼𝑎𝑎𝐼𝐼 ,𝑍𝑍ℎ ,𝐼𝐼𝑎𝑎𝐼𝐼 ) joints at the specified time. 
 
 
2.1.3 Walking on Declined Surfaces 
An analogous approach is employed to obtain a 
smooth bipedal walking pattern in the case of 
declined ground condition with slope of 𝜆𝜆. Eqs. 
(13)-(17) return swing leg’s ankle 
(𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑒𝑒𝐼𝐼 ,𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑒𝑒𝐼𝐼 ,𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆,𝐷𝐷𝑒𝑒𝐼𝐼 ) and hip 
(𝑋𝑋ℎ ,𝐷𝐷𝑒𝑒𝐼𝐼 ,𝑍𝑍ℎ ,𝐷𝐷𝑒𝑒𝐼𝐼 ) joints coordinates. 
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𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑏𝑏 cos 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin𝜆𝜆
𝐿𝐿𝑋𝑋𝑏𝑏 cos(𝜆𝜆 − 𝑞𝑞𝑏𝑏)− 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 − 𝑞𝑞𝑏𝑏) + � 𝐿𝐿𝑋𝑋𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑏𝑏 − �𝐿𝐿𝑋𝑋𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑏𝑏 � cos𝑞𝑞𝑏𝑏  � cos 𝜆𝜆

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆
2𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin�𝜆𝜆 + 𝑞𝑞𝑎𝑎� − 𝐿𝐿𝑋𝑋𝑏𝑏 �1− cos𝑞𝑞𝑎𝑎� cos 𝜆𝜆

2𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin𝜆𝜆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(8) 

 
𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆 + 𝐿𝐿𝑋𝑋𝑏𝑏 sin 𝜆𝜆
𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 (𝑇𝑇𝑑𝑑) tan 𝜆𝜆 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos(𝜆𝜆 − 𝑞𝑞𝑏𝑏) + �𝐿𝐿𝑋𝑋𝑎𝑎 cos(𝜆𝜆 − 𝑞𝑞𝑏𝑏) − 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 − 𝑞𝑞𝑏𝑏)� tan 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 − 𝑞𝑞𝑏𝑏)

𝐿𝐿𝑋𝑋𝑎𝑎 sin 𝜆𝜆 + 𝐻𝐻𝑋𝑋𝑎𝑎
𝐿𝐿𝑋𝑋𝑎𝑎 sin�𝜆𝜆 + 𝑞𝑞𝑎𝑎� + 𝐿𝐿𝑋𝑋𝑏𝑏 sin�𝜆𝜆 + 𝑞𝑞𝑎𝑎� + (2𝐷𝐷𝑆𝑆 − 𝐿𝐿𝑋𝑋𝑏𝑏 ) sin 𝜆𝜆

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆 + 2𝐷𝐷𝑆𝑆 sin 𝜆𝜆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(9) 

 
 

𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) = �   

−𝜆𝜆
−𝜆𝜆 + 𝑞𝑞𝑏𝑏
−𝜆𝜆 − 𝑞𝑞𝑎𝑎
−𝜆𝜆

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

            𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(10) 

 

𝑋𝑋ℎ ,𝐼𝐼𝑎𝑎𝐼𝐼 (𝑡𝑡) = �   
𝑥𝑥𝑒𝑒𝑑𝑑

𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝑥𝑥𝑠𝑠𝑑𝑑
𝐷𝐷𝑆𝑆 cos 𝜆𝜆 + 𝑥𝑥𝑒𝑒𝑑𝑑

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

�   (11) 

 
 

𝑍𝑍ℎ ,𝐼𝐼𝑎𝑎𝐼𝐼 (𝑡𝑡) =  �   
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎 + 𝐷𝐷𝑆𝑆 sin 𝜆𝜆
𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥 +  𝐷𝐷𝑆𝑆 sin𝜆𝜆
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎 + 𝐷𝐷𝑆𝑆 sin 𝜆𝜆

𝑡𝑡 = 0.5𝑇𝑇𝑑𝑑
             𝑡𝑡 = 0.5(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑑𝑑)

         𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 0.5𝑇𝑇𝑑𝑑

�      (12) 

 
 
𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑒𝑒𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑏𝑏 cos 𝜆𝜆 + 𝐿𝐿𝑋𝑋𝑎𝑎 sin𝜆𝜆
𝐿𝐿𝑋𝑋𝑏𝑏 cos(𝜆𝜆 + 𝑞𝑞𝑏𝑏)− 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 + 𝑞𝑞𝑏𝑏) + � 𝐿𝐿𝑋𝑋𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑏𝑏 − �𝐿𝐿𝑋𝑋𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑏𝑏 � cos𝑞𝑞𝑏𝑏  � cos 𝜆𝜆

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆
2𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin�𝑞𝑞𝑎𝑎 − 𝜆𝜆� − 𝐿𝐿𝑋𝑋𝑏𝑏 �1− cos𝑞𝑞𝑎𝑎� cos 𝜆𝜆

2𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin𝜆𝜆

𝑡𝑡 = 0
 𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝑚𝑚
 𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(13) 

 
𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑒𝑒𝐼𝐼 =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆 + 𝐿𝐿𝑋𝑋𝑏𝑏 sin 𝜆𝜆
𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐼𝐼𝑎𝑎𝐼𝐼 (𝑇𝑇𝑑𝑑) tan 𝜆𝜆 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos(𝜆𝜆 + 𝑞𝑞𝑏𝑏) + �𝐿𝐿𝑋𝑋𝑎𝑎 cos(𝜆𝜆 − 𝑞𝑞𝑏𝑏) − 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 − 𝑞𝑞𝑏𝑏)� tan 𝜆𝜆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin(𝜆𝜆 − 𝑞𝑞𝑏𝑏)

𝐻𝐻𝑋𝑋𝑎𝑎
𝐿𝐿𝑋𝑋𝑎𝑎 sin�𝜆𝜆 + 𝑞𝑞𝑎𝑎� + 𝐿𝐿𝑋𝑋𝑏𝑏 sin�𝜆𝜆 + 𝑞𝑞𝑎𝑎� + (2𝐷𝐷𝑆𝑆 − 𝐿𝐿𝑋𝑋𝑏𝑏 ) sin 𝜆𝜆

𝐿𝐿𝑋𝑋𝑎𝑎 cos 𝜆𝜆 − 2𝐷𝐷𝑆𝑆 sin 𝜆𝜆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� 

(14) 
 
 

𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑒𝑒𝐼𝐼 = �   

𝜆𝜆
𝜆𝜆 + 𝑞𝑞𝑏𝑏
𝜆𝜆 − 𝑞𝑞𝑎𝑎
𝜆𝜆

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

            𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� (15) 

 
 

𝑋𝑋ℎ ,𝐷𝐷𝑒𝑒𝐼𝐼 = �   
𝑥𝑥𝑒𝑒𝑑𝑑

𝐷𝐷𝑆𝑆 cos 𝜆𝜆 − 𝑥𝑥𝑠𝑠𝑑𝑑
𝐷𝐷𝑆𝑆 cos 𝜆𝜆 + 𝑥𝑥𝑒𝑒𝑑𝑑

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

� (16) 

 
 
 

𝑍𝑍ℎ ,𝐷𝐷𝑒𝑒𝐼𝐼 = �   
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎

𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥 −  𝐷𝐷𝑆𝑆 sin𝜆𝜆
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎 −  𝐷𝐷𝑆𝑆 sin 𝜆𝜆

𝑡𝑡 = 0.5𝑇𝑇𝑑𝑑
𝑡𝑡 = 0.5(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑑𝑑)
𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 0.5𝑇𝑇𝑑𝑑

� 

(17) 
 
 
2.1.4 Walking Up Stairs 
In pattern planning for the robot walking on stairs, 
fig. 6, either going up or down stairs, the gait length 
(𝐷𝐷𝑆𝑆) is set to stair depth. Eqs. (18)-(22) describe 
swing leg’s ankle (𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 ,𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 ,𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 ) 
and hip (𝑋𝑋ℎ ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 ,𝑍𝑍ℎ ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 ) joints positions at key 
time frames during a gait period along the X-axis 

WSEAS TRANSACTIONS on SYSTEMS Mohammadreza Ranjbar, Rene V. Mayorga

E-ISSN: 2224-2678 304 Volume 16, 2017



and the Z-axis respectively when the biped robot is 
going up stairs. 
 

Fig. 6 Characteristics of walking on stairs 
 
𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

0
𝐿𝐿𝑋𝑋𝑎𝑎 sin 𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 (1 − cos 𝑞𝑞𝑏𝑏)

𝐿𝐿𝑋𝑋𝑎𝑎
2𝐷𝐷𝑆𝑆 − 𝐿𝐿𝑋𝑋𝑎𝑎 sin 𝑞𝑞𝑎𝑎 − 𝐿𝐿𝑋𝑋𝑏𝑏 �1 − cos 𝑞𝑞𝑎𝑎�

2𝐷𝐷𝑆𝑆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(18) 

 
𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑎𝑎
𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑏𝑏

𝐻𝐻𝑎𝑎 + 𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈
𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈 + 𝐿𝐿𝑋𝑋𝑏𝑏 sin𝑞𝑞𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑎𝑎

𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈 + 𝐿𝐿𝑋𝑋𝑎𝑎

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝑚𝑚
 𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�(19) 

 
 

𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆 ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) = �   

0
𝑞𝑞𝑏𝑏
−𝑞𝑞𝑎𝑎

0

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

           𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� (20) 

 
 

𝑋𝑋ℎ ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 (t) = �   
𝑥𝑥𝑒𝑒𝑑𝑑

𝐷𝐷𝑆𝑆 − 𝑥𝑥𝑠𝑠𝑑𝑑
𝐷𝐷𝑆𝑆 + 𝑥𝑥𝑒𝑒𝑑𝑑

𝑡𝑡 = 0
 𝑡𝑡 = 𝑇𝑇𝑑𝑑
 𝑡𝑡 = 𝑇𝑇𝐶𝐶

� (21) 

 
 

𝑍𝑍ℎ ,𝑈𝑈𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) = �   
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎
𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎

𝑡𝑡 = 0.5𝑇𝑇𝑑𝑑
𝑡𝑡 = 0.5(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑑𝑑)
𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 0.5𝑇𝑇𝑑𝑑

�  (22) 

 
 
2.1.5 Walking Down Stairs 
Eqs. (23)-(27) describe swing leg’s ankle 
(𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 ,𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 ,𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 ) and hip 
(𝑋𝑋ℎ ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 ,𝑍𝑍ℎ ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 ) joints positions at specified time 
steps for walking down stairs. 

𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

0
𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 (1− cos𝑞𝑞𝑏𝑏)

𝐿𝐿𝑋𝑋𝑎𝑎
2𝐷𝐷𝑆𝑆 + 𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑎𝑎�1− cos𝑞𝑞𝑎𝑎�

2𝐷𝐷𝑆𝑆

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

�

 (23) 
 

𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

𝐿𝐿𝑋𝑋𝑎𝑎  +  𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈
𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑏𝑏 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑏𝑏  +  𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈

𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈
𝐿𝐿𝑋𝑋𝑎𝑎 sin𝑞𝑞𝑎𝑎 + 𝐿𝐿𝑋𝑋𝑎𝑎 cos𝑞𝑞𝑎𝑎  −  𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈

𝐿𝐿𝑋𝑋𝑎𝑎  −  𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈

𝑡𝑡 = 0
𝑡𝑡 = 𝑇𝑇𝑑𝑑
𝑡𝑡 = 𝑇𝑇𝑚𝑚
𝑡𝑡 = 𝑇𝑇𝐶𝐶

𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� 

(24) 
 

𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆 ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) = �   

0
𝑞𝑞𝑏𝑏
𝑞𝑞𝑎𝑎
0

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

           𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑑𝑑

� (25) 

 

𝑋𝑋ℎ ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 (t) = �   
𝑥𝑥𝑒𝑒𝑑𝑑

𝐷𝐷𝑆𝑆 − 𝑥𝑥𝑠𝑠𝑑𝑑
𝐷𝐷𝑆𝑆 + 𝑥𝑥𝑒𝑒𝑑𝑑

𝑡𝑡 = 0
  𝑡𝑡 = 𝑇𝑇𝑑𝑑
  𝑡𝑡 = 𝑇𝑇𝐶𝐶

� (26) 

 
𝑍𝑍ℎ ,𝐷𝐷𝑠𝑠𝑡𝑡𝑈𝑈 (𝑡𝑡) =

�   
𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎
𝐻𝐻𝑚𝑚𝑋𝑋𝑥𝑥

𝐻𝐻𝑚𝑚𝑚𝑚𝑎𝑎  −  𝐻𝐻𝑆𝑆𝑡𝑡𝑈𝑈

𝑡𝑡 = 0.5𝑇𝑇𝑑𝑑
    𝑡𝑡 = 0.5(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝑑𝑑)
𝑡𝑡 = 𝑇𝑇𝐶𝐶 + 0.5𝑇𝑇𝑑𝑑

�     (27) 

 
 
2.2 A Non-Conventional Generalization 
ANNs are able to model the non-linear relationships 
between several sets of model inputs and their 
equivalent outputs. ANNs are organized in several 
layers of interconnected processing nodes working 
together to transform the inputs to the outputs of the 
model. ANNs are appropriate for modeling complex 
systems whose parameters relationships are highly 
complicated to be identified. 
     According to section 2.1 formulations, time (t) is 
assumed as the input variable for the swing ankle 
joint [𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡)] and the hip joint 
[𝑋𝑋ℎ(𝑡𝑡),𝑍𝑍ℎ(𝑡𝑡)] characteristic parameters. When the 
number of outputs is more than the number of 
inputs, ANNs return infinite mapping paths. 
Besides, efficient error propagation cannot take 
place where the output layer neurons are more than 
the number of inputs. In order to improve the 
generalization power of ANNs in such cases, a new 
method is proposed in this dissertation. A Radial 
Basis Function Network has been utilized in this 
method which performs more fittingly on limited 
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number of input/output data sets comparing with the 
Feed Forward Back Propagation Network. 
 

 
Fig. 7 An Artificial Neural Network with 

input/output sets 

The output variables are functions of inputs of the 
system, fig. 7. 

�
𝑦𝑦1 = 𝑎𝑎1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑎𝑎)

...
𝑦𝑦2 = 𝑎𝑎2(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑎𝑎)

𝑥𝑥 ∈  ℜ𝑎𝑎  , 𝑦𝑦 ∈  ℜ𝑚𝑚 �  (28) 

 
     When 𝑚𝑚 > 𝑎𝑎 there are infinite solutions for the 
system. In other words, the ANN is not able to 
properly find a unique solution for the system. If the 
number of outputs equals to the number of inputs 
(𝑚𝑚 = 𝑎𝑎) there is just one solution for the system. If 
𝑚𝑚 < 𝑎𝑎, there may exist one approximate solution 
for the system. 
     For ankle joint, position in sagittal plane is 
identified by [𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡)] where 
𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) and 𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) represent its horizontal and 
vertical positions respectively and 𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) stands 
for sole of the swing foot angle at each time step, 
fig. 8. First step for setting up an ANN is to identify 
the training data set which includes specified times 
(𝑡𝑡) as the input 𝑋𝑋𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝑍𝑍𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡),𝑋𝑋𝑎𝑎𝑑𝑑 𝜃𝜃𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) as 
outputs. 

Fig. 8 The ANN initial structure for swing ankle 
joint generalization 

     Therefore, to supply the ANN requirements for 
situation where number of inputs is greater than or 
equal to the number of outputs (𝒏𝒏 ≥ 𝒎𝒎), the 
proposed method is to implement a multi phase 
ANN structure. In this technique, as illustrated in 
Fig. 9, 𝑿𝑿𝒂𝒂𝑺𝑺𝑺𝑺(𝒕𝒕), 𝒁𝒁𝒂𝒂𝑺𝑺𝑺𝑺(𝒕𝒕), 𝒂𝒂𝒏𝒏𝒆𝒆 𝜽𝜽𝒂𝒂𝑺𝑺𝑺𝑺(𝒕𝒕) 
behaviors in time domain are obtained through two 
phases. 
     Each phase encompasses an Artificial Neural 
Network with (𝐦𝐦 = 𝐧𝐧) or (𝐧𝐧 > 𝑚𝑚). Since the sole of 
the foot ankle has the least available input/output 
data set, in the first phase 𝛉𝛉𝛉𝛉𝐒𝐒𝐒𝐒(𝐭𝐭) is generalized. 
Second phase which is fed by the first ANN’s input 

and output sets interpolates vertical and horizontal 
ankle joint behaviors. 

Fig. 9 Two-phases ANN structure for swing ankle 
joint generalization 

In the Radial Basis Function Network architecture 
including inputs, radial basis layer and output layer, 
number of neurons in the output layer equals to the 
number of the output variables which is one and two 
for first and second phases respectively. Since the 
number of neurons in the radial basis layer is 
determined automatically during the training 
process, it is not required to initially be specified. 
The radial basis function as the transfer function of 
the single hidden layer is also pre-specified for the 
Radial Basis Function Networks. Besides, the 
spread of radial basis function should be wide 
enough to let the radial basis neurons sufficiently 
overlap. The Levenberg-Marquardt algorithm is set 
as the learning method. Moreover, the network goal, 
the mean squared error performance function, can 
be adjusted according to the desired accuracy (i.e. 
𝐌𝐌𝐒𝐒𝐌𝐌 =  𝟏𝟏𝟏𝟏−𝟓𝟓). 
     Once the network architecture design is 
accomplished, the training sets are fed into the 
RBFNs. The numbers of the training sets for first 
and second RBFNs are four and five respectively. 
After the network is trained, the ankle joint position 
at any arbitrary time in the gait cycle is available. 
     So far, the ankle joint motion pattern is available 
through training a function based on limited number 
of sets of data where it can be assessed for 
smoothness, shape and being human-like motion. If 
the Radial Basis Function Network does not return a 
proper and satisfactory graph, all the steps would be 
retaken with new network characteristics so that a 
desirable pattern is obtained. Comparing with 
conventional interpolation methods where a non-
adjustable result is returned, this can be counted as a 
valuable advantage of ANNs. It should also be 
pointed out that RBFN is more effectively dealing 
with generalization of multidimensional scattered 
data. 
     On the other hand, it might be questioned how 
the network is trained only on several data sets, four 
or five sets, and why a small number of data sets is 
sufficient to train the RBFN properly. The unique 
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characteristics of this specific type of Artificial 
Neural Network along with utilizing a radial basis 
function, in this research Gaussian function, in the 
hidden layer neurons as the activation function ease 
the training in circumstances with small number of 
input/output data sets. 
     For the hip joint generalization, since there are 
two outputs, a two-phase ANN structure will return 
desirable hip trajectory. As indicated in Fig. 10, in 
the first RBFN, specified set of time steps is the 
input set and the horizontal ankle joint positions 
(𝑿𝑿𝒉𝒉)stands for the output set. Second phase fed by 
the first ANN’s input and output is aimed to 
generalize vertical ankle joint behavior(𝒁𝒁𝒉𝒉). 
 

Fig. 10 The multi-phase ANN architecture for the 
hip joint motion planning 

 
 
2.3 Biped robot dynamic investigation 
The biped robot dynamic is defined as the 
relationships between applied forces and the 
resulted accelerations. In this section, a balance 
maintenance method applicable to real-time biped 
robot’s tasks is introduced. The technique for the 
robot stability locates robot’s trunk such that the 
ZMP is kept within the support area. This technique 
utilizes Linear Inverted Pendulum Model [12] with a 
massless rod that the whole robot structure is 
replaced with a single rigid body located at the 
COM with robot mass. In addition, the desired ZMP 
is pre-specified for the most stable situation placed 
at center of the polygon of support where it has the 
maximum distances from the support area margins. 
Therefore, the position of the robot’s trunk is 
obtained for each single gait step. Prior proceeding 
to the next gait step, ZMP position is investigated 
with respect to the new polygon of support. If ZMP 
is still within the support area, the previous trunk 
position is kept; otherwise, the whole procedure of 
obtaining new trunk location is repeated under new 
constraints. 
     In Fig. 11 illustration, mi stands for mass of ith 
linkage and M represents the total center of mass. 
ZMP specifies a point on the ground (ZZMP = 0) 
where the net moment of the inertial and the gravity 
forces has no component along the X-axis. 

Fig. 11 Inverted pendulum model of a biped robot 
 
The dynamics and the concept of ZMP are applied 
on the inverted pendulum in Eqs. (29) and (30) [13]. 
 

𝜏𝜏 =  −𝑀𝑀𝑀𝑀(𝑥𝑥𝐶𝐶𝐶𝐶𝑀𝑀  −  𝑋𝑋𝑍𝑍𝑀𝑀𝑍𝑍)  +   𝑀𝑀�̈�𝑥𝐶𝐶𝐶𝐶𝑀𝑀  (29) 
 
Since torque, 𝜏𝜏 = 0 for ZMP, then: 
 

 𝑋𝑋𝑍𝑍𝑀𝑀𝑍𝑍 =  𝑥𝑥𝐶𝐶𝐶𝐶𝑀𝑀 −  �̈�𝑥𝐶𝐶𝐶𝐶𝑀𝑀
𝑀𝑀

𝑧𝑧𝐶𝐶𝐶𝐶𝑀𝑀  (30) 
 
     Stability margins along X-axis are defined as the 
area between the two feet for the double support 
phase and the space under the contact foot when just 
one foot touches the ground. 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
�
𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆𝐿𝐿𝑎𝑎𝐿𝐿 =  𝑋𝑋1,𝑆𝑆𝑆𝑆(𝑡𝑡)

𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆
𝑈𝑈𝑈𝑈 =  𝑋𝑋3

�            𝑡𝑡 = 0

�
𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆𝐿𝐿𝑎𝑎𝐿𝐿 =  𝑋𝑋3,𝑆𝑆𝑆𝑆(𝑡𝑡)

𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆
𝑈𝑈𝑈𝑈 =  𝑋𝑋3

�0 < 𝑡𝑡 ≤ 𝑇𝑇𝑑𝑑

�
𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆𝐿𝐿𝑎𝑎𝐿𝐿 =  𝑋𝑋1

𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆
𝑈𝑈𝑈𝑈 =  𝑋𝑋3

�          𝑇𝑇𝑑𝑑 < 𝑡𝑡 < 𝑇𝑇𝐶𝐶

�
𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆𝐿𝐿𝑎𝑎𝐿𝐿 =  𝑋𝑋1

𝑋𝑋𝑍𝑍𝑎𝑎𝑆𝑆
𝑈𝑈𝑈𝑈 =  𝑋𝑋1,𝑆𝑆𝑆𝑆

�               𝑡𝑡 = 𝑇𝑇𝐶𝐶

� (31) 

 
     In all intervals identified in Eq. (31), desired 
ZMP is obtained through average of the lower and 
upper boundary points. By replacing the total center 
of mass which is a function of the trunk position 
along X-axis calculated in Eq. (30), ZMP is 
expressed in the term of trunk position. 
 

𝑋𝑋𝑍𝑍𝑀𝑀𝑍𝑍 =  𝑥𝑥𝐶𝐶𝐶𝐶𝑀𝑀(𝑋𝑋𝑇𝑇) −  �̈�𝑥𝐶𝐶𝐶𝐶𝑀𝑀
𝑀𝑀

𝑧𝑧𝐶𝐶𝐶𝐶𝑀𝑀   (32) 
 
     At the first gait step, the ZMP along the X-axis is 
set as the middle point of the specified stability 
interval, fig. 12. For the next gait steps, if the pre-
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specified ZMP is still within the new support area, 
the previous trunk position is kept; otherwise, 
computation of new trunk location is repeated under 
new constraints [26]. 
 

Fig. 12 The trunk trajectory planning algorithm 
 
 
3 Results and discussion 
The correlation between the robot’s joints 
specifications and walking patterns is demonstrated 
through the simulation developed in MATLAB. Fig. 
13 depicts the robot’s body postures in sagittal (XZ) 
plane during two gait cycles with the robot’s gait 
specifications given in Table 3. 

Table 1 Constant parameters 

 Length 
(cm) 

Trunk Length 55 

Thigh Length 47 

Shank Length 42 

Foot specifications 

Lan 10 

Lab 7 

Laf 15 

Table 2 links concentrated masses 

Percentages of total robot mass Quantity 
Trunk (m1) 43.02 1 

Thigh (m2,m3) 14.47 2 
Shank (m4,m5) 4.57 2 
Foot (m6,m7) 1.33 2 

 

Fig. 13 The biped robot walking trajectory on flat 
ground condition 

Table 3 The robot’s gait specifications 

𝐷𝐷𝑆𝑆 𝑞𝑞𝑏𝑏  𝑞𝑞𝑎𝑎  𝐿𝐿𝑋𝑋𝑎𝑎  𝐻𝐻𝑋𝑋𝑎𝑎  𝑥𝑥𝑠𝑠𝑑𝑑  𝑥𝑥𝑒𝑒𝑑𝑑  
70 
cm 

𝜋𝜋
12

 
𝜋𝜋

12
 30 

cm 
30 
cm 

35 
cm 

32 
cm 

 
Fig. 14 represents a closer view of robot walking 
during a single gait with applied dynamical 
considerations. Fig. 15 – 18 illustrate joints and sole 
of foot motion patterns in sagittal (XZ) plane. 
 

Fig. 14 Robot walking during a single gait with 
applied dynamical considerations 

 

 
Fig. 15 Ankle joint motion pattern 

 

 
Fig. 16 Sole of the swing foot angle 
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Fig. 17 Hip joint trajectory 

 

 
Fig. 18 The swing leg’s knee joint 

 
cycle where in Single Support Phase has a constant 
area due to the fact that in this phase only the 
support foot is in complete contact with the surface. 
 

Fig. 19 Support area in the first gait cycle 
 
     The walking pattern simulation has also been 
developed with spline interpolation method. 
Following figure, fig. 20, depicts stick diagram of a 
biped robot utilizing a conventional interpolation 
method. 

 

Fig. 20 Trajectory by spline interpolation 

 
Fig. 21 Sole of the foot angle by RBFN 

 

 
 Fig. 22 Sole of the foot angle by Spline 

     Fig. 21 illustration represents the foot’s angle 
behavior obtained through RBFN during a single 
gait cycle and its counterpart with similar applied 
specifications resulted from spline interpolation 
methodology in Fig. 22. At first glimpse, it is 
revealed that RBFN returns a smoother graph which 
is more desirable for mimicking human walking; 
however, RBFN flexibility in pattern modifications 
on same data sets is a more significant advantage. 
     Ground conditions with positive or negative 
slope are of very often situations that a robot 
performing in a human-acting environment faces 
with. Fig. 23 depicts the robot’s motion trajectory in 
three gait cycles with a fixed gait step DS = 40 cm 
when it is walking downhill. The biped robot’s gait 
specifications in Fig. 23 illustration are listed in 
table 4. Joints and sole of foot motion patterns on 
XZ plane are depicted in fig. 24 – 27. 
 
 

Fig. 23 Downhill walking trajectory 
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Table 4 Robot’s gait specifications for declined 
surface 

𝐷𝐷𝑆𝑆 𝑞𝑞𝑏𝑏  λ 𝑞𝑞𝑎𝑎  𝐿𝐿𝑋𝑋𝑎𝑎  𝐻𝐻𝑋𝑋𝑎𝑎  𝑥𝑥𝑠𝑠𝑑𝑑  𝑥𝑥𝑒𝑒𝑑𝑑  
40 
cm 

𝜋𝜋
12

 
𝜋𝜋

10
 

𝜋𝜋
12

 30 
cm 

30 
cm 

15 
cm 

15 
cm 

 

 
Fig. 24 Ankle pattern on declined surface 

 

 
Fig.25 Sole of the foot angle 

 

 
Fig. 26 Hip joint pattern 

 

 
Fig. 27 Knee joint pattern 

     Fig. 28 depicts the robot’s motion trajectory in 
three gait cycles with a fixed gait step DS = 50 cm 
when it is walking up hill. 
 

Table 5 Robot’s gait specifications for inclined 
surface 

𝐷𝐷𝑆𝑆 𝑞𝑞𝑏𝑏  λ 𝑞𝑞𝑎𝑎  𝐿𝐿𝑋𝑋𝑎𝑎  𝐻𝐻𝑋𝑋𝑎𝑎  𝑥𝑥𝑠𝑠𝑑𝑑  𝑥𝑥𝑒𝑒𝑑𝑑  
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Fig. 28 Up-hill walking trajectory 

     Fig. 29 and fig. 30 depict the robot’s motion 
trajectory in five and four gait cycles with a fixed 
gait step DS = 70 cm and a smaller gait step of DS = 
50 cm respectively when it is walking down stairs. 
 

Table 6 Robot’s gait specifications for walking 
down stairs 

𝑞𝑞𝑏𝑏  𝑞𝑞𝑎𝑎  𝐿𝐿𝑋𝑋𝑎𝑎  𝐻𝐻𝑋𝑋𝑎𝑎  𝑥𝑥𝑠𝑠𝑑𝑑  𝑥𝑥𝑒𝑒𝑑𝑑  
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Fig. 29 Walking down stairs trajectory 
 

Fig. 30 Walking down stairs with a smaller step size 
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Table 7 Ankle RBFNs specifications for walking 
down stairs 
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Fig. 31 Biped robot’s walking upstairs trajectory 
  
    Fig. 32 represents the network training 
performance of the hip motion along Z-axis. As 
represented the desired error rate is zero; however, 
the network lowest overall Mean Square Error is 
3.977𝑒𝑒−30 with three epochs. 
 

Fig. 32 RBFN performance diagram 
 
 
4 Conclusions 
The study on biped robot consisted of rigid bodies 
connected with actuated joints is supposed to mimic 
human walking pattern on various ground 
conditions. In this paper it is assumed that bipedal 
walking to be a periodic pattern of Single Support 
Phase followed by Double Support Phase. The 
proposed methodology divided in two parts, 
planning robot trajectory and dynamic stability 

investigation, facilitates a scalable gait with 
characteristic parameters. The bipedal walking 
trajectory which is adaptive to the ground condition 
is computed by limited numbers of breakpoints in 
both stable and unstable phases. Consequently, 
positions of ankle, hip, and knee joints are derived 
for a seven link biped robot. In order to satisfy the 
smoothness of walking pattern as well as efficiency 
of the computation algorithm, ANNs using a RBFN 
to generalize a curve on derived key points are 
implemented. Despite other previously developed 
approaches addressed earlier; in this paper the 
ANNs are not “canned” and offer a higher level of 
flexibility. That is, by feeding a data set to a 
conventional interpolation method, yields a 
particular “curve”. Though, changing ANNs  
parameters brings a non-identical trajectory. 
     For dynamic stability, the ZMP for the most 
stable condition in a determined polygon of support 
is calculated. Then, to update the trunk motion to 
compensate for lower limb movement, a Linear 
Inverted Pendulum Model and ZMP criterion are 
employed to attain upper body trajectory satisfying 
whole robot walking dynamic stability. 
     The main contributions of this paper include: a 
non-conventional methodology for efficient 
computation of robot walking trajectory applicable 
to on-line tasks; a human-like bipedal walking 
pattern planning adaptive to various ground 
conditions; a novel technique based on RBFNs to 
enhance performance of conventional numerical 
methods; and a simplified dynamical walking 
stability investigation. 
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