

Specialized PRM Trajectory Planning For
Hyper-Redundant Robot Manipulators

MAHDI F. GHAJARI and RENE V. MAYORGA

Department of Industrial Systems Engineering
University of Regina

3737 Wascana Parkway, Regina, Saskatchewan
CANADA

mfallahinejad@gmail.com and Rene.Mayorga@uregina.ca

Abstract: - This Paper presents a general comprehensive computationally tractable collision free path planner
for hyper-redundant manipulators multiple-query. The path planner is based on a sampling approach for
obstacle avoidance and 2D trajectory planning for N-DOF robotic arms. The quality of created roadmap
depends on the initializing parameters such as density as well as resolutions of occupancy grid and tip
distribution grid. The motion planner has been developed for all types of manipulators, different joint types and
handling various cost functions. Various scenarios have been successfully simulated for manipulators with
different degrees of freedom and different types of obstacles with any given start and goal configurations. The
simulation results indicate that the collision free motions in highly-constrained environments can be computed
in less than a minute.

Key-Words: - Optimal Path Planning, Hyper-redundant Manipulators, Obstacle Avoidance, Trajectory Planning

1 Introduction
Motion planning is the process of breaking down an
arbitrary robot motion task into computed discrete
movements while satisfying motion constraints and
optimizing some aspects of the movement. In
another word, motion planning in robotics can be
defined as the process of generating a path between
two pre-defined configurations while avoiding
collisions with a set of stationary obstacles [1].

Kinematic redundancy defines as of possession
more degrees of freedom than those required to
execute a given task. This condition yields to a
greater level of dexterity and flexibility for avoiding
singularities, joint limits, workspace obstacles while
minimizing joint torque and energy consumption
level which can be summarized in optimization of
performance indexes [2-3].

Generating a collision-free trajectory for an
object manipulation from a start configuration to a
goal configuration has been proved to be a hard
problem since the complexity of motion planning
increases significantly as the number of DOFs
grows [4]. Sampling-based motion planning
algorithms have been proved to be a successful
method in high dimensional C-space and with
minimum probability of failure [8].

Although there are various types of trajectory
designing algorithms, there is no conclusive method,

which could be able to perform in all regions with
different types of constraints [5].

Bohlin et al [6] introduced an algorithm based on
PRMs called Lazy PRM. This approach is to
minimize the running time of the planner by
minimizing the number of collision checks
performed during planning. The planner constructs a
roadmap assuming that all nodes and edges in the
roadmap are avoiding obstacles. Song et al [7]
presented a customized version of PRMs method
that postpone some of the validation checks such as
collision check to the query stage which performs
efficiently for many problems.

Based on the literature review and to address the
drawbacks of the studied methods, a set of research
objectives are defined as follows:
• Developing a comprehensive trajectory planner

for different scenarios using non-redundant,
redundant and hyper-redundant manipulators.

• A novel method for mapping all types of
obstacles and workspaces.

• Handling various cost functions based on the
scenarios.

• User-control accuracy and resolution based on
the scenarios.

• Fast and efficient motion planner.
• High reliability in obstacle avoidance

applications.

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 254 Volume 16, 2017

2 Methodology
The proposed approach for developing a collision-
free trajectory planning for redundant and hyper-
redundant manipulators in this Paper, is based on
sampling-based motion planning and can be divided
into two phases: pre-processing phase and query
phase.

2.1. The Preprocessing Phase (off-line)
During the preprocessing phase as an off-line stage,
a data structure (or roadmap) is constructed in a
probabilistic way for a given workspace. The graph
contains nodes which are chosen over Cfree and the
edges that correspond to the feasible trajectories. A
proper sampling method is needed to generate
collision-free configurations in Cfree. A uniform
generation of nodes continues until the desired
density is achieved. Each generated random
configuration needs to be checked by the collision
detector method, whether the random generated
configuration is in collision with obstacles. Once
random nodes are created, they are connected to
their neighboring nodes. The local planner computes
a collision free trajectory between a node and its
neighbors. Then, randomly created configurations
and their connections are added to the graph. In this
stage, a roadmap generated in a way that can
quickly handle future queries [9].

The Initial empty graph includes only occupied
regions. Then, repeatedly, a random free
configuration is created and added to the number of
nodes. As the planner generates nodes, the local
planner connects the generated node to the
neighboring nodes with a straight line representing
the feasible trajectory between these two nodes. For
mapping the obstacle the occupancy grid has to be
created. The workflow of pre-processing phase is
depicted in Figure 1.

Figure 1. Workflow of the pre-processing phase

1) Robot Manipulator
The first step in the off-line phase is defining the

robot manipulator with all possible details. These
details includes the number of degrees of freedom
(DOF), Denavit-Hartenberg D-H parameters, joint
type, joint limit, and link cost values (pre-defined
weight for each link).

2) Occupancy Grid Mapping
Trajectory planning requires both manipulator

and workspace information. The manipulator
information can be safely defined as the number of
degrees of freedom, number of links and their
dimension. The workspace information consists of
obstacles location and their dimension. To create
occupancy grid, a numerical value is assigned to
each cell that indicates the probability of the cell
existence and also the difficulty of its reachability
[8]. In another word, the basic idea of the occupancy
grid mapping is to represent a map of the workspace
with a binary value to represent whether the cell is
occupied by the obstacle or it is vacant.

Discretization resolution of manipulator
workspace defines the number of cells per axis and
the quality of approximation. The occupied cells are
listed in Cobs and marked with color blue on the
roadmap (Figure 7).

The Point in Polygon (PIP) method in general
uses repeated geometric queries. Given multiple
polygons and a sequence of query points, PIP finds
the status for each query point. Each cell calls for
PIP function if any vertex of the cell is in the
defined polygon. If the answer value is “1” then that
cell is considered as an occupied cell and marked
with color blue. An extension has been added to this
method that adds all of surrounded cells of each
occupied cell to the blocked area.

3) Forward Kinematics Calculation
In this Paper, the D-H convention for forward

kinematics (FK) calculation is used to compute the
position of the links and the end-effector [10]. It is
prohibitively difficult to explicitly calculate the
shape of Cfree; however, detecting whether a given
configuration is in Cfree is an efficient solution to this
problem. First, the manipulator configuration is
calculated and then the collision detector recognizes
if the manipulator intersects any of the obstacles.

Equation 1 expresses the location and orientation
of the end-effector frame with respect to the base
frame as:

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 255 Volume 16, 2017

 1 (1)

4) Random Sampling
According to Lavalle [8], Cspace, the

configuration space, is “uncountably” infinite while
a sampling-based motion planning method can
consider at most a countable number of random
samples. This method can run forever then it may be
“countably” infinite, but practically the expectation
is to terminate the algorithm after considering a
finite number of random samples. Therefore, the
planner generates a dense random configurations for
any bounded Cspace. The maximum number of nodes
for each scenario and needed roadmap can be
equated to the mass, therefore, the total number can
be computed as follows:

Number of Total Nodes = Density ×
Volume of Cfree

(2)

One of the main issues that arises upon random
number generation is the probability of distribution.
To uniformly distribute all over the workspace, a
simple random number generator will not satisfy the
problem because it will not uniformly distribute as
degrees of freedom increase. In Figure 2.a, a 7-dof
manipulator with the maximum length of 8.25 units
was chosen to illustrate the end-effector position
distribution in black dots. Not only the normal
random generator has densely generated samples
around the center but also the manipulator end-
effector has barely reached the workspace
boundaries. Hereby, the shape of the distribution
needs to be controlled. Using Beta distribution as a
family of continuous probability distribution that is
parameterized by two positive shape parameters,
denoted by α and β, the result is much closer to a
uniform randomized node generation. Figure 2.b
indicates the effect of Beta distribution that allows a
uniform distribution all over the workspace and
reachability of the boundaries.

5) Tip Distribution Grid
According to Figure 3, although the Beta

distribution with tuned parameters yields to a more
uniform distribution of manipulator’s end-effector,
there is still a dense region of generated nodes
around center towards the right side of the map.

Therefore, the tip distribution grid (TDG)
solution is applied to satisfy the distribution
problem. The TDG controls the random generation
of configurations by controlling the position of
manipulator end-effector to uniformly distribute it
over the entire workspace. Each TDG cell has a

desired and predefined limit of number of nodes.
Hence, if the limit is exceeded by the generated
random configurations, the generated node will be
discarded and the iteration will continue to spread
nodes until all TDG cells reach the maximum
number of nodes. The maximum number of nodes
for each TDG cell is considered as a “mass”, thus it
can be assumed that the density multiplied volume
can be calculated as follows:

Maximum Nodes per Cell = Density ×
TDG Cell Volume

(3)

(a)

(b)
Figure 2.

(a) End-effector position distribution of 6000 generated random
configurations for 7-dof manipulator (maximum length 8.25
units) using simple random generator.
(b) End-effector position distribution of 6000 generated random
configurations for 7-dof manipulator (maximum length 8.25
units) using Beta distribution, α, β=5

6) Collision Detection
Once a random configuration is generated and

the location of the created sample is determined, the
collision status of the configuration should be
investigated. Hence, collision checking is a critical
component of sampling-based planning [8]. The
collision detector checks if the generated
configuration intersects any part of Cobs. If it is
collision-free, it will be added to the total generated
collision-free nodes; otherwise, it will be discarded.
The first step is the calculation of the end-effector’s
position. Then, this position is sent as a point to the
occupancy grid. If the point lies in Cobs that point
will automatically be discarded. Once the collision
detection process is done and the generated
configuration’s end-effector position is in Cfree; then
we need to check if any part of the robot collides
with an obstacle. The assumption during this
process is that the robot cannot intersect itself or the
links have an appropriate offset to avoid this
collision.

7) Finding Neighboring Samples
Once all random nodes are created and the

collision detection is performed for each one of

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 256 Volume 16, 2017

Panayotis
Stamp

them, they can be considered as the valid nodes and
their configuration is placed in the Cfree. Next crucial
step is to find the candidate neighbors around each
node. Each connection (edge) in the graph indicates
a pair of neighbor nodes (Figure 3). As the density
of the roadmap increases, the TDG cells decreases
in size and the number of neighboring nodes around
each node increases as well. One of the critical
factors in sample-based path planning algorithms is
the process of pairing close nodes. A criterion (i.e.
distance) is required to determine a neighborhood
region for each node and then for their connection.
The strategy that has been used to find the neighbor
nodes in the proposed methodology is the Tip
Distribution Grid (TDG). Not only the applied TDG
technique solves the problem of random nodes
distribution, but also it can be used as a criterion to
recognize the neighboring nodes in the workspace.

According to the introduced TDG, each
TDG cell includes nodes that their end-effector
positions are placed in that cell. Thus, all the nodes
that are placed in one TDG cell are considered as
cellmates as well as node neighbors; then the local
planner is called to connect the cellmates and
generate a linear trajectory between them.
Moreover, all the nodes of eight surrounding cells
are considered as the node neighbors (Figure 3).

1
2

4

5
6

8

9

10

11

12

13

14

17

18

20

21 22

23

24

25

26

27 28

29

30

31
32

33

34

35

37

39

40

42

47

48

9

50
52

54

56

60

61

63

6

65

71

85

87

96

03

104
109 116117

118
Figure 3. 7-dof manipulator node neighbors selection;
workspace dimension= 10 unit by 10 units, density= 1

8) Local Planner
The local planner is in charge of connecting the

neighbor nodes. The straight-line segments in
Figure 3 show the connections between two nodes.
However, the trajectory between two neighbor
nodes, which is not necessarily a straight line, is
generated by the local planner while satisfying the
collision free condition.

The quality of the collision detection for the
trajectories depends on the workspace and
obstacles’ geometry. For instance, if there are
obstacles with sharp edges and vertices the local
planner must generate paths with higher resolution.

9) Cost Function
Path planning for highly redundant manipulators

involves cost functions that have to be optimized
since there are large numbers of degrees of freedom
performing a task. Moreover, there are different
criteria and conditions for the robotic arms since
they are designed to perform various types of tasks
in different workspaces. Hereby, one of the main
contributions of the proposed technique for hyper-
redundant robotic arms motion planning, is handling
and optimization of various cost functions
simultaneously. Here, a simple and common cost
function is defined which can be applicable in
industrial tasks that optimize multiple cost functions
simultaneously:
• Distance: finding the shortest Euclidean

distance between the end-effector positions
from initial to goal configuration.

• Time: finding the shortest trajectory between
initial and goal configuration.

• Total joints displacement: the objective is
having minimum joints displacement in
accordance to the assigned costs for each link.

In most cases, the manipulator must rapidly
perform a task in the shortest path while the
cumulative links movements are minimized.

2.2. The Query Phase (real-time)
By using the constructed roadmap in the off-line
preprocessing phase, paths are to be found between
any initial and goal configurations during the query
phase. In another word, once the roadmap is
generated, it contains occupancy grid, all valid
nodes, and all feasible obstacle-avoiding trajectories
between neighbor nodes and initial robot properties.
The strategy that has been used in the query phase
for connecting any arbitrary pairs of nodes is finding
the shortest/least cost path between any desired start
and goal nodes that involves the graph searching
algorithm A*. The workflow of the algorithm is
shown in Figure 4.

A* is the best-first graph search algorithm that
has been widely used in path finding because of its
performance and accuracy to find the efficient path.
Additionally, other studies found A* to be superior
to other methods [11]. Detailed information about
A* can be found in [12] and [13].

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 257 Volume 16, 2017

Figure 4. Real-time query phase workflow

3 Implementation
The proposed approach is implemented in
MATLAB platform because this platform is widely
accepted for academic purposes as well as in
industry. The overall procedure of implementation
of proposed algorithm can be listed as follows:
• Robot and links initialization (D-H parameters)
• Environment and obstacles initialization
• Tip distribution grid initialization
• Generation of random configurations
• Collision detection algorithm
• Recognition of neighbor nodes
• Local Planner
• A* graph search algorithm

The workflow of the developed modified PRM
planner is depicted in Figure 5. According to this
workflow, the off-line phase starts with generation
of obstacle-avoiding random configurations
followed by the robot and environment initialization
to create a roadmap to begin the query phase, which
needs a pair of initial and goal nodes to find the best
path.

Figure 5. Overview of presented planning algorithm.

To efficiently develop and implement the
proposed approach in MATLAB, one should use the
advantages of object-oriented programming OOP
since the planner is dealing with large number of
nodes and numerous properties for each node as
well as the edges and the trajectories between each
pair of neighbor nodes. Figure 5, demonstrates the
structure overview of this planner including the
classes, relations and connections. Thus, one may
define a class for each type of data that is like a
template for the creation of specific instances of that
class. The instances or objects contains actual data
for a particular entity that is represented by the
class. In addition, objects are not just passive data
containers. Objects actively manage the contained
data by allowing certain functions to be executed.
By precluding data that does not need to be public
for other classes and preventing external clients
from access and manipulation of local data, all class
functions can only be executed for a specific object
and their public access are denied. Using this
structure enables the planner to perform wide range
of variety of user-defined problems.

4 Result and Discussion
Implementation and all the simulations have been
done in MATLAB framework using Windows 8.1
on a Lenovo ThinkPad W530 processing with Intel
Core i7-3820QM 2.70 GHz (64-bit) processor and 8
GB of RAM.

In the results figures, the manipulator and its
joints are shown in bold black line, and green
circles, respectively. The obstacles are shown in
cyan line segments.

4.1. Scenario No.1
In the first scenario, the developed framework
simulates a model of 7-dof Canadarm 2 [14], to pick
up an object form an initial location and move it
along the free space and finally place it in a tight
location surrounded by a box-like obstacle. Figure 6
presents one of tasks that the Canadarm2 can
encounter while operating at the International Space
Station (ISS); which is simply done by the proposed
planner. The final configuration is exactly the best
approached configuration to place the end-effector
deep inside a narrow space. The 109-node roadmap
is generated in 276.4 seconds and the A* algorithm
finds the best path in 34.8 seconds. The density of
roadmap is 2 with the resolution of 60 units per axis
for occupancy grid mapping.

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 258 Volume 16, 2017

Figure 6. The designed trajectory for Canadarm2 in scenario

No. 1.

4.3. Scenario No.2
In this scenario the performance and capability of
the proposed motion planner is checked for an RRP
manipulator having a prismatic joint. Figure 7
shows one of the superior features of the proposed
method which has not been addressed properly in
other works in the literature.

Scenario No. 2 is designed to illustrate the
advantage of using prismatic joint for an end-
effector for reaching the farthest boundaries of a
workspace. The 46-node roadmap is generated in
39.3 seconds and the A* found the best path in 2.7
seconds. The density of the roadmap is 1 with the
resolution of 60 units per axis for occupancy grid
mapping.

Figure 7. The designed trajectory for a RRP manipulator in

scenario No. 2.

4.5. Scenario No.3
Last scenario presents the capability of the proposed
planner for generating a collision-free trajectory of a
16-dof hyper-redundant manipulator which has not
addressed comprehensively in other studies in the
literature. Sharp-edge obstacle avoidance of a
robotic arm with high number of DOF is one of the
most important features of the proposed planner.

Figure 8 shows a defined a scenario for a 16-dof
manipulator avoiding collisions in a highly
constrained workspaces with sharp-edge obstacles.

The 150-node roadmap is generated in nine
minutes and the A* found the best path in 40.3
seconds. The density of roadmap is 4 with the
resolution of 100 units per axis for occupancy grid
mapping. Obviously this scenario takes longer in
off-line stage, having said that the planner deals
with a hyper-redundant manipulator as well as a
high-resolution occupancy grid as a result of special
features of the obstacles in this scenario.

Figure 8. The designed trajectory for a 16-DOF

manipulator.
Table 1 shows the performance of the proposed

trajectory planner for selected scenarios. Its rows
represent degrees of freedom of the tested
manipulators, total generated collision-free nodes,
density, occupancy grid resolution, off-line CPU-
time, Real-time CPU-time, Cobs/Cfree area and
Longest Link/Narrowest Channel.

According to this table, due to the length of
roadmap trajectories, density and occupancy grid
resolution, the CPU-time for off-line phase
increases up to nine minutes. However, the real-time
phase is done a quite short period of computation
time for a 16-dof robotic arm in comparison to other
methods and non-sampling based approaches.

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 259 Volume 16, 2017

Table 1. Comparison between the results of defined scenarios

 Scenario
1

Scenario
2

Scenario
3

Degrees of Freedom
(DOF) 7 3 (RRP) 16

Density 2.0 1.0 4.0

Occupancy Grid
Resolution 60 60 100

Total Number
of Nodes 109 46 150

Off-line
CPU-time (sec) 276.4 39.31 539.3

Real-time
CPU-time (sec) 34.80 2.70 40.30

Cobs/Cfree
Area 0.635 0.155 0.138

Longest Link /
Narrowest Channel 3.000 1.834 0.150

5 Conclusions
A comprehensive efficient collision-free trajectory
planner for hyper-redundant manipulators has been
developed based on a multiple-query PRM
approach. The developed general motion planner is
capable of handling all required steps for path
planning as well as all types of high-dimensional
manipulators, different cost functions operating in
constrained environments with various sets of
obstacles in 2D. It is important to notice 2D path
planning is more constrained, so more difficult, than
3D path planning and that the proposed planner is
capable of implementing 3D collision avoidance.
Hyper redundant manipulators with a very large
number of DOF have been successfully simulated in
highly constrained workspaces, by the proposed fast
and efficient planner. The developed algorithm can
be expanded by dynamically-optimized motion
planning or energy-optimized collision-free
trajectory.

ACKNOWLEDGEMENTS

The authors also would like to express their
appreciation to Mr. Mehrdad Bakhtiari for his
valuable suggestions and advice on the path planner
programming.
This paper research has been supported by a grant
(No: 155147-2013) from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References:
[1] T. Lozano-Perez, "A simple motion-planning

algorithm for general robot manipulators," Robotics
and Automation, IEEE Journal of, 3(3), pp. 224-
238, 1987.

[2] I. D. Walker, "Kinematically redundant
manipulators," In Springer Handbook of Robotics,
pp. 245-268, 2008.

[3] A. Feizollahi and R. V. Mayorga, “On the modeling
and the optimal motion planning of manipulators via
a modified D* Lite search algorithm”, WSEAS
Transactions on Systems and Control, vol. 12, pp.
148-157, 2017.

[4] J. H. Reif and H. Wang, "Social potential fields: A
distributed behavioral control for autonomous
robot," Robotics and Autonomous Systems, vol. 27,
no. 3, pp. 171-194, 1999.

[5] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and
N. M. Amato, "A machine learning approach for
feature-sensitive motion planning," In Algorithmic
Foundations of Robotics VI, pp. 361-376, 2005.

[6] R. Bohlin and E. E. Kavraki, "Path planning using
lazy PRM," in ICRA'00. IEEE International
Conference on Vol. 1, 2000, pp. 521-528.

[7] G. Song, S. Miller, and N. M. Amato, "Customizing
PRM roadmaps at query time," in Proceedings 2001
ICRA. IEEE International Conference on Vol. 2,
2001, pp. 1500-1505.

[8] S. M. LaValle, Planning algorithms. Cambridge
university press, 2006.

[9] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars, "Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,"
Robotics and Automation, IEEE Transactions on,
12(4), pp. 566-580, 1996.

[10] P. Sabetian, Feizollahi, C. F. A., and S. A. A.
Moosavian, "A compound robotic hand with two
under-actuated fingers and a continuous finger," in
In Safety, Security, and Rescue Robotics (SSRR),
Kyoto, 2011, pp. 238-244.

[11] W. Zeng and R. L. Church, "Finding shortest paths
on real road networks: the case for A*,"
International Journal of Geographical Information
Science, pp. 531-543, 2009.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal
basis for the heuristic determination of minimum
cost paths," Systems Science and Cybernetics, pp.
100-107, 1968.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, " A formal
basis for the heuristic determination of minimum
cost paths," Systems Science and Cybernetics, vol.
4, no. (2), pp. 100-107, 1968.

[14] R. V. Mayorga, F. Janabi‐sharifi, and A. K . W ong,
"A Fast Approach For The Robust Trajectory
Planning Of Redundant Manipulators," Journal of
Robotic Systems, vol. 12, no. 2, pp. 147-161, Feb.
1995.

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari, Rene V. Mayorga

E-ISSN: 2224-2678 260 Volume 16, 2017

