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Abstract: - This Paper presents a general comprehensive computationally tractable collision free path planner 
for hyper-redundant manipulators multiple-query. The path planner is based on a sampling approach for 
obstacle avoidance and 2D trajectory planning for N-DOF robotic arms. The quality of created roadmap 
depends on the initializing parameters such as density as well as resolutions of occupancy grid and tip 
distribution grid. The motion planner has been developed for all types of manipulators, different joint types and 
handling various cost functions. Various scenarios have been successfully simulated for manipulators with 
different degrees of freedom and different types of obstacles with any given start and goal configurations. The 
simulation results indicate that the collision free motions in highly-constrained environments can be computed 
in less than a minute. 
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1 Introduction 
Motion planning is the process of breaking down an 
arbitrary robot motion task into computed discrete 
movements while satisfying motion constraints and 
optimizing some aspects of the movement. In 
another word, motion planning in robotics can be 
defined as the process of generating a path between 
two pre-defined configurations while avoiding 
collisions with a set of stationary obstacles [1]. 

Kinematic redundancy defines as of possession 
more degrees of freedom than those required to 
execute a given task. This condition yields to a 
greater level of dexterity and flexibility for avoiding 
singularities, joint limits, workspace obstacles while 
minimizing joint torque and energy consumption 
level which can be summarized in optimization of 
performance indexes [2-3]. 

Generating a collision-free trajectory for an 
object manipulation from a start configuration to a 
goal configuration has been proved to be a hard 
problem since the complexity of motion planning 
increases significantly as the number of DOFs 
grows [4]. Sampling-based motion planning 
algorithms have been proved to be a successful 
method in high dimensional C-space and with 
minimum probability of failure [8]. 

Although there are various types of trajectory 
designing algorithms, there is no conclusive method, 

which could be able to perform in all regions with 
different types of constraints [5]. 

Bohlin et al [6] introduced an algorithm based on 
PRMs called Lazy PRM. This approach is to 
minimize the running time of the planner by 
minimizing the number of collision checks 
performed during planning. The planner constructs a 
roadmap assuming that all nodes and edges in the 
roadmap are avoiding obstacles. Song et al [7] 
presented a customized version of PRMs method 
that postpone some of the validation checks such as 
collision check to the query stage which performs 
efficiently for many problems. 

Based on the literature review and to address the 
drawbacks of the studied methods, a set of research 
objectives are defined as follows: 
• Developing a comprehensive trajectory planner 

for different scenarios using non-redundant, 
redundant and hyper-redundant manipulators. 

• A novel method for mapping all types of 
obstacles and workspaces.  

• Handling various cost functions based on the 
scenarios. 

• User-control accuracy and resolution based on 
the scenarios. 

• Fast and efficient motion planner.  
• High reliability in obstacle avoidance 

applications. 
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2 Methodology 
The proposed approach for developing a collision-
free trajectory planning for redundant and hyper-
redundant manipulators in this Paper, is based on 
sampling-based motion planning and can be divided 
into two phases: pre-processing phase and query 
phase.  

2.1. The Preprocessing Phase (off-line) 
During the preprocessing phase as an off-line stage, 
a data structure (or roadmap) is constructed in a 
probabilistic way for a given workspace. The graph 
contains nodes which are chosen over Cfree and the 
edges that correspond to the feasible trajectories.  A 
proper sampling method is needed to generate 
collision-free configurations in Cfree. A uniform 
generation of nodes continues until the desired 
density is achieved. Each generated random 
configuration needs to be checked by the collision 
detector method, whether the random generated 
configuration is in collision with obstacles. Once 
random nodes are created, they are connected to 
their neighboring nodes. The local planner computes 
a collision free trajectory between a node and its 
neighbors. Then, randomly created configurations 
and their connections are added to the graph. In this 
stage, a roadmap generated in a way that can 
quickly handle future queries [9]. 

The Initial empty graph includes only occupied 
regions. Then, repeatedly, a random free 
configuration is created and added to the number of 
nodes. As the planner generates nodes, the local 
planner connects the generated node to the 
neighboring nodes with a straight line representing 
the feasible trajectory between these two nodes. For 
mapping the obstacle the occupancy grid has to be 
created. The workflow of pre-processing phase is 
depicted in Figure 1. 

 
Figure 1. Workflow of the pre-processing phase 

1) Robot Manipulator 
The first step in the off-line phase is defining the 

robot manipulator with all possible details. These 
details includes the number of degrees of freedom 
(DOF), Denavit-Hartenberg D-H parameters, joint 
type, joint limit, and link cost values (pre-defined 
weight for each link). 

2) Occupancy Grid Mapping 
Trajectory planning requires both manipulator 

and workspace information. The manipulator 
information can be safely defined as the number of 
degrees of freedom, number of links and their 
dimension. The workspace information consists of 
obstacles location and their dimension. To create 
occupancy grid, a numerical value is assigned to 
each cell that indicates the probability of the cell 
existence and also the difficulty of its reachability 
[8]. In another word, the basic idea of the occupancy 
grid mapping is to represent a map of the workspace 
with a binary value to represent whether the cell is 
occupied by the obstacle or it is vacant.  

Discretization resolution of manipulator 
workspace defines the number of cells per axis and 
the quality of approximation. The occupied cells are 
listed in Cobs and marked with color blue on the 
roadmap (Figure 7). 

The Point in Polygon (PIP) method in general 
uses repeated geometric queries. Given multiple 
polygons and a sequence of query points, PIP finds 
the status for each query point. Each cell calls for 
PIP function if any vertex of the cell is in the 
defined polygon. If the answer value is “1” then that 
cell is considered as an occupied cell and marked 
with color blue. An extension has been added to this 
method that adds all of surrounded cells of each 
occupied cell to the blocked area. 

3) Forward Kinematics Calculation 
In this Paper, the D-H convention for forward 

kinematics (FK) calculation is used to compute the 
position of the links and the end-effector [10]. It is 
prohibitively difficult to explicitly calculate the 
shape of Cfree; however, detecting whether a given 
configuration is in Cfree is an efficient solution to this 
problem. First, the manipulator configuration is 
calculated and then the collision detector recognizes 
if the manipulator intersects any of the obstacles. 

Equation 1 expresses the location and orientation 
of the end-effector frame with respect to the base 
frame as: 
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4) Random Sampling 
According to Lavalle [8], Cspace, the 

configuration space, is “uncountably” infinite while 
a sampling-based motion planning method can 
consider at most a countable number of random 
samples. This method can run forever then it may be 
“countably” infinite, but practically the expectation 
is to terminate the algorithm after considering a 
finite number of random samples. Therefore, the 
planner generates a dense random configurations for 
any bounded Cspace. The maximum number of nodes 
for each scenario and needed roadmap can be 
equated to the mass, therefore, the total number can 
be computed as follows: 

 
Number of Total Nodes = Density ×  
Volume of Cfree 

(2)   

One of the main issues that arises upon random 
number generation is the probability of distribution. 
To uniformly distribute all over the workspace, a 
simple random number generator will not satisfy the 
problem because it will not uniformly distribute as 
degrees of freedom increase. In Figure 2.a, a 7-dof 
manipulator with the maximum length of 8.25 units 
was chosen to illustrate the end-effector position 
distribution in black dots. Not only the normal 
random generator has densely generated samples 
around the center but also the manipulator end-
effector has barely reached the workspace 
boundaries. Hereby, the shape of the distribution 
needs to be controlled. Using Beta distribution as a 
family of continuous probability distribution that is 
parameterized by two positive shape parameters, 
denoted by α and β, the result is much closer to a 
uniform randomized node generation. Figure 2.b 
indicates the effect of Beta distribution that allows a 
uniform distribution all over the workspace and 
reachability of the boundaries. 

5) Tip Distribution Grid 
According to Figure 3, although the Beta 

distribution with tuned parameters yields to a more 
uniform distribution of manipulator’s end-effector, 
there is still a dense region of generated nodes 
around center towards the right side of the map. 

Therefore, the tip distribution grid (TDG) 
solution is applied to satisfy the distribution 
problem. The TDG controls the random generation 
of configurations by controlling the position of 
manipulator end-effector to uniformly distribute it 
over the entire workspace. Each TDG cell has a 

desired and predefined limit of number of nodes. 
Hence, if the limit is exceeded by the generated 
random configurations, the generated node will be 
discarded and the iteration will continue to spread 
nodes until all TDG cells reach the maximum 
number of nodes. The maximum number of nodes 
for each TDG cell is considered as a “mass”, thus it 
can be assumed that the density multiplied volume 
can be calculated as follows: 

 
Maximum Nodes per Cell = Density ×  
TDG Cell Volume 

(3)   

 

(a) 

 

(b) 
Figure 2. 

(a) End-effector position distribution of 6000 generated random 
configurations for 7-dof manipulator (maximum length 8.25 
units) using simple random generator.  
(b) End-effector position distribution of 6000 generated random 
configurations for 7-dof manipulator (maximum length 8.25 
units) using Beta distribution, α, β=5 

6) Collision Detection 
Once a random configuration is generated and 

the location of the created sample is determined, the 
collision status of the configuration should be 
investigated. Hence, collision checking is a critical 
component of sampling-based planning [8]. The 
collision detector checks if the generated 
configuration intersects any part of Cobs. If it is 
collision-free, it will be added to the total generated 
collision-free nodes; otherwise, it will be discarded. 
The first step is the calculation of the end-effector’s 
position. Then, this position is sent as a point to the 
occupancy grid. If the point lies in Cobs that point 
will automatically be discarded. Once the collision 
detection process is done and the generated 
configuration’s end-effector position is in Cfree; then 
we need to check if any part of the robot collides 
with an obstacle. The assumption during this 
process is that the robot cannot intersect itself or the 
links have an appropriate offset to avoid this 
collision. 

7) Finding Neighboring Samples 
Once all random nodes are created and the 

collision detection is performed for each one of 

WSEAS TRANSACTIONS on SYSTEMS Mahdi F. Ghajari,  Rene V. Mayorga

E-ISSN: 2224-2678 256 Volume 16, 2017

Panayotis
Stamp



 

 

them, they can be considered as the valid nodes and 
their configuration is placed in the Cfree. Next crucial 
step is to find the candidate neighbors around each 
node. Each connection (edge) in the graph indicates 
a pair of neighbor nodes (Figure 3). As the density 
of the roadmap increases, the TDG cells decreases 
in size and the number of neighboring nodes around 
each node increases as well. One of the critical 
factors in sample-based path planning algorithms is 
the process of pairing close nodes. A criterion (i.e. 
distance) is required to determine a neighborhood 
region for each node and then for their connection. 
The strategy that has been used to find the neighbor 
nodes in the proposed methodology is the Tip 
Distribution Grid (TDG). Not only the applied TDG 
technique solves the problem of random nodes 
distribution, but also it can be used as a criterion to 
recognize the neighboring nodes in the workspace. 

According to the introduced TDG, each 
TDG cell includes nodes that their end-effector 
positions are placed in that cell. Thus, all the nodes 
that are placed in one TDG cell are considered as 
cellmates as well as node neighbors; then the local 
planner is called to connect the cellmates and 
generate a linear trajectory between them. 
Moreover, all the nodes of eight surrounding cells 
are considered as the node neighbors (Figure 3). 
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Figure 3. 7-dof manipulator node neighbors selection; 
workspace dimension= 10 unit by 10 units, density= 1 

8) Local Planner 
The local planner is in charge of connecting the 

neighbor nodes. The straight-line segments in 
Figure 3 show the connections between two nodes. 
However, the trajectory between two neighbor 
nodes, which is not necessarily a straight line, is 
generated by the local planner while satisfying the 
collision free condition. 

The quality of the collision detection for the 
trajectories depends on the workspace and 
obstacles’ geometry. For instance, if there are 
obstacles with sharp edges and vertices the local 
planner must generate paths with higher resolution. 

9) Cost Function 
Path planning for highly redundant manipulators 

involves cost functions that have to be optimized 
since there are large numbers of degrees of freedom 
performing a task. Moreover, there are different 
criteria and conditions for the robotic arms since 
they are designed to perform various types of tasks 
in different workspaces. Hereby, one of the main 
contributions of the proposed technique for hyper-
redundant robotic arms motion planning, is handling 
and optimization of various cost functions 
simultaneously. Here, a simple and common cost 
function is defined which can be applicable in 
industrial tasks that optimize multiple cost functions 
simultaneously: 
• Distance: finding the shortest Euclidean 

distance between the end-effector positions 
from initial to goal configuration. 

• Time: finding the shortest trajectory between 
initial and goal configuration. 

• Total joints displacement: the objective is 
having minimum joints displacement in 
accordance to the assigned costs for each link. 

In most cases, the manipulator must rapidly 
perform a task in the shortest path while the 
cumulative links movements are minimized. 

2.2. The Query Phase (real-time) 
By using the constructed roadmap in the off-line 
preprocessing phase, paths are to be found between 
any initial and goal configurations during the query 
phase. In another word, once the roadmap is 
generated, it contains occupancy grid, all valid 
nodes, and all feasible obstacle-avoiding trajectories 
between neighbor nodes and initial robot properties. 
The strategy that has been used in the query phase 
for connecting any arbitrary pairs of nodes is finding 
the shortest/least cost path between any desired start 
and goal nodes that involves the graph searching 
algorithm A*. The workflow of the algorithm is 
shown in Figure 4. 

A* is the best-first graph search algorithm that 
has been widely used in path finding because of its 
performance and accuracy to find the efficient path. 
Additionally, other studies found A* to be superior 
to other methods [11]. Detailed information about 
A* can be found in [12] and [13]. 
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Figure 4. Real-time query phase workflow 

 
 
3 Implementation 
The proposed approach is implemented in 
MATLAB platform because this platform is widely 
accepted for academic purposes as well as in 
industry. The overall procedure of implementation 
of proposed algorithm can be listed as follows: 
• Robot and links initialization (D-H parameters) 
• Environment and obstacles initialization 
• Tip distribution grid initialization 
• Generation of random configurations 
• Collision detection algorithm  
• Recognition of neighbor nodes 
• Local Planner 
• A* graph search algorithm 

The workflow of the developed modified PRM 
planner is depicted in Figure 5. According to this 
workflow, the off-line phase starts with generation 
of obstacle-avoiding random configurations 
followed by the robot and environment initialization 
to create a roadmap to begin the query phase, which 
needs a pair of initial and goal nodes to find the best 
path. 

 
Figure 5. Overview of presented planning algorithm. 

To efficiently develop and implement the 
proposed approach in MATLAB, one should use the 
advantages of object-oriented programming OOP 
since the planner is dealing with large number of 
nodes and numerous properties for each node as 
well as the edges and the trajectories between each 
pair of neighbor nodes. Figure 5, demonstrates the 
structure overview of this planner including the 
classes, relations and connections. Thus, one may 
define a class for each type of data that is like a 
template for the creation of specific instances of that 
class. The instances or objects contains actual data 
for a particular entity that is represented by the 
class. In addition, objects are not just passive data 
containers. Objects actively manage the contained 
data by allowing certain functions to be executed. 
By precluding data that does not need to be public 
for other classes and preventing external clients 
from access and manipulation of local data, all class 
functions can only be executed for a specific object 
and their public access are denied. Using this 
structure enables the planner to perform wide range 
of variety of user-defined problems. 
 
 
4 Result and Discussion 
Implementation and all the simulations have been 
done in MATLAB framework using Windows 8.1 
on a Lenovo ThinkPad W530 processing with Intel 
Core i7-3820QM 2.70 GHz (64-bit) processor and 8 
GB of RAM. 

In the results figures, the manipulator and its 
joints are shown in bold black line, and green 
circles, respectively. The obstacles are shown in 
cyan line segments. 

4.1. Scenario No.1 
In the first scenario, the developed framework 
simulates a model of 7-dof Canadarm 2 [14], to pick 
up an object form an initial location and move it 
along the free space and finally place it in a tight 
location surrounded by a box-like obstacle.  Figure 6 
presents one of tasks that the Canadarm2 can 
encounter while operating at the International Space 
Station (ISS); which is simply done by the proposed 
planner. The final configuration is exactly the best 
approached configuration to place the end-effector 
deep inside a narrow space. The 109-node roadmap 
is generated in 276.4 seconds and the A* algorithm 
finds the best path in 34.8 seconds. The density of 
roadmap is 2 with the resolution of 60 units per axis 
for occupancy grid mapping. 
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Figure 6. The designed trajectory for Canadarm2 in scenario 

No. 1. 

4.3. Scenario No.2 
In this scenario the performance and capability of 
the proposed motion planner is checked for an RRP 
manipulator having a prismatic joint. Figure 7 
shows one of the superior features of the proposed 
method which has not been addressed properly in 
other works in the literature. 

Scenario No. 2 is designed to illustrate the 
advantage of using prismatic joint for an end-
effector for reaching the farthest boundaries of a 
workspace. The 46-node roadmap is generated in 
39.3 seconds and the A* found the best path in 2.7 
seconds. The density of the roadmap is 1 with the 
resolution of 60 units per axis for occupancy grid 
mapping. 

 
Figure 7. The designed trajectory for a RRP manipulator in 

scenario No. 2. 

 

 

4.5. Scenario No.3 
Last scenario presents the capability of the proposed 
planner for generating a collision-free trajectory of a 
16-dof hyper-redundant manipulator which has not 
addressed comprehensively in other studies in the 
literature. Sharp-edge obstacle avoidance of a 
robotic arm with high number of DOF is one of the 
most important features of the proposed planner. 

Figure 8 shows a defined a scenario for a 16-dof 
manipulator avoiding collisions in a highly 
constrained workspaces with sharp-edge obstacles. 

The 150-node roadmap is generated in nine 
minutes and the A* found the best path in 40.3 
seconds. The density of roadmap is 4 with the 
resolution of 100 units per axis for occupancy grid 
mapping. Obviously this scenario takes longer in 
off-line stage, having said that the planner deals 
with a hyper-redundant manipulator as well as a 
high-resolution occupancy grid as a result of special 
features of the obstacles in this scenario. 

 
Figure 8. The designed trajectory for a 16-DOF 

manipulator. 
Table 1 shows the performance of the proposed 

trajectory planner for selected scenarios. Its rows 
represent degrees of freedom of the tested 
manipulators, total generated collision-free nodes, 
density, occupancy grid resolution, off-line CPU-
time, Real-time CPU-time, Cobs/Cfree area and 
Longest Link/Narrowest Channel. 

According to this table, due to the length of 
roadmap trajectories, density and occupancy grid 
resolution, the CPU-time for off-line phase 
increases up to nine minutes. However, the real-time 
phase is done a quite short period of computation 
time for a 16-dof robotic arm in comparison to other 
methods and non-sampling based approaches. 
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Table 1. Comparison between the results of defined scenarios 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

Degrees of Freedom 
(DOF) 7 3 (RRP) 16 

Density 2.0 1.0 4.0 

Occupancy Grid 
Resolution 60 60 100 

Total Number  
of Nodes 109 46 150 

Off-line 
CPU-time (sec) 276.4 39.31 539.3 

Real-time 
CPU-time (sec) 34.80 2.70 40.30 

Cobs/Cfree 
Area 0.635 0.155 0.138 

Longest Link / 
Narrowest Channel 3.000 1.834 0.150 

 
 
5 Conclusions 
A comprehensive efficient collision-free trajectory 
planner for hyper-redundant manipulators has been 
developed based on a multiple-query PRM 
approach. The developed general motion planner is 
capable of handling all required steps for path 
planning as well as all types of high-dimensional 
manipulators, different cost functions operating in 
constrained environments with various sets of 
obstacles in 2D. It is important to notice 2D path 
planning is more constrained, so more difficult, than 
3D path planning and that the proposed planner is 
capable of implementing 3D collision avoidance. 
Hyper redundant manipulators with a very large 
number of DOF have been successfully simulated in 
highly constrained workspaces, by the proposed fast 
and efficient planner. The developed algorithm can 
be expanded by dynamically-optimized motion 
planning or energy-optimized collision-free 
trajectory. 
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