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Abstract: An alternative analytical solution to six degrees-of-freedom position and attitude estimation problem is
proposed. The proposed method relies on the use of Singular Value Decomposition to the transformation matrix
between the currents in the transmitter and in the receiver. The proposed method is validated using synthetic data,
in which a random motion is applied to the transmitter within an environment with different levels of noise. Once
the efficacy of the method is confirmed, the proposed algorithm is benchmarked against a well established closed-
form solution. The presented method was able to accurately obtain the position and orientation, with performance
comparable to the benchmark.
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1 Introduction
Six degrees-of-freedom (6-DOF) position and attitude
estimation is a problem that frequently arises in com-
puter vision and robotics, in which it is desired to
determine the position and orientation of a given ob-
ject, in relation to a reference frame. Electromagnetic
(EM) trackers have been widely studied and recently
used in applications that require a high level of accu-
racy, such as image-guided surgery and other medical
applications [13, 3, 10, 15, 11], as well as in virtual
reality and motion capture [6, 2]. To obtain an accu-
rate position, calibration techniques were developed
to reduce environment interference and other sources
of error [7] or alternative approaches for coil settings
[4]. However, the pose estimation methods have not
changed in the same pace.

The pioneering paper on 6-DOF EM motion
tracking [12] describes an algorithm to find the po-
sition and orientation of an electromagnetic motion

tracker recursively using linear transformations and
rotation matrices. Later, matrix closed-form solu-
tions and iterative approximations using quaternion-
based methods were developed [8]. Closed form solu-
tions are desirable over numeric approximations since
they are non-iterative, which increases the processing
speed.

The present work proposes an alternative analyt-
ical solution to the position and orientation estima-
tion problem in 6-DOF electromagnetic Tracking sys-
tems using Singular Value Decomposition (SVD). The
method is non-iterative, which provides a fast and ac-
curate solution.

2 Preliminaries
2.1 Electromagnetic Motion Tracker
The system herein discussed is the same proposed in
[12] and [8]. It consists in a two sets of three-axis or-
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thogonal coils, one acting as a source and other as a
sensor. The objective of this system is to identify the
relative position and orientation between source and
sensor, as shown in Fig. 1. Sensor position is rep-
resented in spherical coordinates (α1, β1, ρ), relative
to source reference, while sensor orientation is deter-
mined by Euler angles (φ1, θ1, ψ1). Using the notation
presented in [12], the subscript indicates the coordi-
nate frame which the variable is related; variables with
subscript 1 are referenced to source coordinate frame,
while the subscript 5 indicates that the variable is re-
lated to the sensor coordinate frame. The distance ρ
does not have a subscript since this variable does not
depend on the coordinate frame [12].
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Figure 1: Position (in blue) and Orientation (in
red) parameters in a 6-DOF Electromagnetic Motion
Tracking system

By exciting a N-turns coil with a variable current
of amplitude I, a magnetic dipole field is created, with
magnetic moment µ described by (1), where Ω is the
surface vector of the coil, with the same direction of
the normal vector n, defined by the right hand rule.
For a circular coil with radius r, Ω = πr2n.

µ = NIΩ (1)

For a sufficiently small loop (ρ >> r), the mag-
netic field generated at an arbitrary point P(ρ, α, β)
in the near field region (kρ << 1, where k is the
wavenumber) can be described by the radial and tan-
gential components alone. The equations (2) and (3)
presents the magnitude of the radial and tangential
components of the magnetic field at a point P [1].

Hr(ρ, β) =
µ

2πρ3 cos β (2)

Ht(ρ, β) =
µ

4πρ3 sin β (3)

Faraday’s Law states that placing another coil at
point P, the variable magnetic field will induce a in-
duced current over it. Since the strength of the field is
a function of the relative position between the excited
(source) and induced (sensor) coils, it is possible to
deduce P from the source and sensor currents. By us-
ing three concentric coils in both source and sensor,
with their magnetic moments mutually perpendicular,
it is possible to obtain the relative position and orien-
tation between source and sensor. Usually, source and
sensor have the same parameters, such as number of
coil turns and surface area.

The excitation of the source happens in three se-
quential excitation states. Each state is represented by
a vector, where each component stands for the current
value for the orthogonal coils at the given state. The
excitation sequences must have linearly independent
states, in order to be readily identifiable. The sim-
plest example of excitation sequence is the excitation
of only one coil at each state.

The magnetic field generated by each source ex-
citation state generates a corresponding set of induced
currents in the sensor. In vector notation, f(n)

1 stands
for the source excitation currents vector at a given n
state, while f(n)

5 is the sensor induced currents vector
at the same n excitation state. They can be amalga-
mated into two matrices, F1 and F5, as shown in (4)
and (5).

F1 =
[
f(1)
1 f(2)

1 f(3)
1

]
=


f (1)
1x f (2)

1x f (3)
1x

f (1)
1y f (2)

1y f (3)
1y

f (1)
1z f (2)

1z f (3)
1z

 (4)

F5 =
[
f(1)
5 f(2)

5 f(3)
5

]
=


f (1)
5x f (2)

5x f (3)
5x

f (1)
5y f (2)

5y f (3)
5y

f (1)
5z f (2)

5z f (3)
5z

 (5)

Both source and sensor are connected to a com-
puting unit, that runs an algorithm to estimate posi-
tion and orientation from the given current vectors.
The algorithm is executed after each sequence of three
excitation states [12]. After three excitation states, it
is possible to build the source excitation and sensor
induced matrices, that contain sufficient information
to determine the relative position and orientation be-
tween source and sensor.

The electromagnetic coupling between source
and sensor can be described as a linear transforma-
tion between source to sensor coordinate frames [12].
By using spherical coordinates, rotation is one of the
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main elements for the determination of the relative po-
sition and orientation between source and sensor. Any
rotation can be expressed as a rotation matrix.

A rotation of an angle γ around a u-axis can be
written in matrix form as Ru

γ. Any rotation matrix can
be seen as a combination of canonical rotation ma-
trices, which have rotation axis in the same direction
of the unit vectors of the Cartesian coordinate frame.
The canonical rotation matrices for an arbitrary rota-
tion angle γ are shown in Table 1.

Table 1: Canonical Rotation Matrices
Rotation Axis Canonical Rotation Matrix

x Rx
γ =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ


y Ry

γ =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ


z Rz

γ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1


Using rotation matrices and physical and geomet-

rical relationships, the matrix equation for the electro-
magnetic coupling between source and sensor is writ-
ten as (6). By solving this matrix equation, it is pos-
sible to obtain the sensor induced currents based on
the source currents and physical information of both
source and sensor.

f(n)
5 =

C
ρ3 Rx

φ1
Ry
θ1

Rz
ψ1

Rz
−α1

Ry
−β1

SRy
β1

Rz
α1

f(n)
1 (6)

In (6), the S matrix represents the geometrical and
physical coupling relationship between the sensor and
the source when their x axis are aligned with zero ori-
entation, as explained in [12]. The matrix S is pre-
sented in (7). The constant C, as expressed in (8),
expresses the relationship between the sensor gain G,
number of sensor coil turns N, and the coil surface
area Ω [12].

S =


1 0 0
0 − 1

2 0
0 0 − 1

2

 (7)

C =
NΩG

2π
(8)

Equation (6) can be also represented in terms of
orientation and position rotation matrices. The ori-
entation matrix A can be written as in (9), while the
position matrix P is written as in (10).

A = Rx
φ1

Ry
θ1

Rz
ψ1

(9)

P = Ry
β1

Rz
α1

(10)

Computing the matrices in (9) and (10), A and P
can be written as in (11) and (12).

P =

cosα1 cos β1 sinα1 sin β1 − sin β1
− sinα1 cosα1 0

cosα1 sin β1 sinα1 sin β1 cos β1

 (12)

Using A and P, (6) can be rewritten as (13).

f(n)
5 =

C
ρ3 AP−1SPf(n)

1 (13)

Equation (13) describes the relationship between
the source currents in a given state and the sensor in-
duced currents. Therefore, the forward problem can
be set by defining the position P(ρ, α1, β1) and ori-
entation O(ψ1, θ1, φ1) of the sensor, and with known
source currents for each state, the induced currents can
be calculated. The inverse problem then is, given the
source and sensor currents, the position P and orien-
tation O should be defined.

3 Proposed Analytical Solution of
the Electromagnetic Tracking In-
verse Problem

The proposed method uses the Singular Value Decom-
position to obtain position and orientation informa-
tion in a electromagnetic motion tracking system sim-
ilar to the one proposed in [12] and [8]. Given an
n-order matrix W, its singular value decomposition
is presented in (14), where U = [u1 u2 · · · un] and
V = [v1 v2 · · · vn] are orthogonal matrices formed by
the left (ui) and right (vi) singular vectors of W; and
Σ = diag(σ1, σ2, · · · , σn) is a diagonal matrix where
the singular values of W are decreasingly ordered [5].

W = UΣVT (14)

The equation presented in (13) relates the infor-
mation provided by the motion tracking system, gen-
erated by source (f(n)

1 ) and sensor (f(n)
5 ). Using the

source excitation currents matrix F1 and sensor in-
duced currents matrix F5 presented respectively in (4)
and (5), the expression (13) can be rewritten as (15),
which represents the matrix system used to determine
a given position and orientation in space.

F5 =
C
ρ3 AP−1SPF1 (15)
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The matrix equation in (15) stands for a linear
transformation between the source and sensor coordi-
nate frames. The transformation matrix T is presented
in (16).

T = F5F1
−1 =

C
ρ3 AP−1SP (16)

Once T is known by the definition expressed in
(16), the Singular Value Decomposition can be per-
formed. To obtain the right-singular vectors in matrix
V and the singular values matrix Σ, TtT is computed
using T as in (16). The eigenvalues of TtT are pre-
sented in (17), in which λ2 is an eigenvalue with mul-
tiplicity 2.

ΛTtT =

[
λ1
λ2

]
=

 C2

ρ6

C2

4ρ6

 (17)

Knowing the eigenvalues of TtT, the singular val-
ues σi can be obtained by taking their square roots.
Thus, the matrix Σ can be written as in (18).

Σ = diag(σ1, σ2, σ3) =


C
ρ3 0 0
0 C

2ρ3 0
0 0 C

2ρ3

 (18)

The corresponding unit eigenvectors for each (17)
eigenvalue are presented, being (19) for λ1, and (20)
and (21) for λ2. It can be observed that λ2 is a com-
plete eigenvalue, as it has a number of eigenvalues
equal to its multiplicity.

vλ1 =

− cos β1 cosα1
−cos β1 sinα1

sin β1

 (19)

v(1)
λ2

=


sin β1

k
0

cosα1 cos β1

k

 (20)

v(2)
λ2

=

−sinα1
cosα1

0

 (21)

where

k =

√
cos2 α1 cos2 β1 + sin2 β1 (22)

Since the basis of the λ2 eigenspace has two vec-
tors, any linear combination of these vectors presented
in (23) is also an eigenvector of TtT, consequently a
right-singular vector of T. Therefore, any eigenvector
of λ2 eigenspace can be written as (23), where c1 and
c2 are real scalars.

vλ2 =


c1

sin β1
k − c2sinα1
c2 cosα1

c1
cosα1 cos β1

k

 (23)

By combining the right singular vectors of T pre-
sented in (19) and (23) the matrix V can be obtained,
as presented in (24), where c1, .., c4 are real scalars.

From the singular values σi of (18) and the right-
singular matrix V, the position coordinates can be de-
termined as shown in (25) for the distance ρ, (26) for
the azimuth angle α1, and (27) for the elevation angle
β1.

ρ =
3

√
C
σ1

=
3

√
C

2σ2
=

3

√
C

2σ3
(25)

α1 = tan−1
(
v21

v11

)
(26)

β1 = tan−1
(
v31 cosα1

−v11

)
= tan−1

(
v31 sinα1

−v21

)
(27)

An important feature of this method is that the
matrices Σ and V have no common variable, with V
being in function of the position angles α1 and β1,
while Σ is in function of the distance ρ. Therefore, the
position coordinates can be determined independently
using SVD over the linear transformation matrix T.

Since the eigenvector of λ1 is not a linear combi-
nation as λ2 eigenvectors, it makes the first column of
V more predictable than the others. Because of this,
the calculation of α1 and β1 is made with values of
vλ1 .

One important subject in EM motion tracking sys-
tems is to determine whether a tracking value is real
or spurious. Thanks to electromagnetic symmetries
of the motion tracker, position angles must be studied

A =

 cosψ1 cos θ1 sinψ1 cos θ1 − sin θ1
cosψ1 sin θ1 sin φ1 − sinψ1 cos φ1 sinψ1 sin θ1 sin φ1 + cosψ1 cos φ1 cos θ1 sin φ1
cosψ1 sin θ1 cos φ1 + sinψ1 sin φ1 sinψ1 sin θ1 cos φ1 − cosψ1 sin φ1 cos θ1 cos φ1

 (11)
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within a fixed interval. This must be done because dif-
ferent points in the hemispherical space may show the
same induction behaviour due to the magnetic field
symmetry. In this case, the possible tracking angles
must be limited and common sense must be used to
determine the real position of the sensor [12]. Orien-
tation angles, however, are only limited by the possi-
ble motions that the sensor can execute over his own
center.

The distance ρ between source and sensor is such
that only the quasi-static field component is signifi-
cant, which varies with the inverse cube of the dis-
tance [12]. Therefore, ρ must be much less than the
λ
2π ratio, where λ is the wavelength of the excitation
signal, and greater than the source radius r. Table 2
shows the interval of values that each variable may
assume.

Table 2: Interval of Possible Position and Orienta-
tion Variables Values in an Electromagnetic Motion
Tracker

Variable Interval

ρ
[
r, λ2π

)
m

α1 [−π2 ,
π
2 ] rad.

β1 [0, π2 ] rad.
ψ1 [−π, π] rad.
θ1 [−π2 ,

π
2 ] rad.

φ1 [−π, π] rad.

The inverse tangent function arctan was chosen to
track back the position angles in (26) and (27) because
of its codomain range, that covers the α1 and β1 span
shown in Table 2.

It must be noted that the coupling constant C
must be known to determine the distance ρ between
source and sensor in (25), however it can be calculated
through measurements in known distances, since the
singular values in Σ only hold relationships between
the C and ρ.

Therefore, the position coordinates P could be ob-
tained through SVD. In order to obtain the orienta-
tion coordinates O, the problem can be reduced to a
Wahba’s problem by mathematically translating the
sensor signals back to the source coordinate frame
[14]. As proposed by Markley [9], Wahba’s problem
can also be solved through SVD. A method to obtain

the orientation coordinates without resorting to a coor-
dinate transform and SVD was presented by Kuipers
[8], where P and o are obtained separately.

4 Validation Methodology
The herein presented method was validated using syn-
thetic data. A program that generates the sensor in-
duced currents for a given set of source currents and
sensor position and orientation was written. For a
fixed set of source currents, 20,000 samples of uni-
form distribution random position and orientation sig-
nals are generated within each variable range. For test
purposes the distance ρ between source and sensor
was limited to 1 m, with a source radius of 3 cm. The
analytical solution was applied over the linear trans-
formation matrix T obtained as in (16), based solely
on the source and sensor currents. Then, the true and
calculated positions and orientations are submitted to
a statistical error analysis.

After testing the method for a noiseless environ-
ment, a sensitivity to noise test was applied, to ver-
ify the behaviour of the system under noisy environ-
ments. Trough simulation, additive white Gaussian
noise with different Signal-to-Noise Ratios (SNR)
were applied over the sensor currents, getting 20, 000
samples for each SNR value. After applying the ana-
lytical solution, percentage error between true and cal-
culated position and orientation was obtained to ana-
lyze the disturbance of the applied noise over the po-
sition calculation.

Once the error analysis had been performed, the
method presented herein was compared with a pre-
viously published closed-form solution. The method
chosen as the benchmark was the closed-form solu-
tion presented by Kuipers [8]. For each position and
orientation, both methods were applied under differ-
ent levels of noise, and their normalized root-mean-
square errors are compared for each parameter. Also,
the time performance of each method was compared,
with both algorithms running on the same computer,
using Matlab® R2017a on an Intel® Core™ i5-3470
at 3.20 GHz × 4, with an Ubuntu™ GNOME 17.04
operating system.

With this method, the validity of the analytical so-
lution can be determined, since the induction simula-
tion program receives random position and orientation

V =


− cos β1 cosα1 c1

sin β1
k − c2sinα1 c3

sin β1
k − c4sinα1

− cos β1 sinα1 c2 cosα1 c4 cosα1

sin β1 c1
cosα1 cos β1

k c3
cosα1 cos β1

k

 (24)
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Table 3: Error Analysis Between True and Calculated Position and Orientation Values in a Noiseless Environment

Variable RMS Error Normalized RMS Error (%)

ρ 3.8970 · 10−17 m 1.1102 · 10−14

α1 7.3618 · 10−12◦ 1.4178 · 10−11

β1 6.8372 · 10−14◦ 2.6645 · 10−13

ψ1 1.3136 · 10−11◦ 1.2623 · 10−11

θ1 1.3044 · 10−12◦ 2.5091 · 10−12

φ1 1.3179 · 10−11◦ 1.2679 · 10−11

Table 4: Error Analysis Between True and Calculated Position and Orientation Values in a Noisy Environment
SNR

Error
Variable

(dB) ρ α1 β1 ψ1 θ1 φ1

20
RMS 7.6317 mm 35.1831◦ 33.0100◦ 59.7902◦ 5.4953◦ 61.0573◦

NRMS (%) 2.6349 67.3264 127.0473 57.4196 10.5655 58.9741
R2 0.9993 0.5979 0.2311 0.6981 0.9889 0.6823

40
RMS 0.76280 mm 13.1699◦ 12.7124◦ 23.3040◦ 0.5448◦ 26.1498◦

NRMS (%) 0.2652 25.3544 48.9295 22.4509 1.0516 25.0498
R2 1.0000 0.9368 0.7920 0.9502 0.9999 0.9383

60
RMS 75.968 µm 5.5624◦ 5.3552◦ 8.7455◦ 0.0545◦ 7.6531◦

NRMS (%) 0.0263 10.7489 20.6300 8.4101 0.1054 7.3597
R2 1.0000 0.9885 0.9585 0.9929 1.0000 0.9946

80
RMS 7.5370 µm 2.2475◦ 2.1777◦ 1.7551◦ 0.0054◦ 5.7274◦

NRMS (%) 0.0026 4.3118 8.3854 1.6889 0.0105 5.5155
R2 1.0000 0.9981 0.9930 0.9997 1.0000 0.9970

100
RMS 0.75558 µm 0.0496◦ 0.0003◦ 0.0463◦ 0.0005◦ 0.0462◦

NRMS (%) 0.0003 0.0955 0.0013 0.0447 0.0010 0.0448
R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

values, delivering only a set of source and sensor cur-
rents, without any other information in advance, such
as last sensor position, required in other methods. The
analytical solution must track them directly from these
current values in noisy and noiseless environments,
being also robust to parameter uncertainty, making it
a fair validation test for the presented method, due to
its randomness.

5 Validation Results

5.1 Error Analysis
Table 3 shows the description of the error between true
and calculated values for a random motion simulation
for each of the six degrees-of-freedom after 20,000
samples for a noisy environment, while Table 4 shows
the error description for noisy environments.

From the presented results, it can be seen that
the analytical solution successfully calculated the true
position and orientation with mean error equal to

1.5387 × 10−17% and mean standard deviation of
8.7965 × 10−16%, based only on the source and in-
duced sensor currents in a noiseless environment.
Such small values of error can be taken as zero with-
out any loss of generality. Therefore, the analytical so-
lution is valid for the whole interval of possible track-
ing variables, having a very small error between the
calculated value and the true position and orientation.

Observing the results presented in Table 4, it can
be seen that the analytical solution is fairly robust to
additive white Gaussian noise for signal-to-noise ra-
tios greater than 60 dB. The estimation of the distance
ρ suffer less interference on the error, since it can be
obtained through an average of the different forms to
obtain it as shown in (25). With S NR = 80 dB, all
the variables have sufficiently small errors, while in
S NR = 100 dB it is almost negligible. It must be ob-
served that the elevation angle β1 presents the largest
error value of all measurements, due to its dependency
of the azimuth angle α1, which in noisy environments,
greatly increases the elevation error.
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Figure 2: Normalized root-mean-square error of each measurement when applying the proposed an Kuipers’
method [8] under different noise levels.

Aside from the environmental noise over the sen-
sor, parameter uncertainty is another source of error
that may occur during the calculation. Thus, the ro-
bustness of the method to parameter uncertainty must
also be assessed.

5.2 Benchmarking
Figure 2 presents the normalized root-mean-square
errors (NRMSE) for each measurement when apply-
ing the proposed method and the closed-form solution
presented by Kuipers [8], under different noise lev-
els, while Figure 3 shows the histogram of the elapsed
time for each algorithm to obtain all measurements.

From Figure 2, it can be observed that, even
though the two methods have different mathematical
approaches, both have comparable results under dif-
ferent noise levels. Even though the difference is slim,
the proposed algorithm retrieves a better estimate of
the position angles α and β, while Kuipers’ algorithm
retrieves a more accurate estimate of the orientation
angle θ. All other measurements are have very close
NRMSEs.

Figure 3: Histogram of the elapsed time for each
inversion when applying the proposed an Kuipers’
method [8] under different noise levels.

Analyzing the time performance, both algo-
rithms have have similar performances, with Kuipers’
method having an advantage of 17 µs if the sample
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modes are compared.
With this benchmark analysis it can be seen that

the proposed method has a performance comparable
to the closed-form solution presented by Kuipers [8].

6 Conclusions
This article proposes an alternative analytical solu-
tion for the electromagnetic motion tracking system
problem using Singular Value Decomposition. The
method was validated through simulation using uni-
formly distributed random position and orientation
values and benchmarked against the closed-form so-
lution proposed by Kuipers. The proposed analytical
method retrieved very good results, calculating posi-
tion and attitude with very low errors and error vari-
ances, attesting its efficacy. The analytical method
also presented good robustness to additive Gaussian
noise. However, for more accurate solutions, it is
recommended to remove possible sources of noise of
the surrounding environment and apply noise filtering
techniques over the received signal.

When compared with Kuipers’ method, the pre-
sented algorithm yielded results that are comparable
with the benchmark, having a slightly better result
for some position angles under high levels of noise.
The time performance of the presented method is also
comparable to the one presented by Kuipers’ algo-
rithm, with a narrow advantage of 17 µs for the latter.

This method is presented as an alternative solu-
tion to the electromagnetic motion tracking problem
and opens a venue for future improvement on the al-
gorithm and different applications.
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