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Abstract:-With the development of the of China's electric power system, wind power, as a clean energy, can be 

used to optimize the structure of electrical energy, thus can largely reduce the emission of pollutants and 

contribute to the sustainable development of the national economy. In wind power projects, scientific and 

rational choice for the wind turbine generator in actual wind farm is the core part, and it is directly related to the 

economic benefits of wind power projects. This paper analyze the status of current wind power capacity in 

global and China and reveals the regularity of the growing proportion of wind power in future energy. On this 

basis, this paper determines the comprehensive evaluation system of wind turbine generator selection and 

establishes a comprehensive evaluation model based on BP neural network which optimized by particle swarm 

optimization. A specific example verifies the validity of the proposed method, thus can provide guidance of the 

evaluation of the wind turbine generators selection in wind farms. 

Key-Words: -Wind turbine generators selection; Comprehensive evaluation; BP neural network; Particle swarm 

optimization; Parameter optimization 

 

1 Introduction 

In recent years, wind power develops very quickly. 

By the end of 2013, global cumulative installed 

capacity reached 318137MW with an increase of 

12.4%. According to the forecast of  Global Wind 

Energy Council, the global cumulative installed 

wind power capacity is expected to exceed one 

million megawatts to 2020, at that time, wind power 

will meet approximately 11.5% ~ 12.3% of global 

energy demand [1,2]. As the core equipment of wind 

power, the comprehensive optimization selection of 

wind turbine generator needs to considerate a 

variety of factors and indicators under the 

construction and operation process of wind farm. It 

is not only the problem of wind power at the 

technical level, but also relates to many other 

disciplines, such as the environmental, economic, 

operational management and optimization [3,4]. The 

sustainable development of wind power industry 

constantly updated the technology type and design 

idea of wind turbine generators (WTG). Due to the 

complex and diverse selection of the wind turbines 

in the early wind farm construction, the research on 

wind turbine selection methods have emerged, and 

the wind turbine selection has become a relatively 

new field of scientific applications [5,6,7]. 

Jangamshetti SH and Rau VG [8] presented 

that the wind farm capacity factor should be 

determined as the evaluation of wind turbines 

selection. And found that the capacity factors 

computed from the Weibull statistical model using 

cubic mean of wind speed data fairly match the 

actual capacity factors. Based on the above, two 

researchers presented two new concepts, 

standardized power curve and matching coefficients. 

They pointed out that in order to achieve the best 

rated wind speed, its corresponding matching 
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coefficient must be maximum. Thus, determine the 

best rated wind speed is a matter to be considered 

first in wind turbine selection [9]. Based on the two 

authors' research above, Shyh-JierHuang and 

Hsing-Ho Wan [10] pointed that the matching 

coefficient reaches the maximum when the rated is 

equal to the non-rated item value in the capacity 

factor equation. Furthermore, Ssu-yuan Hua and 

Jung-ho Cheng [11] modified the capacity factor 

formula, and derived its simple algorithm. The 

algorithm was used in the selection of 32 wind 

farms selection. Doddamani and Jangamshetti [12] 

simplified the algorithm of wind turbine 

composition, and used it to re-establish the technical 

and economic indicators. Li Wang [13] pointed out 

that the rated capacity and rated wind speed are the 

critical parameters in selection and set four technical 

and economic indicators as metrics. Albadi and 

El-Saadany [14] presented a new formulation for the 

turbine-site matching problem, based on wind speed 

characteristics at any site, the power performance 

curve parameters of any pitch-regulated wind 

turbine, as well as turbine size and tower height. 

Although there are many literature about fan 

selection at home and abroad, we find they 

primarily focus on the research of wind turbine 

generator selection local algorithm and single 

required index, which are lack of comprehensive 

and systematic research on the entire wind turbine 

generator selection method by comparing these 

literature. Through analysis of some cases of wind 

turbine selection, several problems are exited as 

follows: I. There are few alternatives before work, 

so the choice is reduced which leads to the 

one-sidedness of the optimal solution. II. The 

operation performance and technical service quality 

after running of wind turbine generator are not fully 

considered and evaluated. III. The methods for 

evaluation of wind turbine generator selection are 

traditional and the evaluation is a bit subjective. 

Therefore, the paper constructs a comprehensive 

evaluation system of fan selection, and introduces 

the artificial intelligence algorithms to solve wind 

turbine generator selection evaluation problem.  

2 The construction of WTG selection 

and comprehensive evaluation index 

system 

Because there are lots of factors and indexes 

influencing fan selection, it has become an 

important and complicated problem prior to the 

construction of wind field. Therefore, it 

is necessary to establish a systematic index system 

for wind turbine generator selection so that it can 

fully and accurately reflect the indicators of wind 

turbine generator and compare the merits of the 

candidate models objectively and reasonably. The 

establishment of wind turbine generator selection 

index system should be guided by the following 

principles [15]: (1) Authenticity. In order to 

accurately reflect the fan indicator, the data 

collection should be as accurate and true as possible 

to avoid the wrong selection due to the data 

distortion. (2) Systematization. The whole index 

system should give due consideration to factors 

affecting fan operation and interlinkages among 

them, rather than simply list each index. (3) 

Independence. In order to reflect the actual status of 

the wind turbine, it shouldn’t have a containment 

relationship among the indexes of the same level, 

and the correlation among indicators should be 

reduced. (4) Operability. The indications of index 

system should be measurable or assessable, which 

not only exist in theory, and the establishment of 

indicators should reduce the difficulty of data 

collection as much as possible. (5)Quantitative and 

qualitative. When selecting indicators, we can’t take 

quantitative or qualitative one, which is likely to 

ignore more important data and make the selection 

result inaccurate, lack of comprehensiveness and 

scientific nature. 

Based on the principle of wind turbine 

generator selection above and literature [16,17] at 
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home and abroad, a wind turbine generator selection 

index system is established in this paper which 

contains five top grade indexes including wind 

turbine generator technical performance, wind field 

adaption performance, economic performance and 

the performance of products and technical service, 

thirteen second grade indexes and thirty-nine third 

indexes as shown in Table 1. 
 

Table.1 Comprehensive evaluation index system of wind turbine generator selection 

Technical performance 

of wind turbine A 

Technical parameters of the 

main components A1 

Impeller A11 

GearboxA12 

Generator A13 

Tower A14 

Control system A15 

Equipment weight A16 

Global features A2 

Availability A21 

Ways of power regulation A22 

Guarabtee rate of power curve 

A23 

The design lifetime of a wind 

turbine generator A24 

Testing and certifications A3 

Wind turbine generator 

certification A31 

Power curves testing A32 

Load testing A33 

Noise testing A34 

Power quality testing A35 

Low voltage ride through testing 

A36 

Adaptability of wind 

farm B 

The fitness of wind resource B1 

Annual average wind speed B11 

Wind speed measuring B12 

IEC security level B13 

The adaptability of special 

environment B2 

Working environment B21 

Special design B22 

Grid compatibility B3  

Economic performance 

C 

Project static investment C1 

Investment in equipment and 

installation items C11 

Construction project investment 

C12 

Other expense C13 

Basic reserve funds C14 

Project dynamic investment C2 

Operation cost C21 

Maintenance cost C22 

Failure cost C23 

Recycle and disposal cost C24 

Economic characteristics of the 

unit C3 

Power generation C31 

Per kilowatt investment C32 
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Unit power investment C33 

Internal rate of return C34 

Operation performance 

D 

Operation performance of this 

unit D1 
 

Operation performance of the 

same capacity D2 
 

Technical service 

capabilities E 

Product supply E1 

Wind turbine generator 

manufacturer E11 

Supply ability E12 

Technology and service E2 

R & D capability E21 

Technical support capability E22 

Quality assurance and control 

capabilities E23 

After service capability E24 

 

3 The comprehensive evaluation model 

of WTG selection based on BPNN 

optimized by PSO 

3.1 BP neural network 

Set nXXX ,,, 21   as BP neural network input 

vectors, mYYY ,,, 21   as output vectors, ijw  and 

jkw  as weights. The typical BP neural network 

topology is shown in Fig.1.

 

 

Fig.1 BP neural network structure 

 

The input node n and the output node m reflect 

the mapping between the independent variables n 

and the dependent variables m. The prediction steps 

based on BP neural network include network 

architecture components, training and prediction. 

The basic work flow is shown in Fig.2 [18]. 

    The construction phase of BP neural network 

model is primarily based primarily on system model 

and design goal to value assignment of the network 

parameters, which including: the input nodes n, the 

output nodes m, the hidden nodes l. What’ s more, 

initialize the hidden layer threshold 1b  and output 

layer threshold 2b  according to the network forms 

and set the learning rate and neuronal activation 

function. 
    BP neural network training is a process of 

multiple cycles: First enter the training sample and 

calculate the output layers, then adjust the weights 

X1 

X2 

Xn 

…
… 

…
… 

Y1 

Y2 

Ym 

Input Layer Hidden Layer Output Layer 

ijw

 

jkw
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of each layer based on the output error and error in 

each layer which generate by the output error 

feedback, repeat this process until the end of the 

training [19].  

 

Fig.2 BPNN flow chart 

 
 
3.2 Particle swarm optimization algorithm 
Particle swarm optimization (PSO) algorithm is a 

swarm intelligence algorithm which simulates the 

behavior of bird flocking foraging and proposed by 

the American scholar R.C.Eberhart and J.Kennedy 

in1995 [20]. 

Particle swarm make up of N individual 

particles and search optimal solution iteratively in 

D-dimension space. Particles update themselves by 

tracking two “extremes”, one is the best location of 

the particle ),,,( 21 iDiii pppp  , another is 

the current optimal position of entire population 

),,,( 21 gDggg pppp  . When particles fly in 

the space, there exist position feature and velocity 

feature. Particles update the velocity ijv and 

position ijx in the process of iteration by using the 

following formula: 

)(
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Where t  represents the maximum iteration, 

Ni ,,2,1  , Dj ,,2,1  . ],[ maxmax vvvij  , 

maxv is a constant.  jjij XXx max,min, , , in which 

jX min, and jX max, are constant. 1c and 2c is the 

learning factor, in general, 221  cc . 1r and 2r are 

random numbers between 0 to 1. w represents 

inertia weight which means the new particle inherits 

its parent particle velocity and have a great impact 

on the convergence speed and accuracy of PSO, its 

formula is as follow: 

   emmes wtttwww         (3) 

In which 
sw , ew represent the initial inertia weight 

and end weight respectively. t is the current 

iteration number. mt represents the maximum 

iteration [21]. 

 

 

3.3 The comprehensive evaluation model of 
WTG selection 

 
From the introduction and analysis of PSO and 

BPNN above, we can conclude that BPNN is expert 

in local search, but there exits the problems about 

slow training speed, falling into local minimum 

easily and being weak in global search; However, 

PSO proposes probability choice as the main idea 

and is good at global search which can easily find 

the global optimal solution or suboptimal solution 

that has a good performance, but for the local search 

ability is insufficient. Because of these reasons, we 

propose the model which combine the advantages of 

PSO and BPNN has a better performance. In this 

paper, the connection weights and thresholds of 

BPNN are optimized by PSO, then the samples of 

System Modeling 

Construction of suitable 

BP neural network 

Initialization 

Training 

Ending 

Test Data 

Forecasting 

Building 

Training 

Forecasting 
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the wind turbine generator are training by the 

optimized BPNN and the comprehensive 

performance of wind turbine generators is obtained. 

The steps of the comprehensive evaluation 

model of fan selecting based on this algorithm are as 

followings [22]: 

    (1) Initialize the parameters of BP neural 

network and PSO algorithm respectively, including 

the number of hidden layers, the number of nodes in 

the input, hidden and output layer, the maximum 

number of training, learning rate, the target error, the 

dimension of particles, iterations, population size, 

and initial position and velocity of particles. 

(2) The learning samples are tested by BP 

neural network corresponding to each particle vector 

respectively and the test error value of the current 

position of each particle is obtained and regarded as 

the fitness value of the particles. The expression is 

as follows: 

 


n

i

ii
i R

FR

n
f

1

1

               (4) 

Where 
iR  is the desired output and 

iF  is the test 

output. 

    (3) The optimal fitness value of each particle is 

compared with the current fitness value, if better, the 

current position of the particle is updated as the 

optimal position of the particle. 

    (4) Compare the best fitness value of the 

swarm and all the optimal fitness value of each 

particle, if better, the best position of the particle 

with the best fitness value is updated as the best 

position of the swarm. 

    (5) Calculate the inertia weight according to 

equation (3) and use the formula (1) and (2) to 

update the velocity and position of particles. 

(6) Check whether the termination condition is 

satisfied, if not return to step (2); or stop the 

computation and export the results. 

 

 

4 Case study 

This paper presents the wind farm which installed 

capacity is about 49.5MW is located in the Northern 

China, which has rich wind resource. 

 

 

4.1 Data acquisition 
According to the constraint conditions, which 

contain the wind resource condition, terrain 

condition, the requirements of technology 

development, the special requirements of wind 

power companies and the comprehensive strength of 

wind turbine generator manufactures, this paper 

select 60 kinds of wind turbine generators as the 

sample from the database which contains about 300 

kinds of wind turbine generators. 

Calculating the weights of indexes which is in 

the bottom of the comprehensive evaluation index 

system using the analytic hierarchy process [23], the 

result is shown in Table.2 

Table.2 The weights of comprehensive 

evaluation indexes 

Basic index Weight  Basic index Weight 

A11 0.0139 B3 0.0834 

A12 0.0139 C11 0.0208 

A13 0.0139 C12 0.0208 

A14 0.0139 C13 0.0208 

A15 0.0139 C14 0.0208 

A16 0.0139 C21 0.0208 

A21 0.0250 C22 0.0208 

A22 0.0250 C23 0.0208 

A23 0.0250 C24 0.0208 

A24 0.0083 C31 0.0104 

A31 0.0139 C32 0.0104 

A32 0.0139 C33 0.0313 

A33 0.0139 C34 0.0313 

A34 0.0139 D1 0.0694 

A35 0.0139 D2 0.0139 

A36 0.0139 E11 0.0208 

B11 0.0278 E12 0.0625 

B12 0.0278 E21 0.0083 

B13 0.0278 E22 0.0250 

B21 0.0417 E23 0.0250 

B22 0.0417 E24 0.0250 
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    Applying the method of expert scoring to 

estimate the quantitative indicators and qualitative 

indicators about wind turbine generator selection 

and the scoring range is in the scope [0,1], where 

[0,0.2) represents the performance is the worst, 

[0.2,0.4) means the result is worse, [0.4,0.6) shows 

that the performance is general, [0.6,0.8) represents 

the result is better and [0.8,1] means the 

performance is excellent. The higher the score is, 

the better the performance of index is. The average 

value of expert scoring is selected as the final result, 

and a part of evaluation results is shown in Table.3. 

Table.3 The evaluation results of each WTG index 

Index W-01 W-02 … W-59 W-60 

A11 0.93 0.91 … 0.76 0.66 

A12 0.96 0.92 … 0.88 0.60 

A13 0.65 0.67 … 0.66 0.91 

… … …

… … …

E22 0.61 0.93 … 0.68 0.77 

E23 0.78 0.83 … 0.84 0.74 

E24 0.75 0.82 … 0.82 0.82 

According to the evaluation results and the 

weights which are mentioned above, calculating the 

comprehensive performance levels of various wind 

turbine generators based on the following formula 

and the results are regarded as the expected output 

value of sample. 

  wsE
                (5) 

In which E  represents the expected output value, 
s  means the score of each index and w  is the 

weight of each index. The final sixty expected 

output values are shown in Table.4.

 

Table.4 The expected output values of sample 

NO. 
Expected 

output value 
NO. 

Expected 

output value 
NO. 

Expected 

output value 

W-01 0.7947 W-21 0.7805 W-41 0.7872 

W-02 0.8054 W-22 0.7946 W-42 0.8221 

W-03 0.8000 W-23 0.8083 W-43 0.7939 

W-04 0.7647 W-24 0.8100 W-44 0.7773 

W-05 0.8069 W-25 0.7980 W-45 0.7971 

W-06 0.7828 W-26 0.8345 W-46 0.8045 

W-07 0.8220 W-27 0.7841 W-47 0.8001 

W-08 0.7990 W-28 0.8452 W-48 0.7915 

W-09 0.7855 W-29 0.8059 W-49 0.7963 

W-10 0.7902 W-30 0.7990 W-50 0.8256 

W-11 0.7826 W-31 0.8361 W-51 0.8002 

W-12 0.8276 W-32 0.8413 W-52 0.7846 

W-13 0.8065 W-33 0.8154 W-53 0.8095 

W-14 0.8299 W-34 0.8397 W-54 0.7861 

W-15 0.8345 W-35 0.7602 W-55 0.7815 

W-16 0.7707 W-36 0.7793 W-56 0.8216 

W-17 0.7911 W-37 0.7677 W-57 0.7974 

W-18 0.7436 W-38 0.7981 W-58 0.7891 

W-19 0.7953 W-39 0.7886 W-59 0.7776 

W-20 0.7844 W-40 0.8083 W-60 0.7966 

 

4.2 Parameters optimization Before the optimization of connection weight and 
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threshold, the parameters of BPNN and PSO should 

be initialized, which are shown in Table.5 and 

Table.6. 

Table.5 Parameters setting of BPNN 

Parameter Initial value 

Node point number of input layer 42 

Number of hidden layer 1 

Node in hidden layer 14 

Node in output layer 1 

The maximum training times 100 

The accuracy of training error 0.001 

Learning rate 0.1 

 

Table.6 Parameters setting of PSO 

Param-

eters
N  mt  1c  2c  sw  ew  maxV

Value 20 500 2 2 0.3 0.9 1 

Optimized the connection ijw , jkw and threshold 

1b , 2b of BPNN by using PSO. In the optimization 

process, the iterative curve of fitness value is shown 

in Fig.3.
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Fig.3 Iterative curve optimized by PSO

    As is shown in Fig. 3, the fitness value of PSO 

is decreasing with the increase of the iteration. 

When the iteration time is 376, the iterative curve is 

converging. The optimal connection weights and 

thresholds which have been optimized by PSO are 

as follow: 

The connection weights which are from input 

layer to output layer are as follow: 

1442
6040.0918.00070.0

8009.28857.07807.2

9794.07042.17088.2




































ijw  

    The connection weights which are from hidden 

layer to output layer are as follow: 

114]6472.24816.02857.15349.1

9607.10121.11273.09781.26229.0

5801.21438.04119.14796.19622.0[




jkw

    

The thresholds which are from input layer to 

hidden layer are as follow: 

114

1

]9447.06522.05942.24698.1

5066.28630.18436.16834.12215.2

3443.00477.02114.08208.03653.2[




b

    The threshold which is from hidden layer to 

output layer is as follow: 9183.02 b  

 

4.3 The training and testing of BPNN 
The 60 samples of wind turbines are divided into 
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two groups, which the former 40 are as the training 

data and the later 20 are as the testing data. 

Combining the parameters which have been set, the 

connection weights and thresholds which have been 

optimized and training data with BPNN for training. 

There exits two conditions when the process of 

training is stop: on the one hand, when the training 

error reaches the setting target 0.001, the process is 

stop; on the other hand, when the iteration time has 

reached the maximum iteration 100, the process is 

stop. The iterative curve of training error is shown 

in Fig.4.
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Fig.4 The iterative curve of PSO-BPNN training error 

 

    As it is shown in Fig.4, when the iteration time 

is 24, the error accuracy of BPNN training reaches 

the target error 0.001. The training results of BPNN 

are shown in Table.7 and Fig.5.

 

Table.7 the training results of PSO-BPNN 

NO. 
Expected 

output value 

Training 

output value 
NO. 

Expected 

output value 

Training 

output value 

W-01 0.7947 0.7856 W-21 0.7805 0.7724 

W-02 0.8054 0.7917 W-22 0.7946 0.8020 

W-03 0.8000 0.8118 W-23 0.8083 0.8000 

W-04 0.7647 0.7756 W-24 0.8100 0.8185 

W-05 0.8069 0.8111 W-25 0.7980 0.7941 

W-06 0.7828 0.7974 W-26 0.8345 0.8219 

W-07 0.8220 0.8331 W-27 0.7841 0.7867 

W-08 0.7990 0.7969 W-28 0.8452 0.8498 

W-09 0.7855 0.7773 W-29 0.8059 0.8008 

W-10 0.7902 0.7959 W-30 0.7990 0.7960 

W-11 0.7826 0.7950 W-31 0.8361 0.8313 

W-12 0.8276 0.8159 W-32 0.8413 0.8403 

W-13 0.8065 0.8207 W-33 0.8154 0.8135 

W-14 0.8299 0.8160 W-34 0.8397 0.8376 
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W-15 0.8345 0.8461 W-35 0.7602 0.7681 

W-16 0.7707 0.7705 W-36 0.7793 0.7732 

W-17 0.7911 0.8005 W-37 0.7677 0.7767 

W-18 0.7436 0.7495 W-38 0.7981 0.7824 

W-19 0.7953 0.7961 W-39 0.7886 0.7946 

W-20 0.7844 0.7803 W-40 0.8083 0.7974 
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Fig.5 The training results of PSO-BPNN 

 

    From Table.7 and Fig.5, we can conclude that 

the training results of BPNN are satisfied, which the 

maximum relative error is 1.96% (sample number is 

W-38) and the minimum relative error is 

0.03%(sample number is W-16) in the training 

sample. So, BPNN which has been trained can be 

test. 

Add 20 samples into the trained BPNN for 

training, the testing results are shown in Table.8. 

The formula for calculating the relative error is as 

follow: 

%100



i

ii
i R

RP
RE

           (6)
 

Where iR is the expected output value and iF is the 

testing output value. 

Table.8 The testing results of PSO-BPNN 

NO. 
Expected 

output 

Testing 

output 

Relative 

error（%）

value value 

W-41 0.7872 0.7897 0.32 

W-42 0.8221 0.8099 -1.49 

W-43 0.7939 0.7818 -1.52 

W-44 0.7773 0.7655 -1.52 

W-45 0.7971 0.8100 1.61 

W-46 0.8045 0.8171 1.57 

W-47 0.8001 0.8094 1.17 

W-48 0.7915 0.8032 1.47 

W-49 0.7963 0.7830 -1.68 

W-50 0.8256 0.8306 0.60 

W-51 0.8002 0.7937 -0.81 

W-52 0.7846 0.7895 0.63 

W-53 0.8095 0.8175 0.99 

W-54 0.7861 0.8009 1.88 

W-55 0.7815 0.7781 -0.44 

W-56 0.8216 0.8136 -0.98 

W-57 0.7974 0.7913 -0.76 

W-58 0.7891 0.7818 -0.92 

W-59 0.7776 0.7881 1.35 
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W-60 0.7966 0.7944 -0.27 

 

4.4 Analysis of results 
In order to estimate the ability of PSO-BPNN 

comprehensive evaluation model, this paper 

proposes the traditional BPNN for comparison. The 

parameters setting of single BPNN are same as 

above. The testing results of single BPNN are 

shown in Table.9. 

Table.9 The testing results of single BPNN 

NO. 

Expected 

output 

value 

Testing 

output 

value 

Relative 

error（%）

W-41 0.7872 0.7681 -2.42 

W-42 0.8221 0.7923 -3.62 

W-43 0.7939 0.7668 -3.41 

W-44 0.7773 0.7751 -0.29 

W-45 0.7971 0.7853 -1.49 

W-46 0.8045 0.7745 -3.73 

W-47 0.8001 0.8108 1.34 

W-48 0.7915 0.8018 1.30 

W-49 0.7963 0.8133 2.13 

W-50 0.8256 0.8258 0.02 

W-51 0.8002 0.8023 0.26 

W-52 0.7846 0.7790 -0.71 

W-53 0.8095 0.8292 2.43 

W-54 0.7861 0.7675 -2.37 

W-55 0.7815 0.7572 -3.11 

W-56 0.8216 0.8448 2.81 

W-57 0.7974 0.7693 -3.52 

W-58 0.7891 0.8063 2.18 

W-59 0.7776 0.7761 -0.20 

W-60 0.7966 0.7954 -0.15 

 

Put the testing results of proposed model and 

single BPNN together to analyze and comparison. 

As is shown in Fig.6, for the proposed model, there 

exist 13 groups of testing results which have a better 

performance than single BPNN, 5 sets of testing 

results whose accuracy is lower than single BPNN 

and the rest of 2 sets testing results are worse than 

single BPNN obviously.
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Fig.6 Comparison of testing results 

 

As is shown in Fig.7, the relative errors of the 

proposed model are less fluctuant than the single 

BPNN, and that represents PSO-BPNN 

comprehensive evaluation model has a better 

generalization ability and lead to high tolerance rate.
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Fig.7 Relative error of PSO-BPNN and single BPNN 

 

Above all, the proposed model has a better 

performance, which has a higher accuracy and better 

generalization ability, than single BPNN in 

comprehensive evaluation of fan selection. For the 

problem of wind turbine generator selection in the 

future, PSO-BPNN comprehensive evaluation 

model can be used widely by putting the parameters 

of each wind turbine generator and the connection 

weights and thresholds which have been optimized 

into the proposed model, after training the model, 

then we can obtain the comprehensive evaluation 

results which is the standard of wind turbine 

generator selection. 

 

 

5 Conclusion 

With the target of wind turbine selection 

comprehensive evaluation, this paper establishes the 

hierarchy model of wind turbine generator selection 

comprehensive evaluation index system and takes 

the wind turbine generator indicators during the 

construction and operation of wind field into 

account, which contain the wind turbine technical 

performance, wind field adaption performance, 

economic performance, wind turbine generator 

operation performance and the performance of 

products and technical service. We use PSO to 

optimize the connection weights and thresholds of 

BP neural network, then put the optimized 

parameters, various types of initialization 

parameters and wind turbine generator samples into 

BP neural network for training and testing. Based on 

analysis of cases, it has been validated that BP 

neural network which is optimized by PSO can 

accurately assess the performance level of wind 

turbine generator, and the proposed model is 

superior to traditional single BP neural network 

model and can be used in actual wind turbine 

generator selection comprehensive evaluation 

problems. 
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