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Abstract: - The collision occurring when a ball in free falling strikes an inclined metallic fixed surface is 
analysed in the present paper. The launching height ensures plastic deformations due to ball indentation of the 
immobile surface (body, plate). The prints are scanned using laser profilometry and next analysed. An 
interesting result arises from the study of the correlation connecting the angle between the impact velocity and 
the immobile surface and the symmetry axis of the permanent prints 
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1 Introduction 
One of the most effective methods applied for 
dynamical analysis of a mechanical system, 
category including both robots and mechanisms, is 
the multibody dynamic analysis, [1], [2]. The 
systems regarding collision phenomena outline a 
particular class of multibody dynamic problems.  
 The impact phenomenon is characterised by the 
sudden variation of kinematical parameters, 
producing in the joints of the system particularly 
powerful forces, [3], [4]. The huge values of 
collision forces produce in most of cases, plastic, 
permanent deformations of the contact regions. In 
the case when the variation of kinematical 
parameters produces extremely fast, the value of the 
stresses can be as high as to generate irremediable 
damage of contacting surfaces. A comprehensive 
study concerning the collision behaviour of a system 
with complex geometry is especially intricate due to 
the multitude of parameters to be considered. 
Accordingly, most of the collisions studies refer to 
systems with simple geometry, requiring a number 
of parameters for dynamical behaviour model as 
small as possible. Taking into consideration that the 
impact phenomenon is in essence a mechanical 
contact accomplished in a short time period, the 
effect of the contact is strictly local. For this reason, 
when studying collision phenomena from complex 
systems, only the local geometry neighbouring 
potential impact points is established. As a result, is 
sufficient the study of collision behaviour of two 
simple bodies having the curvature radii identical to 
the real contacting surfaces. Complex phenomena, 

including sudden variation of characteristic 
parameters, are met in a wide range of engineering 
applications, from hydrodynamics to cutting edge 
robotic systems, [5], [6]. When modelling a system, 
similar to modelling any complex system, problems 
of optimization, algorithms and advanced computer 
software occur, [7], [8], [9]. Consequently, a large 
number of works study the collision phenomena 
between bodies delimited by plane, spherical or 
cylindrical surfaces between which take place 
motions, more or less complex. For this reason, the 
present paper studies the collision between a freely 
falling ball and the surface of an inclined plane.  
 
 

2 Theoretical background 
The aim of the paper is the study of collision 
between a free falling ball and a metallic prism. As 
the plastic deformations of the plane surface are 
intended, it was chosen a 19mmφ = ball from a ball-
bearing and the prism material is OLC-45 carbon 
steel, as delivered. This pair of materials ensures 
plastic deformations only for the plane surface. 
 
 
2.1 Study methods of impact phenomenon 
Every impact phenomenon is characterized by 
existence of two distinctive phases: compression 
and restitution.  The compression phase lasts since 
the moment the first points of the two bodies are 
contacting till the instance the normal approach 
between the two bodies reaches the maximum. The 
restitution phase begins from the moment 
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corresponding to the maximum approach and lasts 
till the last points of the two bodies separate from 
contact. Two main directions in approaching the 
impact phenomena were outlined in technical 
literature. The first method considers the impact 
between any two bodies as an instantaneous event. 
The method aims to determine the global variations 
of kinematical and dynamical post-impact 
parameters of the system, with respect to the 
kinematical and dynamical parameters of the system 
before contact beginning. The method is 
straightforwardly applied, without requiring 
advanced mathematical knowledge, [10], [11], [12].  
The variations of different parameters are expressed 
using the ratios of the same parameters 
corresponding to initiation and ending of impact. 
Among characteristic coefficients, the most 
important is undoubtedly the coefficient of 
restitution. A first defining of it is due to Newton, 
[11], who describes cinematically the coefficient of 
restitution e as the ratio with changed sign between 
the normal components of relative velocities of 
initial contact points.          
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In (1), n  represents the versor of the normal to the 
bodies’ surfaces. For the present work, the symbol 

)('  is used for the parameters characteristic to initial 
collision time and the symbol )("  is used for the 
parameters corresponding to the final moment. The 
definition (1) for the coefficient of restitution was 
useful till Kane, [13], analyzing the plane impact 
with friction for a double pendulum reaches the 
conclusion that accepting the definition (1) for the 
coefficient of restitution leads, when the geometry 
and initial kinematical state are conveniently 
chosen, to disobedience of the law of conservation 
of energy. To surpass this intricacy another 
definition for the coefficient of restitution is 
required. To this end, the hypothesis of finite 
continuous variation of impact force must be 
accepted. The new definition of the coefficient of 
restitution is due to Poisson, [11]. Thus:  
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Considering that:  
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represents the percussion, Hibbler [14], the 
definition states that the coefficient of restitution is 
the ratio between normal percussions corresponding 
to the restitution and compression phases. There 
were denoted it , ct  ft   the moments corresponding 

to contact initiation, maximum approach and impact 
ending, respectively. The second method of 
collision study accepts from start that during impact, 
all kinematical and dynamical parameters have a 
continuous variation. This assumption allows for 
estimating the values of contact time, maximum 
impact force and maximum approach. For the 
simplest impact model, namely the central impact of 
two elastic spheres, Timoshenko, [15], accepts the 
force versus normal approach variation following 
the elastic contact theory: 
 

3 / 2
elF Kδ= −  (4) 

 
where δ  is the normal approach and Κ  is a 
constant, depending on the bodies’ geometry and 
elastic properties. Timoshenko gives the contact 
time, maximum impact force and normal approach.  
According to the fundamental law of dynamics, 

F mδ= &&  (where the superscript point represents the 
derivative with respect to time), one can easily 
observe that even the simplest dynamic system with 
percussions leads to a nonlinear differential 
equation. Hunt and Crossley, [16], describe the 
impact with friction between two bodies using a 
Kelvin-Voigt model, expressed by a nonlinear 
differential equation. The main drawback of the 
model consists in the fact that the hysteresis loop is 
opened in origin, Fig. 1. According to this model, at 
the moment of impact ending, the interaction force 
between the bodies is not of rejection but of 
attraction. Hunt and Crossley abandoned the model 
and draw the conclusion that a closed in origin 
hysteresis loop requires that the force of internal 
friction is proportional to the elastic force and to the 
relative approaching velocity. The equation 
describing the impact with internal friction of two 
elastic spheres is: 
 

3 3

2 2m c K 0δ δ δ δ+ + =&& &  
 

(5) 
 
where c  is a constant and K  is the same constant as 
in eq. (4). Lankarani, [17], finds the constant c  from 
energy considerations and applies eq. (6) in the 
study of multibody systems dynamics. The energy 
hypothesis used by Lankarani allow for model 
employment only for quasi elastic bodies. Recently, 
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Flores, [18], amended the Lankarani model and thus 
it can be applied for any impact type. 

 
Fig.1 Hysteresis loop for Kelvin-Voigt model 

 
Alves et al. makes a review of viscoelastic models 
existent in literature, [19]. To be noticed that 
nonlinear differential equations describe all the 
models presented in [19]. Another aspect to be 
mentioned is that the coefficient of restitution 
appears in the structure of equations describing the 
dynamic behaviour of a dynamic system with 
percussions. From here it results the necessity of 
establishing this parameter as accurate as possible; 
moreover, as Goldsmith shows, [20], the name of 
coefficient is inadequate because it depends on 
velocity and especially for low velocities there is a 
strong dependence.  
 
 
2.2 The plane of percussions method (Routh) 
The models mentioned above are applicable where 
the friction force presents a continuous variation 
with velocity. In the case of dry Coulomb friction, 
the condition is not obeyed due to the fact that the 
friction force is characterized via inequalities, the 
dry friction forces being unilateral constraints, [21]. 
A reference work in the impact with friction domain 
is owing to Wang and Mason, [11]. For the study of 
two-dimensional impact with dry friction, they 
apply the plane of percussions method, a method 
extremely intuitive, proposed by Routh, [22]. As a 
principle, for the two bodies denoted 1 and 2, 
contacting in point O  , an axis system it is defined, 
with the axes directed along the normal and tangent 
to the surfaces of the bodies, and the centers of mass 
of the two bodies, 1C  and 2C  are established 
according to it. For both bodies, the Newton-Euler 
dynamic equations, [23], are written and the final 
kinematical parameters are found, as function of 
tangential tP  and normal nP  components of 
interaction percussion, Fig. 2.   
Finding the relative velocity of impact points, in the 
plane of percussions, [22], the geometrical locus of 
the points where the normal component of the 

velocity 21v  is zero is represented by the line of 
maximum compression )C( , Fig.3, and the 
geometrical locus of the points from percussions 
plane where the tangential component of the 
velocity 21v  is zero is represented by the stiction 
line )S( ; in addition to these two straight lines, the 
straight line of limit friction is traced, defined as: 

 
Fig.2 Plane impact with friction for two 

bodies 
 

t nP Pµ=  (6) 
 

and the ending straight line )T( , parallel to )C( , on 
which the impact finishes according to Newton’s 
hypothesis. For the study of a plane impact with 
friction, the hypothesis that during the entire impact 
process the normal percussion increases 
monotonically, is made. Thus, at the impact 
beginning, the characteristic point starts from origin 
and moves along the limit friction line LF . When 
the compression line is reached, the approaching 
phase ends.  

 
Fig.3 Plane of percussions, [6] 

 

The impact ends when, according to eq. (2), the 
following relation is fulfilled:   
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f cP (1 e )P= +  (7) 

 
The motion state of the system modifies only once, 
when the characteristic point reaches the stiction 
line )S( . The characteristic point will move along 
the steepest from the stiction lines (rolling relative 
motion) or along the reverse friction line )RF(  
when the sliding reverses its sign. At the 
intersections between the stiction line and 
compression line, and stiction line and terminal line, 
two points are defined, these points, together with 
the origin describe two half-lines crossing the plane 
in three regions, 1,2 and 3, Fig.3. Only in the 
domain 1 the same result is obtained with both 
definitions of coefficient of restitution.  
 
 

3 Drawing the Percussions Plane for 
the Impact between a Dropping Ball 
and a Tilted Immobile Plane 
The Newton-Euler dynamic equations for the 
collision between a dropping ball and a stationary 
inclined plane, Fig.4, have the form: 
 

C C t n

z t n

m( ' )

J ') CO ( )ω ω

− = +

( − = × +

v v P P

P P
 

 
(8) 

 
For the first eq. (8), it results two scalar equations: 

 

t t t

n n n

m( v v' ) P

m( v v' ) P

− =
− =

 
 

(9) 

 
The moment of momentum equation presents 
components only on z1 OOz ≡  axis. Because the 
components from the left side of second eq. (8) are 
expressed in the fix reference system and, 
additionally, 1Cz||Oz , it is convenient to perform 
the moment of percussion in the fix system: 
 

c c t y

CO OC

( x y ) ( P P )

× = − × =
= − + × +

P P

i j i j

 

 
(10) 

 
In (10) cx  and cy  are the coordinates of centre of 
mass of mobile body with respect to the fix system. 
Writing the moment of inertia of the body using the 
gyration radius, the moment of momentum theorem 
with respect to the centre of mass is written as:      

 
2

c t C nm ( ') y P x Pρ ω ω− = −  (11) 

The equations (9) and (11) form a system:   
 

t t t

n n n

m( v v' ) P

m( v v' ) P

− =
− =

 

2
c t C nm ( ') y P x Pρ ω ω− = −  

 
(12) 

 
Fig.4 Plane impact between a body and an immobile 

tilted surface 
 
having the solutions: 
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The eq.(8) are valid for any instant of collision and 
therefore the relative velocity between the colliding 
points is: 
 

rel t n

t n

v v C0

v v OC

ω

ω

= + + × =

= + − ×

v i j

i j
 

 
(14) 

 
Imposing the condition of zero for velocity 
component along tangential direction and normal 
direction, respectively, the equation for stiction line 
is obtained: 
 

2 2 2
C t c c n t c( y )P x y P m ( v' ' y )ρ ρ ω+ − = +  (15) 

  
together to the maximum compression line equation: 
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The relations (15) and (16) become simpler if the 
conditions for the particular case analyzed are 
applied (dropping ball): 
 

2 2
c c

n t

2
r ; x 0; y r

5
' 0; v' v' cos ; v' v' sin

ρ

ω φ φ

= = =

= = − =
 

 
(17) 

 
Consequently, the stiction line has the equation of a 
vertical line: 
 

 t

2
P mv' cos

7
φ= −  

 

(18) 

 
And the maximum compression line becomes an 
horizontal line of equation: 

 

nP mv' cosφ=  (
19) 

 
Due to the horizontality of compression line, the 
terminal line equation has the form: 

 

nP (1 e )mv' cosφ= +  (
20) 

 
In order to draw the plane of percussions, one can 
consider the modulus of tangential percussion in eq. 
(18). Fig.5 presents the plane of percussions for the 
case of dropping ball on tilted plane impact. From 
Fig.5 one can notice that two domains occur, 
depending on the relation between the friction 
angle µβ atan= , and the angle δ , namely smaller 
or larger than it. The angle δ  is defined by: 
 

2 tan
atan

7 1 e

φδ =
+

 
 

(20) 

 

 

Fig.5 Plane of percussions for the impact of a 
dropping ball on tilted plane 

If 
e1

tan

7

2

+
≤ φµ  the characteristic point moves only 

along the limit friction line 1LF  (sliding impact) 
and the impact ends in the 1E  point having the 
coordinates:     
 

n1

t1

P (1 e )mv' cos

P (1 e )mv' cos

φ
µ φ

= +

= − +
 

 
(

21) 
 

If 
e1

tan

7

2

+
> φµ  the characteristic point moves along 

the limit friction line 2LF  (sliding) until it reaches 
the stiction line in A, after that it moves along the 
stiction line till the end of impact, in 2E  (rolling 
motion, reverse sliding being impossible for this 
case) where the percussions have the values:   
 

t2

n2

2
P mv' sin

7
P (1 e )mv' cos

φ

φ

= −

= +
 

 
(

22) 

 
Using the values (21) and (22) of final percussions, 
and the eq. (13), written for particular case (17) of 
geometrical and kinematical parameters, the final 
values for the kinematical parameters are found, for 
the first case: 
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and for the second case, respectively: 
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4 Experimental Method for Post 
Impact Parameters Finding 
Literature analysis [24], [25], show that for residual 
prints incidence, the height of free falling of a ball 
on to a plane surface is 0.0715in 2mm≅ . 
Goldsmith, [20] and Johnson, [26] also presented 
this value. Thus is confirmed the fact that conditions 
of plastic deformation occurrence are quite easy to 
fulfil. Two aspects are intended: 
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• finding the velocity variation after impact; 
• analysis of remnant indentation geometry. 

Wang and Mason, [27], in the study of frictional 
plane impact from robotics applications, show that 
for usual forces the presence of Coulomb friction 
leads to inconsistency of d`ynamics relations, but 
introducing into analysis the percussions 
characteristic to collision problems, this drawback is 
eliminated. The percussions problem occurs in the 
ball couplings, [28] and also in the design of 
linkages extra care must be accorded to percussions, 
when exterior forces are applied by shock, [28], 
[29], [30].  The scheme from Fig.6 is used to 
establish the velocity variation subsequent to 
collision. The ball, mm5.9R=  radius, is launched 
on vertical direction and at the moment of reaching 
the surface of inclined plane, its centre have been 
travelled the distanceh . At the instant of impact 
between the ball and the plane, the centre of the ball 
is in the point 1O . After impact, the centre of the 

ball has the velocity "
0v  and its direction makes an 

angle α  with the horizontal line. After impact, the 
centre of the ball will follow a parabolic trajectory 
To study the motion of the ball, a reference system 
is attached, the origin in coincidence to the centre of 
the ball in the moment it reaches the inclined plane, 
the axes being oriented to the horizontal and vertical 

direction.  The two purposed parameters, the "
0v  

velocity and the α  angle, can be found only if, as it 
will be revealed subsequently, the magnitude and 

orientation of vector 21OO=l  in Oxy  system can 
be précised. To this end, as experimental data is 
registered, beside the flight period, the distance 

|OO|L 211 = , by fixing the tips of a pair of 

compasses in the points 1A  and 1B  respectively.  

 

Fig.6 Diagram for finding post-collision velocity 
and angle 

Additionally, on the vertical line of the 1B  point is 

set a 2B  point, at an imposed distance: 
 

1 2H | B B |=  (2
5) 

 
Alaci et al, [31] applies for positional analysis the 
Hartenberg-Denavit method for a spatial linkage, 
obtaining analytical results. The same method could 
be applied here, but for avoiding cumbersome 
calculus, a particular method, specific to planar 
linkages is adopted. The length of line segment 

21BB  is measured using the pair of compasses. In 
the coordinate system, a vector v  is précised by its 
magnitude v  and the angle it makes with the 
positive Ox  semiaxis. The equation:         
 

1 1 1 2 1 2A B B B A B+ =  (2
6) 

 
have to be solved, and the method of vector contour 
analysis is applied, [32]. The vector equation (26) 
projected on the axes leads to the following system: 
 

1 1 2 2

1 1 2 1

L cos H cos L cos

L sin H sin L sin

ϕ ψ ϕ
ϕ ψ ϕ

+ =
 + =

 
 

(27) 

 
where H,L,L 21  and ψϕϕ ,, 21  are size and 

orientation angles of vectors 11BA , 21BA  and  

21BB  respectively. The ψ  angle takes only two 
values: 
 

2

πψ = ±  
 

(2
8) 

 

depending on the position of the point 1B , above or 

bellow 2B  point 2B , respectively. By solving 

system (27), the values of the angles 1ϕ  and 2ϕ  are 
found; from the multiple solutions, the ones 
corresponding to actual situation ought to be chosen. 
Applying the vector contour analysis for the 

11211 ABOOA −−−−  contour, the following 
system of scalar equations is obtained: 
 

2 2 1 1

2 2 1 1

Rcos cos R L cos 0
2

R sin sin R L sin 0
2

π φ ϕ ϕ

π φ ϕ ϕ

  − + + − = 
  


  − + + − =   

l
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 (29) 
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The unknowns from system (29) are the 

characteristics of 21OO  vector, 2l  and 2ϕ , that 
connects the centres of the R  radius ball at the 
instants of beginning and ending of flight.  
 

2 2
2 1 1 1 1

1 1
2

2

[R(1 sin ) L cos ] (Rcos L sin )

Rcos L sin
asin ,

 = + φ − ϕ + φ − ϕ

 φ − ϕϕ = −


l

l

                                          (30) 
Using the values (30), the Cartesian coordinates of 

2O  point at the impact with vertical plate result:  
 

0 2 2 0 2 2x cos ; y sinϕ ϕ= =l l  (31) 
 
By imposing the condition that the point 

)y,x(O 002  should verify the equation of the 

trajectory of a point launched with "0v  velocity in 
gravitational field under "α  angle with horizontal, 
[33], the following expression is obtained:        
 

" 2
0 0 0 0" 2 2 "

0 0

g
y x tan x

2v cos
α

α
= −     (32) 

 

Adding the following relation:   
  

" "
0 0 z 0x v t cosα=  (33) 

 

that describes the horizontal displacement of the 
centre of the ball, a system of equations is obtained, 
that allows founding the post impact velocity and 
launching angle: 
 

2
" 2 2
0 0 0 z

z

2
" 0 z
0

0

1 1
v x y gt

t 2

2 y gt
atan

2x
α


  = + +   


 +

=


 

 
 
 

(34) 

 

The experimental device from the laboratory is 
simple, consisting in a launcher that ensures tests 
repeatability, a system for fixing the prism and an 
electronic precision bench level, Fig.7, with 
precision of 0.1 degrees, for establishing the prism’s 
tilt. The prisms should fulfil two conditions: the 
active surface must be fine polished and the active 
face and its opposite have to be strictly parallel, 
required by the laser scanning process. For finding 

the "
0v  velocity and the α  angle, a vertical plane is 

placed in the path of the ball. Indigo paper is 
arranged both onto the inclined plane and the 
vertical one, for precise identification of points 1A  

and 1B . The flight time between the instants of 
contact with the inclined plane and the vertical plane 

respectively is measured for finding the "
0v  velocity 

and the α  angle.  
 

(a) 
 

(b) 
 

Fig.7 Adjusting the tilt angle φ  of the prism (a) and 
the launching height of the ball, h , (b) 

 
The precise flight period is obtained by 

recording the acoustic signals of impact and 
converting them to image, using specialised 
software, Fig.8.  

 

 
 

Fig.8 Finding the flight time of the ball between the 
collisions with the two planes 

 

The impact instants can be clearly evidenced as 
shock waves, [34] and [35]. Experiments were 
carried out for different tilt angles and the data are 
synthesized in Table 1. These experimental data are 
used in applying the relations presented above, 

considering that the impact velocity '
0v  is given by: 

 
'
0v 2gh=                  (35) 

 

impact 1B  impact 1A  

zt  
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As a result, the "
0α  angle and the post-impact 

velocity are found. 
Table 1. 
Experiment  1 2 3 

φ  o26  o1.34  o6.45  

zt [sec] 0.110 0.083 0.054 

11BA [m] 0.130 0.128 0.105 

21BA [m] 0.180 0.159 0.123 

21BB [m] 0.100 0.100 0.100 

ψ  o90  o90  o90  
h  0.290 0.287 0.280 
 

From Fig.9 it can be noticed that the coefficient 
of restitution, normal, ne  and tangential, te , 
respectively, can be determined:  

 
" " " "
0 0 0 0

n ' '
0 0

v cos( / 2 ) v sin( )
e

v cos v cos

π φ α φ α
φ φ

− − +
= =  (36) 

 
" " " "
0 0 0 0

t ' '
0 0

v sin( / 2 ) v cos( )
e

v sin v sin

π φ α φ α
φ φ

− − +
= =  (37) 

 

The values found for the parameters '
0v , "

0v , "
0α , 

'
0/ 2π φ α− − , ne , te  are presented in Table 2. 

 

 
Fig.9 Finding the coefficients of restitution  

 
Table 2. 
Experiment 1 2 3 
φ  o26  o1.34  o6.45  

'
0v [m/s] 2.408 2.396 2.366 

"
0v [m/s] 1.259 1.386 1.615 

"
0α  o35.021  o10.554  o14.307-  

'
02/ α−φ−π  o28.997  o45.346  o58.707  

ne  0.509 0.491 0.507 

te  0.578 0.734 0.816 
 

As it can be observed, after impact, the reflex angle 
of the ball is greater than the incident angle. An 
interesting aspect can be remarked analyzing the 
plastic print of the impact. To this end, the plastic 
indentation of a collision corresponding to the angle 

o26=φ  was analysed using NANOFOCUS laser 
scan profilometer. The longitudinal profile of a 
plastic indent is presented in Fig.10. 

 

 
Fig.10 Profile of plastic print on logitudinal 

direction for o26=φ  
 
 

5 Conclusions  
The paper presents a method for finding the velocity 
of the centre of a metallic ball falling on an inclined 
fixed plane. The main features of the methodology 
are straightforwardness and promptness. The 
proposed method was applied for three values of 
surface tilt angle and the coefficients of restitution, 
normal and tangential, respectively, are found. The 
studied collision is a plane impact with friction and 
the coefficients of restitution found using the pre 
and post impact velocities might be altered, 
requiring instead the Poisson definition. The laser 
scan analysis of the plastic indentation profile shows 
the existence of a symmetry axis normal to the 
impact plane and not associated to the velocity 
direction, as would be expected. The paper aims to 
be a beginning point for the comprehensive analysis 
of collision with friction between a ball and an 
inclined plane, with the following objectives: 
finding ball angular velocity, plastic deformation 
work and internal friction work. 
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