WSEAS Transactions on Systems


Print ISSN: 1109-2777
E-ISSN: 2224-2678

Volume 16, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 16, 2017



Diagnosis and Sensor Placement for a Gas Lift Well

AUTHORS: Ruben Leal, Jose Aguilar, Louise Travé-Massuyès, Edgar Camargo, Addison Ríos

Download as PDF

ABSTRACT: A major contribution to supervision is to provide reliable diagnosis results reporting about the change of health status of the components of a system. An important related property, which allows one to provide guarantees about which faults are discriminable by the diagnoser, is diagnosability. Diagnosability analysis for production systems examines detectability (which faulty behaviors are discriminable from the normal behavior of the system) and isolability (which faulty behaviors are discriminable from which). Interestingly, diagnosability analysis provides the foundations for sensor placement, indicating parts of the system that suffer poor observability. In this paper, structural analysis is proposed as an efficient tool for diagnosability analysis and sensor placement, and applied to a real-world process of extraction of oil by gas injection.

KEYWORDS: Diagnosability, Detectability, Isolability, Sensor Placement, Structural Analysis, Extraction Of Oil

REFERENCES:

[1] M. Krysander, J. Åslund, and M. Nyberg. An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(1), 2008, pp 197-206.

[2] G. Hernández, E. Alí, T. Sharon, Manual del curso de levantamiento artificial por gas avanzado. 2da ed. Los Teques, Venezuela: PDVSA Intevep, 2001.

[3] B. Jansen, M. Dalsmo, L. Nskleberg, K. Havre, V. Knstiansen, and P. Lemetayer, (1999). Automatic control of unstable gas lifted wells: SPE paper no. 56832.

[4] L. Imsland, (2002). Topics in nonlinear control: Output feedback stabilization and control of positive systems. Ph.D. Thesis, NTNU, Norway.

[5] G.O. Eikrem, O.M. Aamo, H. Siahaan, B. Foss, “Anti-slug control of gas-lift wells - experimental results” In Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems: Stuttgart, Germany, 2004.

[6] R. Leal, J. Aguilar, E. Camargo, A. Ríos, L. Travé, “Analysis of diagnosability for gas lift Wells”, Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y computacionales (Ed. E. Dávila, J. Del Río, M. Cerrolaza, R. Chacón), Sociedad Venezolana de Métodos Numéricos en Ingeniería: Venezuela, 2014, pp. EC91-EC97.

[7] J. Aslund and E. Frisk, “Structural analysis for fault diagnosis of models with constraints”, In Proceedings of the 7th IFAC Symposium on Fault Detection Supervision and Safety of Technical Processes: Barcelona, Spain, 2009, pp. 384-389.

[8] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and fault tolerant control, 2nd ed. Berlin, Germany: Springer, 2003.

[9] V. Puig, J. Quevedo, T. Escobet, B. Morcego y C. Ocampo, “Control tolerante a fallos (Parte I): Fundamentos y diagnóstico de fallos”. Revista Iberoamericana de Automática e Informática Industrial: España, vol. 1(1), 2004, pp. 15-31.

[10] P.M. Frank, “Fault diagnosis in dynamic system using analytical and knowledge based redundancy a survey”: Automatica: vol. 26, 1990, pp. 459-474.

[11] R. Isermann and P. Ballé, “Trends in the application of model-based fault detection and diagnosis of technical processes”. Control Engineering Practice: vol. 5, 1997, pp. 709- 719.

[12] M. Staroswiecki, G. Comtet-Varga. “Analytical redundancy relations for fault detection and isolation Analytical redundancy relations for fault detection and isolation”, International Journal Automatica, vol 37, 2001, pp. 687-699.

[13] Armengol, A. Bregon, T. Escobet, E. Gelso, M. Krysander, M. Nyberg, X. Olive, B. Pulido, and L. Travé-Massuyès. “Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches”, In Proceedings of the 7th IFAC Symposium on Fault: Barcelona, Spain, vol 2, pp. 2009, 1480- 1485.

[14] M. Krysander, J. Åslund, and M. Nyberg, “An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis”, IEEE Transactions on Systems, Man, and Cybernetics Part A: vol. 38(1), 2008, pp. 197-206.

[15] M. Krysander, E. Frisk “Sensor Placement for Fault Diagnosis” IEEE Transactions on Systems, Man, and Cybernetics Part A: vol. 38(6), 2010, pp 106-113.

[16] E. Frisk, E., M. Krysander, “Sensor placement for maximum fault isolability”. In Proceedings of 18th international workshop on principles of diagnosis DX-07: Nashville, TN, 2007, pp. 106-113. Louise Travé-Massuyès, Edgar Camargo, Addison Ríos E-ISSN: 2224-2678 121 Volume 16, 2017

[17] R. Leal, E. Camargo, J. Aguilar, A. Ríos, L. Travé-Massuyès, “Análisis de Diagnosticabilidad y Localización de Sensores en un Pozo de Extracción de Petróleo por Inyección de Gas”, Revista Politécnica – EPN Journal: vol. 36(1), 2015, pp. 1-11.

[18] O.G. Santos, S.N. Bordalo, F.J. Alhanati: “Study of the dynamics, optimization and selection of intermittent gas-lift methods a comprehensive model”, Journal of Petroleum Science and Engineering: London, vol. 32, 2001, pp. 231- 248.

WSEAS Transactions on Systems, ISSN / E-ISSN: 1109-2777 / 2224-2678, Volume 16, 2017, Art. #15, pp. 111-122


Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site