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Abstract: - A major contribution to supervision is to provide reliable diagnosis results reporting about the 
change of health status of the components of a system. An important related property, which allows one to 
provide guarantees about which faults are discriminable by the diagnoser, is diagnosability. Diagnosability 
analysis for production systems examines detectability (which faulty behaviors are discriminable from the 
normal behavior of the system) and isolability (which faulty behaviors are discriminable from which). 
Interestingly, diagnosability analysis provides the foundations for sensor placement, indicating parts of the 
system that suffer poor observability. In this paper, structural analysis is proposed as an efficient tool for 
diagnosability analysis and sensor placement, and applied to a real-world process of extraction of oil by gas 
injection. 
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1 Introduction 
Monitoring and control systems are important 

tools for industry as they allow optimizing the use 
of infrastructure. In automation systems, 
supervisory functions are used to indicate 
undesirable or unplanned states of the processes, 
and take appropriate actions to resume operation, 
and avoid damage or accidents.  

Most processes for the production of oil and gas 
require constant supervision and control of the 
associated facilities (wells, flow stations, multiple 
injections of gas lift, etc.). In particular, early 
detection and diagnosis of faults is mandatory to 
have enough time to cross out the fault propagations 
that could result in failures. Some of the possible 
operations to counteract the presence of a fault are 
reconfiguration, maintenance or repair actions. 
Early detection can be achieved by acquiring 
information on the process, then using mathematical 
models that provide analytical redundancy when 
evaluated with measured quantities. Moreover, for 
fault diagnosis it is important to use cause-effect 
relationships [1]. 

A typical diagnosis system must be able to detect 
and isolate a set of faults using the measurements 
acquired at several test points in the system.  

In the oil extraction industry, it is essential to 
achieve maximal production, for which the 

diagnostic process must be improves and 
streamlined. This study considers one of the most 
used methods for the artificial extraction of oil, 
which relies on wells with gas injection [2]. Oil 
wells based on gas injection with highly oscillatory 
flow, are a major problem in the oil industry. The 
efforts to find low-cost solutions based on automatic 
control and fault diagnosis are carried out in both 
the academic and the industrial communities for a 
long time, [3,4,5,6]. In the literature, there are 
several diagnostic studies related to pipelines, 
storage tanks and wells, but previous works do not 
include diagnosability analysis in gas lift wells.  

This paper addresses the problem of analyzing 
diagnosability in gas lift wells, as the first step 
towards analyzing the diagnosability of an overall 
oil production process. The approach that we 
propose is based on structural models of the process.  

The study is carried out in two steps: first, we 
analyze the diagnosability property using structural 
analysis and sequential residual generation 
techniques for the process of oil extraction with the 
current measured variables, i.e. with the sensors that 
are actually installed in the process. Second, we 
draw the conclusions of the previous analysis to 
recommend new sensors, which are indicated as 
providing the required observability to detect and 
isolate specific faults that are just “invisible” in the 
actual process.   
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The main contribution of the paper is to provide 
the insights for applying advanced diagnosability 
analysis methods based on structural analysis [7],  to 
a complex real-world process of the oil and gas 
industry, and to show their value for designing 
efficient diagnosers and the required 
instrumentation. We believe that this study can be of 
great value both for the academic community that 
worked out the theoretical foundations and for the 
gas industry that can benefit from the case study of 
the paper.  

The paper is organized as follows. Section 2 
reviews some important concepts and the methods 
used in structural analysis, residual generator and a 
sensor placement analysis. Section 3 is a 
diagnosability analysis for a gas lift well and some 
results based in current instrumentation, and then a 
sensor placement analysis to increase the 
observability to detect and isolate faults that are 
invisible today. Finally Section 4 is the conclusion 
and future works. 
 
 

2 Model Based Diagnosis 
 
  

A failure means any change in the behavior of 
any of the components of the system, so that it can 
no longer fulfill the function for which it was 
designed [8]. Notice that a fault may be present 
without the system failing. 

Fault diagnosis can be viewed as a process to 
detect the presence of faults through abnormal 
behaviors in the process, and locate and identify the 
component(s) or cause that originated the 
abnormality. There are three objectives to reach [8]. 

 
 Fault detection 
 Fault isolation. 
 Identification and estimation of the fault. 

 
The Fault detectability is the ability to detect the 

faults. The diagnosis must be able to decide if there 
is a fault or not, as well as to determine the instant 
of the apparition, from observations of the process. 
For that, model-based diagnosis proposes to 
compare the actual behavior with the expected 
behavior predicted with a model. Fault isolation is 
the ability to isolate a fault that has occurred, from 
the other faults. The identification of the fault is 
based on the consistency between the normal 
behavior and the current process behavior, obtained 
from measurements, in order to determine the depth 
and magnitude of the fault. 

There are several methodologies for obtaining 
the relationship between faults and the diagnosis of 
the system. There are methodologies that are based 
on expert knowledge, or experience of the past 
erroneous behaviors. With this information, it is 
possible to obtain a representation based in 
diagnostic rules or structures. 

Other methods are based on learning approaches 
and pattern recognition, which are a very useful tool 
when intended to diagnose systems for which it is 
very hard to obtain an analytical model. In this case, 
learning methods can identify the relations between 
the symptoms to the faults. With these techniques, 
the diagnosis is achieved by comparing the 
evolution of the system to diagnose with the classes 
that have been learned. The techniques used to make 
this diagnosis can be: vector support machines, 
fuzzy logic, among others [9,10]. 

One of the advantages of machine learning 
techniques is that they avoid the problems 
associated with the development of an explicit 
model, but their main disadvantage is the need of a 
set of training data, usually large, which is often not 
available in real systems. So, very often it is 
necessary proceed to simulations. Another 
disadvantage of these systems applied to the 
diagnosis is the inability to recognize situations for 
which they have not been trained. 

The other approach that is most advocated for 
dynamic systems is the model based diagnosis 
(MBD). In MBD, the fundamental aspects are the 
definition of a process model and the analysis of the 
behavior of the system components against the 
behavior predicted with the model [11]. The 
comparison is performed thanks to generation of 
residuals. 

There are several technics for the generation of 
residuals, but all consist in the measurements, if the 
observed situation does not meet the estimate made 
by the model for a given situation, then it is 
concluded that there is a fault, and further analysis 
of the differences are carried out to identify the 
specific component of the fault. A way to generate 
residuals, and which is used in this paper, is based 
on analytical redundancy relations (ARR) [12]. It 
uses analytical mathematical models that 
characterize the system, to reproduce the behavior 
of the components and system under evaluation.  

The approach for generating a residual is based 
on a finite sequence of calculations that ends with 
the evaluation of an analytically redundant equation. 
Similar approaches have been described and 
exploited in [8]. The ARR only contains measured 
or known variables, and is composed of a subset of 
equations from the model. ARRs allows us to check 
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whether the measured variables are consistent with 
the model.  

A residual is a signal ideally zero in the non-
faulty case and non-zero otherwise. A residual 
generator takes measurement variables from the 
system as input, and produces a residual as output. 
The method for residual generation presented in this 
paper relies on structural analysis and sequential 
generation [1,12,13]. 

The residual generation approaches have in 
common that the sub-systems should be over-
determined to include the required redundancy. 
Several algorithms for calculating ARRs from over-
determined systems have been proposed in [1,13,14] 
proposes an algorithm that analyzes the structure of 
a system to detect all the redundancies. The 
causality establishing the sequence to generate the 
residuals is left for a post-processing unlike [12]. 

Diagnosability depends on the residuals that can 
be generated, as it depends on the redundancy 
embedded in the system. Decoupling of faults in a 
set of tests based on residuals, means that the 
residuals must be sensitive to, or respond to 
different subsets of faults. Thus, decoupling of 
faults is a fundamental problem in choosing the 
residuals that will compose the diagnose. 
 
 
2.1 Structural Analysis 
Structural analysis is a set of tools to explore the 
fundamental properties of a system using a 
structural model, either in the form of a graph or an 
incidence matrix. In our work, we rely on these 
tools to achieve residual generation and 
diagnosability analysis.  
 
2.1.1 Structural model 
A structural model is a representation of a system in 
which only couplings between variables and 
equations are retained [7]. The structural model 
contains only the information of which variable 
belongs to which equation, regardless of the value 
of the parameters and the detailed form of the 
mathematical expression [13].  

A structural model can be represented by a 
bipartite graph or an incidence matrix. Let’s call this 
model is M(X,Z,E,F), where E is a set of equations E 
= {e1,..., em}, X is a set of unknown variables ܺ ൌ
ሼݔଵ, … ,  ሽ, Z is a set of known variablesݔ
Z={z1,...,zp}. and F={f1,...,fo} is a set of fault 
parameters which modify the normal behaviour of 
the system (they are considered as unknown 
variables). In the case of a differential model, it is 

necessary to add a fifth set, ܦ ൌ ሼݔሶଵ, … ,  ሶሽ, whichݔ
contains the derivatives of the variables of X. 

We assume that the equations in the set E have 
the form. 
 
݁: ݄ሺݔሶ , ,ݔ ,ݖ ݂ሻ ൌ 0, 1  ݅  ݉                          (1) 
 

Where, ݔሶ , x, F and z are vectors of the sets D, X, 
F and Z, respectively.  
Example 1: consider. 
݁ଵ:	ݔሶଵ ൌ ଵݔ  ݑ  ଵ݂                                              (2)  
݁ଶ: ଶݕ ൌ  ଵ                                                             (3)ݔ
݁ଷ:	ݕଵ ൌ  ሶଵ                                                             (4)ݔ
 

The structural model of the system is as follows: 
݁ ൌ ሼ݁ଵ, ݁ଶ, ݁ଷሽ, ܺ ൌ ሼݔଵ, ܼ ,ሶଵሽݔ ൌ ሼݕଵ, ,ଶݕ ܨ ,ሽݑ ൌ
ሼ ଵ݂ሽ 
 
݁ଵ ൌ ݄ଵሺݔଵ, ,ሶଵݔ ,ݑ ݂ሻ                                              (5) 
݁ଶ ൌ ݄ଶሺݕଶ,  ଵሻ                                    (6)ݔ
݁ଷ ൌ ݄ଷሺݕଵ,  ሶଵሻ                        (7)ݔ
 

The Fig.1, and Table 1, are the bipartite graph 
and incidence matrix representation for this example 
 

 
Fig.1.Bipartite Graphs of the example 

 
Table 1, Incidence Matrix. 

Parameter Unknown 
Variables 

Faults Know 
Variables 

 ሶଵ x1 F1 y1 y2 uݔ 
e1 1 1 1 0 0 1 
e2 0 1 0 0 1 0 
e3 1 0 0 1 0 0 

 
Now, we present some definitions to use the 

structural analysis for diagnosis purposes. 
 
Definition 1: ARR for M(X,Z,E,F). Let 
M(X,Z,E,F) be a model, then an equation 
r୧: bሺz, zሶ , zሷ , … ሻ ൌ 0 is an ARR for M(E,X,Z,F), if 
for each z consistent with M(E,X,Z,F), the equation 
is fulfilled [1]. 
 

These relationships can be derived only if the 
model has more equations than unknown variables, 
i.e. if the system is structurally over-determined 
(SO) [13].  
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Example 2: According to example 1, an ARR would 
be: 
 
ଵݕ	:ݎݎܣ െ ଶݕ െ ݑ ൌ 0                                            (8) 
 

An ARR can be used to check if the observed 
variables z are consistent with M(E,X,Z,F), and can 
be used as the basis of a residual generator. 
 
Definition 2: Residual Generator for M(E,X,Z,F). 
A system taking a subset of the variables z as input, 
and generating a scalar signal ri as output, is a 
residual generator for the model M(E,X,Z,F), if for 
all z consistent with M(E,X,Z,F), it hold that 
lim
௧→ஶ

ሻݐሺݎ ൌ 0 [1].  

 
Example 3: According to example 1, a residue 
would be structurally formulated as: 
 
݁ଵ: ܾሺ݁ଷሺݕଵሻ; ݁ଶሺݕଶሻ; ሻݑ ൌ 0                             (9) 
 

The structure of the system can be abstracted as a 
representation of which variables are involved in the 
different equations which make up the model of the 
system. The structural model of a system is an 
abstraction that allows one to study the 
diagnosability properties, independently of the 
linear or nonlinear nature of the systems. However, 
it must be kept in mind that results obtained with 
such a structural representation are a best case 
scenario. Causality considerations and the presence 
of algebraic and differential loops, determine which 
structural redundancies can be exploited for the 
design of residual generators. 

Each ݎ should be evaluated in order to decide if 
it can be used or not. Finally, the evaluation of each 
detection test constitutes the fault signature vector 
ሺܵ ൌ ሼܵଵ, . . . , ܵሽሻ, that is a set of vector in order to 
isolate the fault. 

Given a set of vector ܵ ൌ ሼ ଵܵ, . . . , ܵሽ and a set of 
faults F={f1,...,fo}, the theoretical fault signature 
matrix can be defined codifying the effect of every 
fault in a residual [1] 

 
Definition 3: The fault signature matrix of M. It is 
a table obtained by the concatenation of all possible 
signatures of faults. Each row corresponds to an 
ARR and each column to a failure mode. A "1" in 
position (ij), indicates that the fault j is detected by 
the ARR i [13]. 
 
F(M) is the set of faults that affect either equation in 
M, then the detectability is achieved if it complies 
with the following definition. 

 
Definition 4: Detectability for M(E,X,Z,F). A fault 
Fo, where o = 1,…,n  which belongs to F(M) in the 
diagnosis system of M, is detectable if there is a 
residue different from zero in the residual generator, 
i.e. ݎ ് 0. 
 
Definition 5: Isolability for M(E,X,Z,F). When 
two signatures are identical, the related faults are 
considered non-decoupled, that mean they cannot be 
isolated [9]. Therefore, all signatures must be 
different from each other	ܵሺ ݂ሻ ് ܵሺ ௧݂ሻ, ,∀ 	ݐ ∈
ሼ1, . . , ݊ሽ,  ്  The fault isolation will consist in ݐ
looking for the theoretical fault signature in the fault 
matrix that matches with the observed signature, to 
distinguish between all the possible faults. 
 
Example 4: Consider a diagnosis system containing 
a set of residuals ሼܴܴܣଵ, ,ଶܴܴܣ  ଷሽconstructedܴܴܣ
to detect and isolate three faults ሼ ଵ݂, ଶ݂, ଷ݂ሽ. The 
following fault signature matrix shows the 
sensitivity of ARRs to faults even in the system in 
normal behaviour N. ݎݎܣଵ	is sensitive to faults f2 and 
f3, and so on. Each fault has a different signature, so 
we can isolate all considered faults 
 

Table 2, Fault signature matrix. 
N f1 f2 f3 

Arr1 0 0 1 1 
Arr2 0 1 0 1 
Arr3 0 1 1 0 

 
 
2.1.2 ARR Generation 
In this section we present some concepts linked to 
the FDI techniques, and ARR paradigm. The 
procedure consists in the generation of residual [12]. 
They can be obtained by previously designed 
diagnostic models, which allow the fault detection 
and isolation [1]. 

We adopt the design method of minimal 
structurally over determined (MSO) sets based on 
ARR, [13]. Unobserved variables can be eliminated 
for the subset of equations. 
 
Definition 6: Over-determined System (SO). M is 
an SO if the cardinality in E is greater that the 
cardinality in X i.e.|ܧ|  |ܺ|.  
 
If the cardinality of ܯ	are equal |ܧ| ൌ |ܺ| is a Just-
determined system and if smaller |ܧ| ൏ |ܺ|is a 
Under-determined system. A condition that must be 
satisfied is that must be at least one more equation 
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than unknown variables, which means that the 
system is over-determined.  
 
Definition 7: Minimal Structurally Over-
determined (MSO). A MSO contains only one 
equation more than unknown variables, and each 
MSO is equivalent to ARR [13].  
 
In [1] provides an algorithm that identifies the 
MSO, enabling the construction of more efficient 
ARRs. Each ARR correspond to an MSO. 

In [14] introduced an algorithm and the notion of 
TES (Test Equation Support) which are sets of 
equations which express redundancy specific to a set 
of considered faults. Each TES corresponds to a set 
of faults which influence the residual generator 
constructed from the TES. The corresponding 
quantities expressing minimal redundancies are 
denoted minimal TES (MTES), and the set of 
MTES can be seen as a subset of the set of MSOs 
for the set of faults of interest of the system. 
 
Definition 8: Test Equation Support (TES): 
Given a model ܯ and a set of faults F(M), an 
equation set ܯ is a test equation support if M is a 
SO set, and if ܨሺܯ′ሻ correspond a part of the model, 
being F(M)≠0 and for any ܯ’ ⊆  is a ′ܯ where ,ܯ
SO set it holds that ܨሺܯ′ሻ ⊆   .ሻܯሺܨ
 
Definition 9: Minimal Test Equation Support 
(MTES): A MTES of M is a minimal TES if it is 
the smaller subset sensitive to a fault, more equation 
than unknown variables. 
 

Since there is a one-to-one correspondence 
between MTESs and ARR, we will only focus on 
MTESs in this paper, to generate residuals of the 
process. With that, we will be able build a signature 
matrix. A MTES set could be used to develop a 
consistency check for a part of the system, and a set 
of ࡲሺࡹሻ can be detected with this consistency check 
[14]. 
 
2.1.3 Sensors placement based on structural 
diagnosability analysis  
The efficiency of a diagnosis system depends on the 
information it can retrieve from the diagnosed plant. 
Obviously, if the information is insufficient, the 
diagnosis system is not able to perform its task. 
Thus, the efficiency of a sensors system can be 
measured by the diagnosability degree it provides. 
However, the same diagnosability level may be 
obtained for different sensor configurations. 

The sensors placement problem is solved here 
using a structural representation of the model as it is 

used in [15]. Without loss of generality, it is 
possible to assume that a single fault can only                  
violate one equation. If a fault signal f appears in 
more than one equation, we simply replace ݂ in the 
equations with a new variable ௫݂ and add equation 
݂ ൌ 	 ௫݂ which will then be the only equation 
violated by this fault. Let ݁ ∈  be the equation ܯ	
that might be violated by a fault ௫݂ ∈  For the .ܨ
example 1,  ଵ݂ ൌ ݁ଵ. 

A fault ݂ is detectable if there exist an 
observation that is consistent with fault mode ݂ and 
inconsistent with the no-fault mode. This means that 
a detectable fault can violate a monitorable equation 
in the model. [8]. 

In a structural model of the system where there 
are faults that cannot be detected, we can add 
sensors to increase the observability of the system. 
We assume that a sensor ݕାଵ measuring ݔ has 
been added to the process and included in the model 
by ݁ାଵ:	ݕାଵ ൌ   .ݔ

In this way, the undetected faults can be 
detectable faults, and a residual is capable of 
detecting them because the redundancy of the 
system is increased. 

A general assumption of the approach is that the 
model does not contain any underdetermined part. It 
is also assumed that a fault affects no more than one 
equation and that each possible sensor measures one 
unknown variable. Due to space limitations all 
theoretical aspect, theorems and the algorithm use to 
solve this problem based on structural analysis, can 
be found in [15]. 

A goal of the algorithm is to find minimal sensor 
sets that achieve structural detectability and 
isolability of faults in a just-determined set of 
equations. In this order, we can determine which 
part exactly of the model becomes over-determined 
when a sensor is added. 

 Let ܯ be an exactly determined set of equations, 
ܲ ,the corresponding set of faults ܨ ⊆ ܺ the set of 
possible sensor locations, and ܯ௦ the equation set 
describing the additional sensors set and ௦ܲ the 
additional sensors in ܯ௦ [16]. 

The above described can be summarized in an 
algorithm that, given a model ܯ, faults ܨ, and a set 
of possible sensor locations ܲ, computes D the 
detectability and isolability, increasing the over-
determined part of the model. In this algorithm, Υ is 
the minimal additional sensor set such that the faults 
become detectable and isolable in ୣܯ ൌ ′ܯ ∪  ,ୱܯ
where ୣܯ is the extended part of the model that 
includes the sensors. The main algorithm proposed 
in [16] is summarized as following. 
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function Υ= Sensorplacement (ܨ,ܯ, ܲሻ 
1 Υ ൌ ∅;         
  ;ܯ  = just-determined part ofܯ 2
  ;ܯ included in ܨ	 = the set of faultsܨ 3
,ܯDetectability ሺ = ܦ 4 ,ܨ ܲሻ;  
5 Υௗ = minimalsensorsetሺܦሻ;  
6 for	Υ ∈ Υௗ 
7      create the extended model ܯ ൌ ܯ  ;௦ܯ∪
 ;ܯ  = the faults included inܨ      8
,ܯIsolability ሺ = ܦ      9 ,ܨ ܲሻ;           
10      Υௗ = minimalsensorset ሺܦሻ; 
11       Υ ൌ Υ ∪ ൛Υ⨄Υ′หΥ′ ∈ Υൟ; 
12   end  
13 Delete nonmininal sensor sets in Υ; 

 
 
In line 2, the algorithm checks de just-

determined part of ܯ, and in the line 3 it determines 
all the faults in ܯ. Then, it checks the detectability 
of ܯ, where Υௗ is the minimal sensors set to reach 
detectability in ܯ. Lines 6 and 12 describe the 
procedure to add new sensors, creating ܯ as the 
new model with the new sensors and ܨ the faults 
included in this model. The algorithm determines ܦ 
the isolability property and the required minimal 
sensor set. That is repeated for all the possible 
sensor placements in order to reach the isolability 
property of ܯ. The idea is to obtain a minimal 
number of sensors to diagnose the faults ܨ. 
 
In [17] is introduced a sensor placement based in 
genetic algorithm and MTES theory to verify the 
functionality of it, and also is proven in a gas lift 
well, comparing both methodology to a complete 
analysis of diagnosability. 
 

3 Analysis of diagnosability for a gas 
lift well 
 
 

In this section we present the method of 
production of oil by gas injection, the structural 
analysis of the process, and then apply our approach 
for fault diagnosis. 

 
3.1 Oil extraction by gas lift injection 
According to [5], the method of extraction of oil by 
gas injection is a method using compressed gas as 
energy source, for carrying the reservoir fluids from 
downhole to the surface; thus, the main 
consideration to select a group of oil wells, is the 
availability of a cost-effective source of high 

pressure gas (Fig.2, shows the components of this 
method). 

In [6] indicates that gas lift is one of the primary 
methods used in the production of fluids from a 
well, which consists in the continuous injection of 
high pressure gas, to lighten the oil column in the 
production tubing. In other words, this method 
involves injecting gas at high pressure (through the 
compressor plant) at a preset rate, to lighten the 
column of oil, and thus improving the production of 
wells with reservoir pressure lower than the head at 
different depths. It is considered by experts as the 
most similar to the natural flow [18]. 

Gas from the annulus starts to flow into the 
tubing, as the gas enters into the tubing the pressure 
in the tubing falls, accelerating the inflow of gas lift. 
The gas pushes the major part of the liquid out of 
the tubing, while the pressure in the annulus falls 
dramatically. The annulus is practically empty, and 
the gas flow into the tubing is blocked by liquid 
accumulating in the tubing. Due to the blockage, the 
tubing becomes filled with liquid and the annulus 
with gas. Eventually, the pressure in the annulus 
becomes high enough for gas to penetrate into the 
tubing, and a new cycle starts. 

 

 
Fig.2, An Artificial lift of oil by gas injection 

 
In general, gas lift has been used effectively to 

achieve the following objectives 
 

 Starting wells producing by natural flow. 
 Increase production from wells that have 

naturally declined, but still produced without 
using artificial methods. 

 
In our approach, the diagnosability is developed 

based in residuals generation schemes derived from 
ARRs. Firstly, with the mathematical analysis 
described in this section, we identify equations 
governing the process defined in previous works 
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[4,5]. They are based on three state variables: x1 is 
the mass of gas in the annulus, x2 is the mass of gas 
in the tubing, and x3 is the mass of oil in the tubing. 
With them, we can define the first equations set 
which represents the dynamics of the flow of each 
variable defined previously. 

 
 

ଵሶݔ ൌ ݓ െ  ௩ (10)ݓ
ଶሶݔ ൌ ௩ݓ െ   (11)ݓ
ଷሶݔ ൌ ݓ െ   (12)ݓ

 
Where wgc is the mass flow rate of gas lift into the 
annulus, wiv is the mass flow rate of gas lift from the 
annulus into the tubing, wpg is the mass flow rate of 
gas through the production choke, wr is the oil mass 
flow rate from the reservoir into the tubing, wpo is 
the mass flow rate of gas through the production 
choke, and wpc is a mixed mass flow rate produced 
through the production choke, The flows are 
modelled by. 
 
ݓ ൌ ௩ඥሺܥ ܲ  14.7ሻ. ܲௗ  ଵ݂ (13) 

௩ݓ ൌ .,ඥܥ ሺ ܲ െ ௧ܲ,ሻ (14) 

ݓ ൌ .ඥܥ ሺ ௧ܲ െ ௦ܲሻ  ଶ݂ (15) 

ݓ ൌ 	
௫మ

௫మା௫య
.   (16)ݓ

ݓ ൌ 	
௫య

௫మା௫య
.   (17)ݓ

ݓ ൌ .ܥ ሺ ܲ െ ௧ܲ,                       (18) 
 

Unlike the model presented in [4,5], wgc is not 
considered as constant but rather calculated through 
the equation of flow by orifice plate denote by e4. 
This way, is checking the consumption of gas in 
each well. Also we consider two more variables: Pglp 
is the pressure in the system distribution of gas, and 
Pgldp is the differential pressure of gas through an 
orifice plate.  

To comply with the technique described in 
Section 3 and in [15], to detect and isolate faults that 
are really relevant for us, is necessary associate the 
faults in the equation where occurs. For this reason, 
f1 and f2 are added to the equations of the model, f1 
is added in equation 13, which is the failure in the 
flow of gas injected into the annular, and f2 is added 
in equation 15 which is the failure in the mixed flow 
to the separator in the production line. 

Civ, C and Cr are constants, ρa,inj is the density of 
gas in the annulus at the injection point, ρm is the 
density of the oil/gas mixture at the top of the 
tubing, Pa is the pressure in the annulus at the 
injection point, Pt,inj is the pressure in the tubing at 
the gas injection point, Pt is the pressure at the top 

of the tubing, Ps is the pressure at the separator, Pr is 
pressure in the reservoir, and Pt,b is the pressure at 
the bottom of the tubing. The reservoir pressure, Pr, 
is assumed to be slowly varying, and therefore 
treated as constant. Note that flow rates through the 
valves are restricted to be positive. The densities are 
modeled as follows: 

 
, ൌ 	

ெ

ோ்ೌ
. ܲ                                                      (19) 

 ൌ	
௫మା௫యିఘೝೝ


   (20) 

ܲ ൌ 	 ቀ
ோ்ೌ

ெ


ೌ
ೌ
ቁ   (21) 

௧ܲ ൌ 	
ெ

ோ்ೌ
.

௫మ
ೝೝାି௫య௩

  (22) 

௧ܲ, ൌ 	 ௧ܲ 


ೝ
. ሺݔଶ   ଷ (23)ݔ

௧ܲ, ൌ 	 ௧ܲ,                                  (24)ܮ݃ߩ
  

 
Mo is the molar weight of the gas, R is the gas 
constant, Ta is the temperature in the annulus, Tt is 
the temperature in the tubing, Va is the volume of 
the annulus, La is the length of the annulus, Lt is the 
length of the tubing, At is the cross-sectional area of 
the tubing above the injection point, Lr is the length 
from the reservoir to the gas injection point, Ar is the 
cross-sectional area of the tubing below the 
injection point, g is the gravity constant, ρo is the 
density of the oil, and, vo is the specific volume of 
the oil. 

In practice, measurements of downhole variables 
are not available or are unreliable by nature. So, in 
this work to make an analysis of diagnosability we 
assumed that measurements are taken only at the top 
of the well, in the annular and the tubing, in order to 
determine the two failures. The major challenge is 
how to deal with multiphase flow in the tubing, 
while the single-phase flow in the annulus is 
measured accurately based on the pressure and 
temperature measured.  

We also know that x1 is calculated. The 
remaining two variables, the pressure at the top of 
the tubing and the production flow through the 
throttle are measured. We may also obtain pressure 
in the production tubing or separator because a 
control system maintains the pressure at the inlet of 
the separator in the flow station. The known 
variables, measured and calculated are therefore the 
subset F(y).The set of equations from 25 to 33 are 
the relationships between the measures variables in 
the model, and their behaviour is used as inputs for 
the residual generator to obtain the ARRs. 
 
ଵݕ ൌ  ଵ                (25)ݔ	
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ଶݕ ൌ 	 ܲ                                                        (26) 
ଷݕ ൌ 	 ௧ܲ                                                               (27)          
ସݕ ൌ 	 ௦ܲ                  (28) 
ହݕ ൌ 	 ܲ                    (29) 
ݕ ൌ 	 ܲௗ                                (30) 
ݕ ൌ 	 ܲ                              (31) 
଼ݕ ൌ 	 ܲ                                (32) 
ଽݕ ൌ                                                          (33)ݓ	
 

In order to evaluate the results, we used the 
previous equations that govern the system [18] and 
made a model of the well in Simulink. In this model 
are also included elements to simulate the faults that 
we wish to be detect, The Fig.3, shows the normal 
behaviour of the well. The red line with the highest 
amplitude is the amount of oil in the tubing, the blue 
line is the amount of gas in the annulus, and finally, 
the green line is the amount of gas in the tubing, 
Table 3, shows the values of the coefficients 
involved in the process. 

 
Table 3, Numeral Coefficient’s. 

Parameter Value Unit 
Mo 0.028 Kg/mol 
R 8.31 J/Kmol 
G 9.81 m/s2 

Ta 293 K 
La 0.907 M 
Va 22.3x10-3 m3 

ρo 1,000 Kg/m3 

pr 2.9x105 Pa 
Lr 14 M 
Ar 0.314x10-3 m2 

Civ 1.60x10-6 m2 

Cpc 0.156x10-3 m2 

Cr 12x10-6 m2 

Cr 12x10-6 m2 

 

 
Fig.3, Well behaviour in the normal state 

 
3.2 Analysis of diagnosability in extractions 
of oil by gas lift injection 
When searching for residuals, it is good to know 
which properties make to a residual generator good. 
There are a number of factors that can be taken in to 

consideration, particularly the detectability and fault 
isolation. 

According to section 2 detection is achieved if 
there are residues sensitive to the considered faults 
of the system. We calculate the MTES using the 
algorithm proposed in (Krysander, Åslund and 
Frisk, 2010), based on actual observable variables. 
 
3.1.1 Diagnosis analysis for f1 and f2 based on 
current instrumentation 
As in [17] Fig.4, shows the original incidence 
matrix of the structural analysis for gas lift well. It 
indicates the relationship between the variables and 
equations that characterize the system. The 
algorithm proposed in [13] returns as result two 
MTES’s, each sensitive to one of the two faults. 
Table 4 indicates the signature of each fault. 

In this case, to fulfill definition 9, the minimum 
subset of equations where the analytical relation can 
be found characterizing each fault, are shown below 
 
MTES1 =[1, 4, 5, 10, 11, 12, 13, 14, 16, 17, 18, 20, 
21, 23, 24] 
MTES2=[1, 2, 5, 6, 7, 10, 11, 12,13, 14, 16, 17, 18, 
19, 23, 24] 
 

 
Fig.4, Incidence matrix 

 
We have used a sequential residual generation to 

obtain ARRs from MTES proposed in [6]. The 
unknown variables in each subset of the model can 
be computed by solving equations, one at time, in a 
sequence. Then, the residuals are obtained. 
 

ଵܴܴܣ ൌ ଵݔ  ܿ௩ට
ெ

ோ்ೌ
. ܲሺ ܲ  ௧ܮ݃ ܲሻ െ ݓ   (34) 
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௫మ
െ

ܿඥ ܲሺ ௧ܲ െ ௦ܲሻ	                (35)     
Where  

ଶݔ ൌ
൫ሺଵିሻାሺଵିఘሻೝೝ൯

ோ ்ିெ
              (36) 
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The importance of our proposition to reach 
diagnosability in this case study is that we used only 
the surface variables of the well, without the need to 
place sensors on the bottom, those being very 
expensive and highly sensitive to damage. 
 

Table 4, Fault signature matrix of the  
system under study. 

 N f1 f2 
Arr1 0 1 0 
Arr2 0 0 1 

 
We have tested the behavior of the system when 

the fault occur and in normal state (see Fig. 5 to 8).  
Fig. 5 shows the residue analysis in normal state of 
the system; we can see that the ARRs can be 
evaluated zero. 

Fig. 6 shows the behavior of ARR1 versus ARR2 
when f1 occurs, which is a malfunction in the flow 
rate of gas lift into the annulus, f1 is introduced into 
the space time of 19000 until 23000 seconds, the 
blue line is the fault simulated introduced to the 
system while the red line is the behavior of the 
residue generated by such fault. We can see that 
ARR1 is activated during this interval of time and its 
behavior is similar to the fault. 

 

 
Fig.5, Residue Analysis in normal state 

 

 
Fig.6, Residue Analysis of  f1 

 
We simulate a malfunction in the output of the 

mixed flow of the system (f2), to see how the ARRs 
are affected in the interval of time between 5000 
and 10000 seconds. Fig. 7 shows the ARR1 versus 
ARR2 for this failure; ARR2 is affected while the 
ARR1 is zero 

Finally, we simulate f1 and f2 on different time 
periods. f1 occurs between 7.000 and 12.000 seconds 
and f2 occurs between 22.000 and 27.000 seconds. 
In this case, both ARR1 and ARR2 are affected see 
(Fig. 8) that is, both residues are activated. Hence 
the two faults are diagnosable.  

The definitions addressed in section 3 consider 
that if there is a fault in the system, it must be 
associated with an ARR to fulfil the definition 4. To 
fulfil diagnosability, the definition 5 about 
isolability must be achieved, each signature of the 
residue must be different from other. Particularly, in 
our analysis the ARRs are useful for detection and 
isolation of the normal behaviours. 

 

 
Fig.7, Residue Analysis of f2 

 

 
Fig.8, Residue Analysis, for f1 and 

 f2 not simultaneously 
 

3.1.1 Diagnosis analysis for five faults based on 
the current instrumentation 
We have shown how isolability is achieved for f1 
and f2 faults. Next, we extend the solution to models 
with faults that are not structurally detectable in the 
original model. 

Particularly, we add three more faults to f1 and f2: 
f3 (failure in the mixed fluid into the tubing), f4 
(failure in pressure at the bottom of the tubing) and 
f5 (failure in the tubing at the gas injection point). 
The algorithm proposed in [13] shows in the Fig.9, 
the incidence matrix with five selected faults. 
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Fig.9, Incidence matrix for 
the analysis of five faults 

The fault signature matrix of Table 5, resulting 
from the algorithm shows that the only two MTES 
are not sufficient to achieve full detectability and 
isolability. 

 
Table 5, Fault signature matrix of the system 

under study. 
 N f1 f2 f3 f4 f5 

Arr1 0 1 0 0 0 0 
Arr2 0 0 1 1 0 0 

 
3.2 Sensor placement for increased 
diagnosability 
Given that five considered faults are not detectable 
we want to find the minimal sensor set that achieve 
fault detectability and isolability. For that, we run 
the algorithm proposed in [16]. Interestingly, a 
sensor in the reservoir pressure is sufficient to 
achieve complete diagnosability. Fig.10, shows the 
incidence matrix, and Table 6, the fault signature 
matrix. Additionally, the algorithm proposes adding 
a sixth fault, which is the fault in the sensor itself 
because the added sensor may fail. 

 
Table 6, Fault signature matrix of the  

system under study. 

 N f1 f2 f3 f4 f5 f6 
Arr1 0 0 1 0 1 1 0 
Arr2 0 1 0 0 0 0 0 
Arr3 0 0 1 1 1 0 1 
Arr4 0 0 1 1 0 1 1 
Arr5 0 0 1 1 1 0 0 
Arr6 0 0 1 1 0 1 0 
Arr7 0 0 0 1 1 1 0 
Arr8 0 0 0 0 0 0 1 

 
In table 6, it can be seen how detectability is 

fulfilled, because the fault signatures are different 
from each other, this is possible thanks to the new 
set of ARRs 
 

MTES1: [1, 2, 3, 4, 8,  9, 10, 13, 14, 15, 16, 17, 19, 
20, 21, 22, 23, 26]. 
MTES2: [7, 23, 24, 25]. 
MTES3: [1, 2, 3, 4, 5, 6, 8, 9, 10, 11,12, 13, 14, 16, 
17, 18, 19, 20, 21, 22, 23, 26, 27] 
MTES4: [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 
17, 18, 20, 21, 22, 23, 26, 27] 
MTES5: [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 
18, 19, 20, 21, 22, 23, 27] 
MTES6: [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 
17, 18, 19, 20, 21, 22, 23, 26, 28] 
MTES7: [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 
18, 19, 20, 21, 22, 23, 28] 
MTES8: [27, 28] 

 
 

Fig.10, Incidence matrix proposed 
 

4 Conclusion 
The capability to detect a fault on time provides 
security, availability and reliability. The fault 
diagnosis mechanisms used in this paper are based 
on the principles of redundancy. This paper 
developed the technique of structural analysis on a 
real-world gas lift well case study. We have 
obtained a structural model based on the dynamic 
process model of the gas lift well, represented as an 
incidence matrix, and applied the algorithm of [16] 
to find MTES. We have carried out an analysis of 
detectability and isolability considering two faults 
and the current instrumentation, i.e. only surface 
variables, and showed the relationship between 
these variables and the redundant subsystems. 

Our design objective was to create the residual 
generators for the gas lift wells in such situation. 
The two faults have been proved detectable and 
isolable in such situation. 

The same analysis has then been performed 
extending the set of faults to five faults, in which 
case detectability and isolability cannot be achieved 
with the current instrumentation. We have then 
relied on a sensor placement algorithm to select the 
minimal sensor set to be added to achieve these 
properties. Interestingly, one single sensor is 
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enough. Unfortunately, this sensor is located at the 
bottom of the well and it is very expensive and 
difficult to maintain. 

Future work will include implementing the ARR-
based alarms on the real monitoring system of the 
gas lift well, hence allowing to respond on time to 
problems that can turn critical. At the moment, only 
alarms reporting sensor faults are available. 

From the methodological point of view, future 
work will consider to extend this approach with a 
data-based diagnosis method able to account for 
environmental features, like vibrations, noises, 
temperatures, that are difficult to manage with a 
model-based approach like the one used in this 
paper. 
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