

Optimized motion planning of manipulators
in partially-known environment using modified D* Lite algorithm

AMIR FEIZOLLAHI and RENE V. MAYORGA

Department of Industrial Systems Engineering
University of Regina

3737 Wascana Parkway, Regina, Saskatchewan
CANADA

Feizolla@uregina.ca and Rene.Mayorga@uregina.ca

Abstract: Optimized motion planning of the manipulators with regards to their energy consumption level is a
challenging problem in robotics which requires a combination of interdisciplinary studies to offer a solution. In
this article, a framework is developed to design a motion planner implementing a proposed search algorithm
and simulate the robot motion in different environments. The superiority of the search algorithm is investigated
and the development of the MATLAB framework is totally discussed accompanying the simulation results.

Key-Words: Motion Planning, Manipulator, Optimization, Graph Search Algorithm, Mathematical Modeling

1 Introduction
In most industrial and daily applications,
manipulation is the main or part of the task. Saving
labor and reducing the cost of operation has been
always the main concern of the designers to
minimize the time and effort needed to perform
these tasks. In many applications such as
exploration in the dangerous environment [1] and
rescue operation in natural disasters [2], to
dexterous manipulation [3], and point-to-point
placement in industrial workspaces [4], using
human operator can be either inefficient or
dangerous. Robot manipulators, as one of the main
group of robots, are designed from the sequence of
rigid or/and continuum links, actuators, and end-
effector to minimize or entirely eliminate human
interaction with the surrounding environment in
different workspaces and conditions.

Developing an optimized algorithm to convert a
high-level task from human into a low-level
description understandable by the robot has been
always one of the most interesting research topics in
robotics. Motion planning is a step-by-step
procedure that generates the most appropriate
motion for the robot based on the modeling,
analyzing the possible motions (robot’s workspace),
and the specified criteria. Motion planning can be
generally classified into two groups: motion
planning in static environment and motion planning
in a dynamic environment.

In a static environment, all the information about
the obstacles, avoiding criteria, workspace features,

and all other variables in the defined cost function
are obtainable in pre-processing phase. The motion
planning procedure in this type of problems
involves analyzing the workspace in order to reach
the goal node while avoiding the obstacles.

Another type of motion planning algorithms
deals with the problems in which part of the
working environment is unknown (partially-known
environment), or the robot is exploring the
environment for the first time (unknown
environment), or some of the environment features
like location of the obstacles and the goal node can
change (dynamic environment). The algorithms that
are developed to solely solve the dynamic
environment motion planning problems are mainly
based on adaptive path planning where the prior
information about the environment is used to
generate the best path [5]. In an attempt to deal with
the problems of partially-known environment, D*
algorithm was proposed in [6]. D* is an informed
incremental graph search algorithm that has been
widely used for the automatic navigation of the
mobile robots. D* Lite [7] which is also an
incremental heuristic search algorithm, is built on
LPA* to determine the best path from the start node
to the goal node while the path costs change due to
discovering new obstacles or changes in obstacle
features. More details about this algorithm, the
procedure of its implementation, and the proposed
modification to enhance its performance can be
found in the following sections of this article.

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 69 Volume 16, 2017

Optimized motion planning of the manipulators
with regards to the consumed energy of the
actuators takes this problem to a new level in which
modeling the robot and its actuators as a uniform
system play a big role in the motion planning
procedure. In this article, a novel method is used to
combine the dynamics modeling of the robot and its
actuators to develop a single state space describing
the motion of the robot in order to minimize the
energy consumption of the manipulator during its
motion from the start node to the goal node while
avoiding the obstacles.

In this study, a modification to D* Lite algorithm
is proposed, the proposed algorithm is implemented
using MATLAB and the corresponding results are
presented. This article is organized as follows: the
governing equation of the robot-actuator system is
derived in section 2 following by a discussion on the
development of modified D* Lite search algorithm
in section 3. The procedure of implementing the
graph search algorithm using MATLAB is discussed
and the corresponding results are presented in
sections 4 and 5.

2 Mathematical Modeling of the
Robot
As mentioned in the introduction section of this
article, the mathematical model of the robot and its
equation of motion should be developed to calculate
the energy consumption during its motion along the
desired trajectory. Using Hamilton’s principle [8]
for a conservative system between two states from

1t to 2t , there is a stationary value for the integral in
 (1) where L is a calculable form (2) in which T and
V are the kinetic and potential energy of the system,
respectively.

1

2

t

t
I Ldt= ∫ (1)

 (, , t) (,) ()L q q T q q V q= −  (2)

Taking the derivative of both sides in (1) yields
the Lagrange equation of motion for the system:

0

i i

d T T V
dt q q q

∂ ∂ ∂
− + =

∂ ∂ ∂

 (3)

Rewriting (3) in existence of external forces such
as the applied torques by the actuators at the robot’s
joints,

 () () ()TD q q q C q q G q τ+ + =   (4)

In which D and C matrices can be determined
using (5) and (6), respectively.

 1
[m]

i i i i i i

n
T T T

i V V o i o
i

D J J J R I R Jω ω
=

= +∑ (5)

 () () ()ijk kj ik ij

i j k

C d d d
q q q
∂ ∂ ∂

= + +
∂ ∂ ∂

  
 
  

 (6)

Where R is the rotation matrix and J is the
Jacobian matrix that relates the joint angular
velocities to the velocity of any point along the
robot’s links and vice versa.

DC motors are widely used as the actuator in
many control systems. They can be directly
connected to the wheels or cables to provide rotary
or linear motion.

The applied voltage to the armature (V) is the
input of the DC motor and the angular velocity of
the shaft is the output. Assuming that the rotor and
the shaft are rigid and also with the assumption of
proportional viscous friction to the shaft’s angular
velocity, using Newton’s second law and
Kirchhoff’s voltage law yield

 tJ B K iθ θ τ+ + =  (7)

 e
dL i Ri V K
dt

θ+ = −  (8)

Combining (4) and (7), isolating in (8), and
rewriting the equations in matrix form:

 1

0 1 0
0

() B0 0
() ()

0

t

L

e

Kd C V NGT
dt J D J D

i i
K R
L L

θ θ
θθ θ

θ θ

 
 
          +      = + +        + +               
 − −  



 

(9)

In which (Nonlinear Gravitational Terms) can
be calculated using (10).

0

()
()

0

GNGT
J D

θ
θ

 
 
 
   = − +  
 
 
  

 (10)

Solving the differential equations of motion in
 (9) that are associated with the dynamics of the
robot results in the calculation of energy
consumption as a variable in the cost function of the
graph search algorithm.

The governing equations of motion of the robot
are solved simultaneously using the fourth order of
Runge-Kutta method in MATLAB. This solution
will give a great close-to-reality approximation of
the system’s behavior and returns the needed
variables for computation of energy consumption of
the robot.

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 70 Volume 16, 2017

3 Graph Search Algorithm
The graph search algorithms can be generally
categorized into two groups of incremental search
algorithms and heuristic search algorithms. The first
one uses the information in the previous searches to
solve the current search problem while the latter one
uses is mainly based on A* algorithm, in which the
heuristic information of each node is taken into
consideration to focus the search on reaching the
goal node.

D* Lite is an incremental heuristic search
algorithm that uses the main features of both
methods to speed up the search while putting the
priority on reaching the goal node. D* Lite is
basically the incremental form of A* algorithm for
searching in an unknown environment. D* Lite
algorithm uses the same navigation method as D*
but considerably shorter. It is as efficient as D* but
different in terms of the algorithm. These features
make D* Lite one of the best search algorithms for
unknown/partially-known environment [7].

D* Lite assigns two estimates of cost in each
node, g and rhs. The value of g corresponds to the
objective function and rhs is the one-step look-
forward value of the objective function. This
algorithm also defines the status of “consistency”
for each node. The node is

• Consistent if g=rhs
• Inconsistent if g≠rhs

The “Inconsistent” nodes on the “open list” have
the priority to be checked. The rhs value of each
node is computable using the g value of its
successor nodes and the path cost to those nodes
using (11).

 () () ()()()min cost ,p Succ urhs u u p g p∈= + (11)

The key value of a node sets the priority of each
node on the “open list”. This value is the summation
of the heuristic value of the node, h, and minimum
of its g and rhs value. According to (12), in the case
of tie, the secondary key value is considered to
break the tie.

() ()() ()
() ()()

min , ,
()

min ,

g u rhs u h start u
key u

g u rhs u

 +
 =
  

 (12)

D* Lite algorithm consists of five procedures:

Initialization, Main Procedure, Key Value
Calculation, Node Update, and Best Path Generation
 [7].

Initialization includes creating the open list,
assigning a relatively big value to the g and rhs of
all the nodes and finally inserting the goal node to
the “open list”. The process of finding the best path

in D* Lite algorithm, unlike A*, starts with the goal
node.

Key Value Calculation procedure involves all the
computations that are needed to assign the key value
to the input node. The formulation for this
procedure is based on (12). Node Update procedure
basically sets the rhs value of the node under
process and returns it to the appropriate list of
nodes.

In Best Path Computation, the consistency status
of the nodes with the higher key values on the open
list is determined and the appropriate function is
called accordingly to change the status of the node if
it is needed. If the node is under-consistent then a
function is called to change the node to over-
consistent status. These changes will be later
propagated to the neighboring nodes of the node
under process.

The core procedure of D* Lite is Main that has to
be run repeatedly to execute the best-path-finding
and scanning functions until the best path between
the start node and the goal node is generated.

Running D* Lite algorithm, best path can be
obtained by following the gradient of g values from
the start node. This means that the g values of all the
neighboring nodes to each node should be compared
to each other and sorted from the start node to the
goal node to make sure that the path with the
minimum cost is chosen as the best path. D* Lite is
an algorithm that is capable of solving the graph
search problems with considerably high level of
efficiency. However, a simple modification to its
best path generation method increases the efficiency
of this algorithm significantly.

Fig.1 - Modification to D* Lite Algorithm, Node
Update procedure

U.Remove(u)

u ≠ goal

rhs(u) [Equation 2-34]

u ϵ U

Start

New Node Update
Procedure

g(u)≠rhs(u)

U.Insert(u,key(u))

End

Yes

No

Yes

Yes

No

No

Store
the Best Neighbour Node

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 71 Volume 16, 2017

Adding a “store” function in the Node Update
procedure of D* Lite, there would be no need to
execute an extra procedure for generating the best
path in the post-processing phase of the graph
search. In Fig. 1, an event (the dashed ellipse) is
added to the original procedure under the name of
“Store the Best Neighbor Node”. By adding this
function to the procedure, after calculating the rhs
value of the under process node, a new property will
be created to store the best neighbor of the node in
terms of rhs calculation. In new Node Update
Procedure, generation of the best path is simply
piling up the nodes from the start node to the goal
node based on the new property added to the nodes.

4 Developing the Simulation
Framework
The previous sections provided the foundations for
modeling the robot and also delivered the theoretical
structure for the proposed search algorithm in
partially-known environment. In order to implement
the search algorithm on a robot with user-defined
characteristics, a MATLAB framework is designed
to model the robot, apply the search algorithm, and
simulate the robot motion in different scenarios.

The framework consists of thousands of lines of
MATLAB script in several classes with different
types of functions and properties to execute the
above-mentioned tasks. The overall steps for
designing such framework can be summarized as
developing the below classes:
* Robot dynamics, a class that contains several
functions and properties for defining the robot,
developing the corresponding equations and doing
the needed calculation based on the formulation
provided in section 2.
* Motor dynamics, a class that is responsible for
developing the equation of motion of the user-
defined actuator, solving the coupled differential
equations and calculating the energy consumption
upon running the graph search algorithm
* Occupancy analysis, group of classes and sub-
classes for generating random configuration of the
manipulators and identifying the workspace
accordingly
* Search algorithm, the class that is developed to
implement the proposed search algorithm and find
the best path with minimum energy consumption
* Robot simulation, a class that deals with the robot
motion simulation and prepares an appropriate
graphic output to present the results

There are some assumptions associated with the
development of the robot dynamics and motor
dynamics classes. It is assumed that the actuators
acting on each joint are single function adding only
one degree of freedom to the manipulator. In
another word, the number of degrees of freedom of
the robot is equal to the number of the robot’s links.
Although the user can deliberately change the robot
characteristics, this assumption converts the motion
planning of the robot to a more complicated
problem since the robot has to reach the goal node
with more restricted limits. It is also assumed that
the magnetic field of the DC motors at the joints is
constant, the flux is assumed to flow straight into
the motor and it can be formulated as indicated in
 (7). It is also assumed that the actuators have a self-
lock mechanism that causes the full stop in actuators
motion once the robot reaches the intended
configuration. In Motor Dynamics class, all the
links features such as length, mass, and
configuration are stored in the associated cell arrays
and sent to the symbolic method in Robot Dynamics
class in which the corresponding equations of
motion are developed. The differential equations are
then returned to Motor Dynamics class to do the
final calculations for the energy consumption.

The main process in the graph search procedure
using D* Lite algorithm is to identify the nodes that
are to be checked, labeling them to be listed under
“Open List” or “Free Nodes List”, and sorting them
based on the defined cost function. The process
starts with calculating the key value of the Goal
node’s neighbors and putting them on the Open List.
Based on the key value, the next node will be
selected to be checked. The Goal node is then
transferred to Free Nodes List and all its
neighboring nodes are on the Open List. Following
this procedure, removing the processed nodes from
the Open List and adding them to the Free Nodes
List, the graph search algorithm reaches End once
the Start node is added to the Free Nodes List (see
 Fig. 2).

A MATLAB class, Plot_2D, is developed to deal
with the simulation of the robot motion and
displaying the output result from the previously
discussed classes. Upon finding the best path using
the search algorithm and the required MATLAB
objects, the plotting class simulates the robot
motion. This class also provides a graphic output
showing the joints rotation and energy consumption
graphs during the robot motion.

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 72 Volume 16, 2017

Start and Goal Nodes

Current node initialization

Start

Pop the neighbours

rhs calcualation

rhs changed Best Neighbour =
Current Node

On Open List

On Free Nodes List

Add to Open List

Sort key

Start node on Free Nodes List

Store Free Nodes list

Add to Free Nodes list

End

Loop Breaker
Condition

Yes

No
Yes

Yes
No

No

Fig. 2 - Workflow of the modified D* Lite algorithm

5 Results
In the previous sections, the mathematical modeling,
implementation of the search algorithm, and
developing the MATLAB framework have been
discussed. In this section, some typical manipulation
problems are defined and the search algorithm is
applied to find the optimized path for the
manipulation task. The performance of A* and
modified D* Lite algorithms are compared with
each other and the re-planning procedure results are
discussed.

One of the best and easiest ways to investigate
the efficiency of two search algorithms is comparing
their processing time for finding the best path. For
this purpose, the proposed algorithm (modified D*
Lite), D* Lite and A* are applied to exactly the
same problems. Five different scenarios with five
different start-to-goal path length are defined and
both algorithms are applied to generate the best path
between two given nodes. The outputs, as the best
path are exactly the same.

Table. 1 - Comparison between MPD* Lite, D* Lite,
and A* algorithms: processing time

Scenario Total
Nodes

Best Path
Length

Processing Time (s)

MPD* Lite D* Lite A*

1 91 3 0.125 0.348 0.094

2 91 7 0.344 1.553 0.891

3 91 10 1.031 8.564 78.125

4 182 13 1.063 9.678 593.218

5 273 21 3.047 40.849 2450.375

(a)

(b)

(c)

(d)

Fig. 3 - MPD* Lite, D* Lite, and A* graphs:
a) MPD* Lite algorithm: processing time graph
b) D* Lite algorithm: processing time graph
c) A* Lite algorithm: processing time graph
d) Comparative graph for five simulated scenarios

According to the results presented in Table. 1
and Fig. 3, it can be inferred that both open list size
and processing time, which are basically the
governing factors that affect computational
complexity of the algorithms, have exponential
relationship with the number of nodes (namely
number of all nodes and the length of the best path
between the start node and the goal node) in A*

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 73 Volume 16, 2017

algorithm. On the other hand, the computational
complexity of D* Lite and MPD* Lite algorithms,
according to the same results, has a polynomial
relationship with the number of nodes. Although
this polynomial relationship can be different for
these two algorithms (e.g. different order of
polynomial relationship), they both perform much
faster than A* graph search algorithm.

For modeling the robot’s actuators, DC motors
are used as discussed in section 2. It is assumed that
all the joints have the same actuators with similar
characteristics.

One of the typical manipulation problems for
robotic arms is their maneuverability in a tightly
crowded workspace. To verify the capability of the
proposed search algorithm in finding the optimized
path, a workspace is defined as the one in Fig. 4. Six
obstacles in different shapes and sizes are located to
limit the robot’s workspace. The robot’s mission is
to safely manipulate an object from the right corner
of the workspace and drop it in another corner
between two obstacles while avoiding any collision
with them. The manipulator is defined to have four
links of the same length. The energy consumption
graph, the processing time and the best path are
depicted in Fig. 4.

Fig. 4 - Energetically optimized path for the

manipulator in a crowded workspace

To verify the re-planning procedure of the search
algorithm, the robotic arm is located in a partially-
known environment where some of the obstacles are
pre-defined. The manipulator detects a new obstacle
during its motion toward the goal node. As a result,
all the nodes neighboring the new obstacle will have
an update on their cost and the search algorithm
takes the re-planning procedure to find another path

with minimum energy consumption. The
corresponding result and more details on this
scenario can be found in Fig. 5.

Fig. 5 - Re-planning using the modified D* Lite
algorithm in case of detecting new obstacle

6 Conclusions
Using Manipulators in different sizes and shapes for
delivering a wide range of tasks from simple
repetitive manipulation to performing the
maintenance procedure in hazardous workspaces,
has been always an interesting and at the same time
challenging problem in the field of robotics. In this
study, the optimized motion planning of the
manipulators in partially-known environment was
addressed and a search algorithm was proposed and
applied as the solution to this problem. The
mathematical modeling of the robot and its actuators
was done and the corresponding formulation was
derived. D* Lite algorithm as one of the most well-
known search algorithms was discussed, its
superiority over A* algorithm was studied and a
modification was proposed to enhance its efficiency.
This algorithm was implemented using a MATLAB
framework for generating the best path for the user-
defined manipulators in different scenarios.
Although there may be much more possible
scenarios to study the efficiency of the proposed
motion planner, the selected results from tens of
investigated scenarios are the most concise and
informative cases.

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 74 Volume 16, 2017

References:
[1] K. S. Senthilkumar and K. K. Bharadwaj,

“Multi-robot exploration and terrain coverage
in an unknown environment,” Robotics and
Autonomous Systems, vol. 60, no. 1, pp. 123–
132, 2012.

[2] K. Nagatani, S. Kiribayashi, Y. Okada, S.
Tadokoro, T. Nishimura, T. Yoshida, E.
Koyanagi, and Y. Hada, “Redesign of rescue
mobile robot Quince,” IEEE International
Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2011, pp. 13–18.

[3] P. Sabetian, A. Feizollahi, F. Cheraghpour, and
S. A. A. Moosavian, “A compound robotic
hand with two under-actuated fingers and a
continuous finger,” IEEE International
Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2011, pp. 238–244.

[4] M. Hvilshøj, S. Bøgh, O. S. Nielsen, and O.
Madsen, “Autonomous industrial mobile
manipulation (AIMM): past, present and
future,” Industrial Robot, vol. 39, no. 2, pp.
120–135, 2012.

[5] J. van den Berg, D. Ferguson, and J. Kuffner,
“Anytime path planning and replanning in
dynamic environments,” IEEE International
Conference on Robotics and Automation
(ICRA), 2006, pp. 2366–2371.

[6] A. Stentz, “Optimal and efficient path planning
for partially-known environments,” IEEE
International Conference on Robotics and
Automation (ICRA), 1994, pp. 3310–3317.

[7] S. Koenig and M. Likhachev, “D*Lite,”
Eighteenth National Conference on Artificial
Intelligence, American Association for
Artificial Intelligence, 2002, pp. 476–483.

[8] H. Goldstein, Classical mechanics. Pearson
Education India, 1965.

WSEAS TRANSACTIONS on SYSTEMS Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2678 75 Volume 16, 2017

