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Abstract: - Robot Operating System (ROS) begins to be used in automotive industry as a component to be 
adapted and deployed in cars. However, its use varies according to a set of parameters, and its reliability 
depends on these values, and usage models. This paper proposes a certification approach based on evidences 
for a ROS based architecture aligned with the ISO26262 and its Safety Element out of Context (SEooC) 
component definition. This ROS based architecture is being tested in order to identify characteristics and 
thresholds to be used during the whole development life cycle, safety case definition and especially during the 
certification phase. Finally we have outlined an ISO26262 based certification process for this kind of 
component. 
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1 Introduction 
Nowadays the so called autonomous vehicles are 
becoming popular. Their core functionalities are 
relying on a dvanced software and hardware 
capabilities. Press and scientific literature are 
reporting experiences on autonomous cars [1]. Some 
car manufacturers are using the Robot Operating 
System (ROS) such as BMW1. ROS is a set of open 
source software libraries for building robot 
applications. Literature reports experiences applying 
robot operating systems in several domains [2] [3] 
[4], and even in the automotive industry [5] [6].  
Safety certification is currently a hot topic for 
industry [7] especially in safety critical software 
systems [8]. Certification of electronic components 
in cars, and in particular their embedded software, is 
a major goal that the automotive industry tries to 
reach [9]. In this sense, ISO26262 [10] is becoming 
the reference model for the automotive industry [11] 
covering the whole development life cycle. Some 
tools have been developed for supporting this life 
cycle such as OASIS [12] or OpenCert [13]. Safety 
certification relies on the demonstration that a 
software system is acceptably safe by appealing to 
                                                 
1 http://www.ros.org 

the satisfaction of a set of objectives that the safety 
standards require for compliance [14]. In order to 
successfully pass a ce rtification process an 
organization has to demonstrate that its development 
processes and their resulting products fulfil a set of 
relevant standards or their reference models [15]. A 
safety case composed by arguments and evidences 
[16] provides enough confidence that a given 
system complies with these requirements [17]. 
There are experiences relating safety cases in 
compliance with the ISO26262 [18]. Benefits and 
weaknesses of using safety cases ar e discussed in 
[19]. CertWare [20] is also aligned with the 
certification of safety critical domains, and it 
proposes the use of safety cases [7]. 
A ROS based architecture can be defined for the 
automotive domain. Robotic systems can handle 
several functionalities and ROS can be an open 
source specific component. In fact ROS can be used 
as a Safety Element out of Context (SEooC) as 
defined by the ISO26262 [10] part 10, and reused in 
several systems. However in order to utilise this 
component we need to identify requirements and 
design assumptions as it is highlighted in Fig 1 and 
described by ISO26262 [10]. These assumptions 
impact on t he SEooC requirements and design. 
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Therefore we need to characterize this ROS based 
component, such as timing constraints [21], in order 
to use it in the automotive industry and to fulfil 
ISO26262 requirements. As the ROS based 
architecture is flexible there are some parameters 
which can be modified producing different 
operational profiles [22]. 

 
Fig 1: Relationships between assumptions and 

SEooC [10] 

This paper proposes a certification approach based 
on evidences for a ROS based architecture aligned 
with the ISO26262 and its SEooC component 
definition. This ROS based architecture is tested in 
order to identify characteristics and thresholds to be 
used during the whole development life cycle, safety 
case definition and especially during the 
certification phase. Finally we have outlined an 
ISO26262 based certification process for this kind 
of component. In fact this component can be 
parameterized depending on a set  of ROS based 
architecture aspects which can impact on their 
Automotive Safety Integrity Level (ASIL). 
This paper deals with the following research 
questions (RQ): 
• RQ1: What is the timing behaviour of a ROS 

based architecture? Basically this component 
includes sensor, controller and actuator. We need 
to understand how these elements interact among 
them, identifying what thresholds are acceptable. 
In this sense we need to define an operational 
profile for our ROS based architecture. 

• RQ2: What are the safety aspects that should be 
taken into account during the safety case 
definition? During a sa fety analysis of a R OS 
component treated as a SEooC we need to 
identify assumptions and arguments to support 
and reason that a specific instantiation of a ROS 
based architecture is acceptably safe. 

• RQ3: What aspects should be highlighted during 
a certification process for a ROS based 
architecture? We need to understand and clarify 

what evidences are the most relevant for an 
ISO26262 based certification process. 

The remainder of this paper is structured as follows. 
First a background analysis is provided. Then we 
define our ROS based architecture to be used in 
automotive industry. Next we describe the 
certification process for our ROS component, and 
the main results stemming from these experiments. 
After discussing the major results and research 
questions we summarize our paper. 
 
 
2 Background 
This section analyses the background in various 
significant aspects in this context: SEooC within an 
ISO26262 certification, Software Reliability 
Engineering and Certification, ROS and Safety 
Cases. 
 
2.1 ISO26262 certification and SEooC 
The latest version of ISO26262 [10] was released in 
2011 as a standard covering all activities related to 
functional safety in the context of road vehicles. The 
SEooC concept (Safety Element out of Context) is 
defined in part “10 Guideline on ISO26262”. 
Basically this standard supports the whole 
development lifecycle phases. All these phases 
define product development best practices for 
system, hardware and software levels. It is widely 
known that automotive industry does not require a 
certification based on t he ISO26262, but there are 
some literature referring to a c ertification process 
[23] and it is becoming a reference model for the 
automotive industry. In addition the emergence of 
autonomous vehicles will increase the relevance of 
this certification. In our context we focus on 
software component certification [24], and 
specifically the so-called SEooC components 
including hardware and software aspects. 
Concerning the software aspect, ISO26262 states 
the specification of the software safety requirements 
considering the timing constraints among others. All 
these requirements impact on a wide set of 
ISO26262 clauses such as specification of software 
safety requirements, software unit design and 
implementation, and software unit testing. 
Jeff Voas defined a certification process for off-the-
shelf components [25] which is based on t he 
analysis of quality characteristics, considering 
components as black boxes. A component is 
considered to be certifiable if its quality 
characteristics are met. Voas' approach does not 
define what high quality [25] means, and our 
approach extends his approach with our ROS based 

Assumed
requirements

SEooC
requirements

SEooC Design

Assumptions
on design

external to 
SEooC

Assumptions

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea, 

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 54 Volume 16, 2017



architecture. He also considers wrappers to limit its 
component’s behaviour, and the analysis of its 
operational system which can also affect the 
component behaviour. 
 
2.2 Software reliability engineering 
Musa and Everett defined Software-reliability 
engineering as the applied science of predicting, 
measuring, and managing the reliability of software 
based systems to maximize customer satisfaction 
[26]. Nowadays there are software based systems 
such as R OS providing functionalities to critical 
systems for its appropriate functioning. Software 
has a r elevant role on these systems. In fact, 
Software Engineering as a d iscipline is a 
cornerstone in the development of software based 
systems. A myriad of aspects are taking relevance in 
these scenarios such as debugging, early error 
detection, fast recovery, long term support, dynamic 
and static analyses, and evolution. One key 
characteristic is that they must be reliable to some 
extent. Otherwise the resulting products will not 
satisfy customer needs, and will have an impact into 
customer satisfaction. 
The theory of software reliability was defined by 
Musa [27], and several approaches are grounded on 
this theory such as Software Reliability Growth 
Models (SRGM). In this sense, according to [28], 
there are two types of models: black box and white 
box models. 
(1) Black-box Software Reliability Models assume 
systems as monolithic systems. 
(2) White-box Software Reliability Models provide 
a detailed view of the systems. 
Basically Software reliability growth models are 
used for fault prevention, fault removal, fault 
tolerance and fault/failure forecasting [28]. Black 
box models are usually applied during these testing 
phases which can be considered too late in the 
development process [29]. 
 
2.3 Software reliability certification  
Basic steps are defined for implementing software 
reliability such as [28] where the main steps are: list 
related systems, implement operational profiles, 
define necessary reliability, prepare for test, execute 
test and guide test. A similar approach is the 
Software Reliability Engineering Process [22] 
where once the reliability objective is determined 
and the operational profile is developed, we proceed 
with the software testing, collection of failure data, 
and so on. C oncerning certification, certifying the 
reliability of software is not easy task, and all these 
approaches agree on the fact that we need to set up 

the operational profiles. In fact, a certification 
process will take into account these operational 
profiles as a basis. In this context safety evidences 
[30] are used to support certification processes, and 
they are a co rnerstone in software component 
certification [24] as well. Wholin and Regnell 
defined a reliability certification of software 
components for different usage profiles [31] (see 
Fig 2). In our context we identify and characterize a 
usage profile for a SEooC component as well as its 
reliability. This is needed because during the 
certification process the auditor/evaluator checks 
these characteristics in the resulting product by 
means of measurable attributes.  
  

 
Fig 2: Component, usage model, usage profile and 

its related reliability [31] 

 
2.4 Robotic Operating System (ROS) 
Robotics software has been chronically facing 
problems in industry and academy due to the lack of 
standardization, interoperability and reuse of 
software libraries [32]. The most relevant problems 
that prevented the robotics community from 
producing a h ealthy software ecosystem were: (1) 
lack of code reuse; (2) higher needs of integration of 
components and; (3) finding the appropriate trade-
off between efficiency and robustness. As a 
solution, free software and open source software 
(FOS) initiatives such as the Robot Operating 
System (ROS) initiative were promoted [32]. 
In particular, ROS [33] provides operating system-
like tools and package tools. ROS defines different 
entities including nodes, message topics and 
services. Nodes are processes or software modules 
that can communicate with other nodes by passing 
simple messages (or data structures) by means of 
publisher/subscriber mechanisms on t op of TCP or 
UDP. In ROS a service is modelled as a p air of 
messages, one for request and another for reply. 
ROS has several client libraries implemented in 
different languages such as C++, Python, Octave or 
Java in order to create ROS applications. Its major 
advantage is code reuse and sharing [34]. 
ROS has been successfully used in different kinds of 
robots such as autonomous guided vehicles [35] or 
even in the automotive industry. For example, ROS 
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[5] is proposed to support the Co-Pilot system at 
highly automated vehicles; the driver should take 
over the control within a certain time constraint 
when the system requests it, otherwise the system 
pulls over the car safely. ROS is also used [35] for 
establishing a Collision Avoidance system for 
Autonomous Driving tasks. 
 
2.5 Safety Cases  
There is an existing debate whether safety cases are 
enough to provide confidence in order to consider a 
system safe [19]. Together with other authors [6] we 
consider safety cases as a useful way to provide 
enough confidence using structured arguments and 
evidences [36] in safety critical applications [37]. In 
our approach Safety Cases are used for gathering 
primary assets during certification process.  
Safety cases have been applied to several domains 
such as avionics [38] [39]. The OMG is devoting 
efforts with a special task force2 and a dependability 
assurance framework3. They have released a 
metamodel for representing assurance cases, the so-
called Structured Assurance Case Metamodel 
(SACM). 
 
3 The Architecture of a SeooC for 
certification testing 
This section briefly describes the ROS architecture 
used and the experimentation carried out. 
 
3.1 ROS Description: through an 
operational profile 
Software architectures are needed in order to 
improve the software engineering process by 
connecting components which allow code reuse 
while keeping an appropriate trade-off between 
efficiency and robustness. These architectures 
should be properly certified according to the ISO 
26262 standard.  
Our component wrapper implemented with ROS 
technology is aimed at hiding both sensors and 
actuators by means of a two level architecture:  
1. Advanced Level Processing (ALP), implemented 

on a higher processing device with higher 
computation and connectivity capabilities 

2. Low Level Processing (LLP), implemented on 
devices with limited capabilities 

So, while ALP nodes are typically communicate to 
similar nodes by means of standard interfaces, such 
as AUTOSAR interfaces, communication between 

                                                 
2 http://sysa.omg.org/ 
3 http://www.omg.org/hot-topics/cdss.htm 

APL and LLP nodes can use proprietary 
mechanisms. ROS is adopted in order to avoid low 
level programming details. For the sake of testing 
this architecture is implemented using two different 
and easily available devices: A Raspberry Pi board 
as ALP node, which processes the data acquired 
from an LLP node, implemented with an Arduino 
Board, both linked via an USB serial connection. 
Fig 3 provides a UML diagram of this architecture. 
Fig 4 provides a detailed representation of the 
implementation of this architecture, which is 
deployed in a vehicle as shown in Fig 5. 

 
Fig 3: UML Deployment Diagram showing the main 

elements in our SEooC 

 
Fig 4: Implementation of the architecture with 

Raspberry Pi & Arduino 

3.2 Architecture used in the experiments 
Since this architecture is aimed at building 
components that could be connected into a broader 
system, typically for measuring or actuation 
purposes, they must be represented externally by a 
limited set of chosen parameters. In order to ease the 
integration of the component it is of key importance 
that these parameters represent only the most 
relevant aspects of the component behaviour, while 
wrapping to a m aximum the characteristics of the 
internal off-the-shelf components involved, i.e. ROS 
framework, devices at ALP and LLP layers. The 
selected parameters are: 
1. Period: It describes the time interval, in 

milliseconds, of communication between the ALP 
(Raspberry Pi) and LLP (Arduino) nodes. 

SEooC

<<device>>
Mecatronics
components<<ROS component>>

rosserial

<<microcontroller>>
Arduino

<<device>>
Raspberry Pi

<<component>>
linux kernel

<<ROS component>>
ctrl

<<component>>
docker container

serial

USBUSB
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2. Granularity: It represents a m essage delivery 
update frequency parameter related to the ROS 
message-passing mechanism. It is expressed in 
kHz. 

3. Queue: ROS follows the Publisher/Subscriber 
paradigm and stores messages in fixed length 
queues. This parameter is the internal size of 
these queues. 

 
Fig 5: Our Raspberry Pi & Arduino in an 

autonomous car prototype 

 
 
4 Certifying a SEooC component 
The certification process for our ROS based 
component is based on [ 25] [31] [40]. The main 
activities of the certification process are described 
as follows (Fig 6) [40]: 
1. Scope [40]: this activity is mainly related to the 
scope definition of our certification process. In fact, 
our scope is focused on ROS, and on t he Safety 
Element out of Context based on ISO26262. 
2. Primary documentation [40]: this activity is 
focused on providing the primary certification 
documentation such as Safety Requirements 
Specifications, Safety Architecture and Safety Cases 
[41]. Our focus is to highlight the main 
argumentations used for building a safety case for a 
ROS based architecture and ISO26262 SEooC 
definition used for certification purposes [42]. 
3. Assessment [40]: This activity is structured in 
three sub-activities: 
a. Component usage model definition: the use of a 

component can vary its reliability based on a set 
of properties that are identified for our ROS 
architecture [31]. 

b. Measurable attributes: The aforementioned 
properties are the attributes which are going to 
be measured.  

c. Results: analysis of the results in order to 
determine whether our ROS component 
behaviour is relevant. 

4. Report & Certificate [40]: basically this activity 
is a su mmary of the main results of our ROS 

component with a set of usage models proposed for 
its integration with other systems. 
 

 
Fig 6: Certification process [40] 

Each activity of this process is described in the 
following sub-sections. 
 
4.1 Scope 
This first activity is focused on defining the main 
scope of the certification. In this sense, it is required 
to analyze the steps for developing a SEooC based 
on ISO26262: 
1. Assumptions on the scope of SEooC: purpose, 

boundaries and functionalities for our component 
are identified. 

2. Assumption on Functional Safety Requirement of 
the SEooC: functional safety requirements for our 
ROS component are taken into account. 

3. Execution of SEooC development: this step is 
devoted to the whole development of the 
component. 

4. Identification of work products: these work 
products validate the assumed functional safety 
requirements, and assumptions are met. 

5. SEooC integration: SEooC assumptions are 
verified, including ASIL capability, and the 
assumed safety requirements are correctly 
integrated with the rest of the system. 

These assumptions and boundaries characterize our 
ROS architecture, and measurable attributes are 
identified. We are therefore going to focus just on 
identifying them. According to [31], a component 
has different usage profiles for different reliabilities. 
In fact we do not know the most appropriate usage 
profile for our ROS architecture. Consequently, we 
need to identify these boundaries which help us 
during the assumptions definition. We have defined 
a set of experiments (tests) based on by combining 
three parameters of our ROS based architecture: (1) 
Time between messages (period), (2) Granularity 
and (3) Queue size. These elements modify the 
behaviour of our architecture, and accordingly they 
modify its reliability. Each experiment or test 
modifies one parameter of the architecture (Table 
1). These parameters characterize the behaviour of 
our SEooC. It is under designer’s responsibility to 
accept or to decline a specific configuration 
according to the requirements of a sp ecific 
application. 
4.2 Primary documentation  
One relevant aspect during a certification process is 
the gathering of the primary assets during 
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certification. Clear arguments are the basis for 
safety certification [41] [42], and they help us to 
structure primary documentation. All this 
information is represented by a safety case which is 
used to demonstrate by argumentations and 
evidences that our ROS based component is safe 
and it conforms to the ISO26262. Then this goal is 
split into several sub-goals which fulfil some of the 
ISO26262 clauses which are traditionally used in 
these scenarios. Apart from the hazard analysis, a 
set of goals related to SEooC are identified such as 
the design which takes into account all safety 
requirements. Measures are identified to show the 
correct implementation of safety requirements. The 
details of the documentation containing safety cases 
and our representation using GSN notation is 
considered out of the scope of this paper. 
 
4.3 Assessment 
Our assessment process (Fig 7) is used to determine 
what ROS aspects are going to be represented and 
tested for certifications purposes. The following 
sections describe in detail the activities of this 
process. 

 
Fig 7: Assessment process 

4.3.1 Component usage model definition 
Our certification approach is aligned with ISO26262 
and the SEooC definition (ISO26262 part 10) 
because it takes into account their specific clauses, 
and they are gathered in our safety case. A 
component usage conceptual model (Fig 8) is 
defined for our ROS based architecture based on 
[31]. This means that each usage model is 
configured by three previously defined parameters: 
period, granularity and queue. Each configuration is 
related to a s pecific reliability based on the tests 
results (Table 1). We can therefore derive different 
reliabilities based on different configurations. 

 4.3.2 Measurable attributes 
According to [31] we need to identify different 
profiles for the usage of our SEooC component. At 
least we need to identify the reliability behaviour for 
the ROS based architecture [43]. A quantitative 
technique for profiling the runtime behaviour is 
based on testing workloads [44]. We test our ROS 
based architecture by sending messages. In this 
sense stress testing [45] has been used in the past, 
and it is an essential activity in safety-critical 
software [46].  

 
Fig 8: Component usage conceptual model 

Software reliability models require failures intensity 
measurement to work [43] [47] [48] [49]. Therefore 
we need to define in our context what a f ailure is. 
ISO26262 part 1 [10]] defines fault as an abnormal 
condition that can cause an element (1.32) or an 
item (1.69) to fail. An error is a d iscrepancy 
between a computed, observed or measured value or 
condition, and the true, specified or theoretically 
correct value or condition. Finally, a failure is a 
termination of the ability of an element (1.32) to 
perform a function as required. 
In our definition, we are just considering as f aults 
basically lost messages. A lost message means, for 
example, that the information sent to an actuator is 
not received, and therefore not processed. These 
faults can also be considered as relative errors in 
this context [28]. In consonance with some 
experiences reported in the literature using, among 
others, number of failures, probability and mean 
[29] [50] [51] [52], we are going to measure the 
following aspects for each experiment: 
• Faults: number of undelivered messages or 

messages arrived after a cer tain latency 
threshold. 

• Mean [29]: mean latency of all arrived messages. 
• Median [29]: central latency of all arrived 

messages. 
• Standard Deviation [51]: variation of arrived 

messages. 
• Minimum: minimum latency value of all arrived 

messages. 
• Maximum: maximum latency value of all arrived 

messages. 
• Confidence Interval (CI) 95% (lower and upper): 

thresholds delimiting outliers [50] [51]. We only 
consider outliers latencies higher than Upper CI 
95 %. 

• Undelivered Density [52]: number of 
undelivered messages per total number of 
messages sent. 

• Outlier Density [52]: number of outliers per total 
number of arrived messages. 

• Reference Interval (RI) 99% (lower and upper): 
thresholds delimiting 99% of the arrived 
messages. 

4.3.3 Black box testing performance 

Usage model

QueueGranularityPeriod

ReliabilityROS
1..* 1..*
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Following Voas’ proposal, we aim at determining 
whether the component quality is high enough [25]. 
Fig 9 describes the steps carried out for testing our 
SEooC component. Tests are grounded on the 
analysis of SEooC component attributes: period, 
granularity and queue size. For each attribute value 
combination the platform is executed, recording the 
latency for each arrived message. As an 
implementation decision, non-arrived messages 
(undelivered) are marked as zero latency. Although 
it is not a valid latency value it is visually easy to 
spot. 
One aspect to analyze is whether these data follow a 
normal distribution or an SRGM in order to evaluate 
the reliability of the experiments determined by 
these measures: mean, median, standard deviation, 
minimum, maximum, CI 95% (lower and upper), 
fault density and RI 99% (lower and upper). 

 
Fig 9: Black box testing process 

4.3.4 Results 
We need to assess software operational quality [53] 
based on stressing our architecture. So, we 
identified 40 di fferent configurations (5 x 2 x 4 =  
40) for our SEooC component, being their input 
variables and values: 
• Period values: 2, 3, 4, 5 and 8 ms. 
• Granularity values: 5 and 10 kHz. 
• Queue size values: 1, 2, 10 and 100. 
Each experiment combination was executed 24 
times during 10 minutes, therefore resulting 
altogether in 960 executions (see Annexes). These 
empirical cases provided an overview of the SEooC 
component behaviour under stress conditions. 
In a p reliminary data analysis we determine which 
experiments were meaningful. Fig 10 depicts the 
latency of two executions of out SEooC component. 
X axis represents the execution time in seconds (10 
minutes altogether). Y axis represents the latency of 
each message over time in milliseconds. 
Undelivered messages are shown as having null 
latency. Fig 10 (a) shows a high density of messages 
delivered within the range from 6 to 12 ms latency. 
Four spots close to the X axis (zero latency value) 
correspond to undelivered messages. On the upper 
zone of the thick stripe, loose dots represent 
messages with a h igh-out of common latency. Fig 

10 (b) depicts a completely different scenario. At 
the beginning, some messages are delivered with an 
extremely high latency (more than 150 s econds). 
Further to a given point (around 300 s econds 
execution time) messages no longer arrive, so that 
they all remain null (representing undelivered 
messages). Clearly, in this case the component 
cannot be considered reliable as messages mostly 
remain undelivered. The whole experiment set with 
a period of 2 m s behaves similarly. Furthermore, 
they are not comparable and we shall exclude them 
from the remaining of our study. This reduces our 
data set to 768 ( 24 executions of 4 x 2 x 4 =  32 
experiments). 

 
(a) 3 ms, 5 kHz, queue size 2 

 
(b) 2 ms, 5 kHz, queue size 2 

Fig 10: Data plots of two executions of the SEooC 
component 

Similar figures to those provided in Fig 11 are 
obtained for the whole set of 768 v alid executions 
and in general terms they all look like Fig 11 (a). 
We have visually compared the figures of the 24 
executions under the same experimental conditions 
and they are consistent. All summarized information 
has been collected and compared in spread sheets 
with two different sorting views: (1) blocks of the 
24 executions under each experimental condition 
and (2) blocks of all experiments under the same 
execution number. All this information can be 
consulted in the Annexes. 
Another visual representation utilized in our 
analysis has been the density plot. Fig 11 shows an 
execution instance of our SEooC. In this picture we 
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have integrated some of the extracted 
aforementioned measures with the values for this 
case. 

 
Fig 11: Density plot of execution 19, period 3ms, 

granularity 5 kHz, queue size 1 

In order to formally analyze the experimental results 
we need to check if they follow a n ormal 
distribution to apply the Central Limit Theorem. 
When sample size is 8 t o 29 ( in our case 24), we 
need to verify whether the Shapiro-Wilk and 
Kolmogorov-Smirnov normality test is fulfilled. 
Since the mean latency values do not violate the 
normal assumption, the Confidence Intervals (CI) 
95% can be calculated as in Equation (1). 

Confidence Interval 95% = μ ± 2σ (1) 

Table 1 synthesizes this information by combining 
the average of all 24 execution measures under each 
experimental condition. 
 
4.4 Report & Certificate 
This final activity for the certification process 
involves producing a report containing the details of 
the process, the safety case, the ROS architecture 
description, the usage model and the final results. 
 
 
5 Discussions 
ROS is a set of open-source software libraries. It is 
becoming popular in several domains but it is just in 
its infancy and its maturity can be debatable. 
As demonstrated in this paper, it can be configured 
in different specific usage models so that each usage 
model may be related to a specific reliability level. 
In fact our tests reveal some relevant behaviour 
depending on these attributes: period, granularity 
and queue size. 

Table 1: Summary of SEooC component executions 

 
Our ROS based architecture behaviour is 
characterized in terms of timing and, therefore, our 
research question 1 ( RQ1: What is the timing 
behaviour of a ROS based architecture?) is 
answered. A different sensor, controller and actuator 
configuration can generate other values and 
therefore require other reliabilities. However, it is 
useful to understand how a single ROS 
configuration can interact with other components, 
and to know its acceptable thresholds. The usage 
model represents different configurations and 
reliabilities, and it is the designer's responsibility to 
decide upon which reliability he/she wants to run. 
Our safety case provides a set of argumentations and 
asserted inferences for supporting ISO26262 and the 
SEooC concept. All these assumptions and asserted 
evidences supporting goals argue that a specific 
instantiation of a ROS based architecture is 
acceptably safe and compliant to some ISO26262 
clauses. So, our second research question (RQ2: 
What are the safety aspects that should be taken into 
account during the safety case d efinition?) is 
therefore accomplished. 
A certification process is a double edged sword 
[54], and a balance of activities should be defined. 
The proposed certification process deals with 
specific ISO26262 practices related to SEooC. A 
certification process should clarify what evidences 
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are the most relevant but also what are the main 
ISO26262 aspects involved for a SEooC 
certification. This article provides an example on the 
arguments, assertions and evidences used in this 
context. This leads us to conclude that our third 
research question (RQ3: What aspects should be 
highlighted during a certification process for a ROS 
based architecture?) is reached. However, these 
arguments and assertions and evidences can vary 
depending on each situation and context. If this 
ROS component were integrated in a more complex 
scenario, additional arguments and evidences should 
be defined. 
Our ROS based architecture is tested on a  basic 
platform which is not a complex situation where 
several ROS and other components are interacting. 
More studies are required on complex 
infrastructures and mechanisms. For example, the 
current bus communicator is a Universal Serial Bus 
(USB), and traditionally communications in 
automotive domain use the so called CAN bus [55]. 
However it can be used with USB for connecting 
other automotive components. In addition, further 
research should be devoted to security issues which 
are not covered in CAN bus systems representing a 
main weakness. 
The presented approach helps us to identify what 
use of a ROS component can be defined by the 
designer. In fact, it is under the designer’s 
responsibility to accept or to decline a sp ecific 
configuration according to one specific application 
requirements. Our ROS characterization provides an 
overview of the acceptable values considering 
Confidence Intervals (95%) and Reference Intervals 
(99%). During a certification process these values 
are taken as reference values. These aspects are used 
during ISO26262 SEooC component definition. 
 
 
6 Conclusions and future work 
Software is playing a key role in automotive 
industry, and ROS has its place for specific 
activities. This paper presents a characterization of a 
ROS based architecture with a d eep analysis of its 
behaviour according to three parameters: period, 
granularity and queue size. Certifying third party 
components in the automotive industry should 
consider the ISO26262 SEooC concept definition. 
Our ROS is defined as a SEooC component, and it 
is used on a  vehicle for testing purposes. The 
presented approach defines a cer tification process 
compliant to ISO26262 and to the SEooC concept. 
A set of reference values is defined to be used 
during assessment activities. These values represent 

a usage model, and a specific reliability is related to 
each usage model. 
This certification approach relies on the use of 
safety cases for representing primary 
documentation. This documentation must include 
reference values for a SEooC component, and these 
values are provided in this paper. Our safety case 
provides a s et of argumentations and asserted 
inferences for supporting ISO26262 and the SEooC 
concept. All these assumptions argue that a specific 
instantiation of a ROS based architecture is 
acceptably safe and it is compliant to some 
ISO26262 clauses. At the end we provide a ROS 
based architecture analysis and its compliance to 
ISO26262 SEooC.  
As future work, one relevant aspect is to model ROS 
behaviour as an SRGM, but further analysis should 
be devoted to define this SRGM model. We are 
currently working on a preliminary proposal in this 
sense but some formalism is required to present this 
model. In addition, we have identified behavioural 
improvements modifying the ROS kernel. In this 
sense there are some interesting initiatives such as 
Linux for automotive4, and how ROS can be 
smoothly integrated with this operating system. 
 
Annexes 
A more detailed description of the experimental 
environment and the individual execution results are 
available in data and graphical modes at the 
following annexes web address: 

http://lsi.vc.ehu.es/CPS-data 
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