
ISO26262 SEooC Compliance of a ROS Based Architecture

ISMAEL ETXEBERRIA-AGIRIANO1, XABIER LARRUCEA1,2, PABLO GONZALEZ-NALDA1,
MARI CARMEN OTERO 1, , ISIDRO CALVO 3

1 Department of Computer Languages and Systems
2 ICT – European Software Institute Division - Tecnalia

3 Department of Automatic Control and Systems
1,3 University College of Engineering - University of the Basque Country (UPV/EHU)

1,3 Nieves Cano, 12. 01006 Vitoria-Gasteiz
2 Parque tecnológico de Bizkaia. Calle Geldo Edificio 700. Derio (Bizkaia)

1,2,3 SPAIN
{ismael.etxeberria,pablo.gonzalez,mariacarmen.otero,isidro.calvo}@ehu.eus

xabier.larrucea@tecnalia.com

Abstract: - Robot Operating System (ROS) begins to be used in automotive industry as a component to be
adapted and deployed in cars. However, its use varies according to a set of parameters, and its reliability
depends on these values, and usage models. This paper proposes a certification approach based on evidences
for a ROS based architecture aligned with the ISO26262 and its Safety Element out of Context (SEooC)
component definition. This ROS based architecture is being tested in order to identify characteristics and
thresholds to be used during the whole development life cycle, safety case definition and especially during the
certification phase. Finally we have outlined an ISO26262 based certification process for this kind of
component.

Key-Words: - ROS, reliability, ISO26262, SEooC, Certification, Safety Case.

1 Introduction
Nowadays the so called autonomous vehicles are
becoming popular. Their core functionalities are
relying on a dvanced software and hardware
capabilities. Press and scientific literature are
reporting experiences on autonomous cars [1]. Some
car manufacturers are using the Robot Operating
System (ROS) such as BMW1. ROS is a set of open
source software libraries for building robot
applications. Literature reports experiences applying
robot operating systems in several domains [2] [3]
[4], and even in the automotive industry [5] [6].
Safety certification is currently a hot topic for
industry [7] especially in safety critical software
systems [8]. Certification of electronic components
in cars, and in particular their embedded software, is
a major goal that the automotive industry tries to
reach [9]. In this sense, ISO26262 [10] is becoming
the reference model for the automotive industry [11]
covering the whole development life cycle. Some
tools have been developed for supporting this life
cycle such as OASIS [12] or OpenCert [13]. Safety
certification relies on the demonstration that a
software system is acceptably safe by appealing to

1 http://www.ros.org

the satisfaction of a set of objectives that the safety
standards require for compliance [14]. In order to
successfully pass a ce rtification process an
organization has to demonstrate that its development
processes and their resulting products fulfil a set of
relevant standards or their reference models [15]. A
safety case composed by arguments and evidences
[16] provides enough confidence that a given
system complies with these requirements [17].
There are experiences relating safety cases in
compliance with the ISO26262 [18]. Benefits and
weaknesses of using safety cases ar e discussed in
[19]. CertWare [20] is also aligned with the
certification of safety critical domains, and it
proposes the use of safety cases [7].
A ROS based architecture can be defined for the
automotive domain. Robotic systems can handle
several functionalities and ROS can be an open
source specific component. In fact ROS can be used
as a Safety Element out of Context (SEooC) as
defined by the ISO26262 [10] part 10, and reused in
several systems. However in order to utilise this
component we need to identify requirements and
design assumptions as it is highlighted in Fig 1 and
described by ISO26262 [10]. These assumptions
impact on t he SEooC requirements and design.

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 53 Volume 16, 2017

Therefore we need to characterize this ROS based
component, such as timing constraints [21], in order
to use it in the automotive industry and to fulfil
ISO26262 requirements. As the ROS based
architecture is flexible there are some parameters
which can be modified producing different
operational profiles [22].

Fig 1: Relationships between assumptions and

SEooC [10]

This paper proposes a certification approach based
on evidences for a ROS based architecture aligned
with the ISO26262 and its SEooC component
definition. This ROS based architecture is tested in
order to identify characteristics and thresholds to be
used during the whole development life cycle, safety
case definition and especially during the
certification phase. Finally we have outlined an
ISO26262 based certification process for this kind
of component. In fact this component can be
parameterized depending on a set of ROS based
architecture aspects which can impact on their
Automotive Safety Integrity Level (ASIL).
This paper deals with the following research
questions (RQ):
• RQ1: What is the timing behaviour of a ROS

based architecture? Basically this component
includes sensor, controller and actuator. We need
to understand how these elements interact among
them, identifying what thresholds are acceptable.
In this sense we need to define an operational
profile for our ROS based architecture.

• RQ2: What are the safety aspects that should be
taken into account during the safety case
definition? During a sa fety analysis of a R OS
component treated as a SEooC we need to
identify assumptions and arguments to support
and reason that a specific instantiation of a ROS
based architecture is acceptably safe.

• RQ3: What aspects should be highlighted during
a certification process for a ROS based
architecture? We need to understand and clarify

what evidences are the most relevant for an
ISO26262 based certification process.

The remainder of this paper is structured as follows.
First a background analysis is provided. Then we
define our ROS based architecture to be used in
automotive industry. Next we describe the
certification process for our ROS component, and
the main results stemming from these experiments.
After discussing the major results and research
questions we summarize our paper.

2 Background
This section analyses the background in various
significant aspects in this context: SEooC within an
ISO26262 certification, Software Reliability
Engineering and Certification, ROS and Safety
Cases.

2.1 ISO26262 certification and SEooC
The latest version of ISO26262 [10] was released in
2011 as a standard covering all activities related to
functional safety in the context of road vehicles. The
SEooC concept (Safety Element out of Context) is
defined in part “10 Guideline on ISO26262”.
Basically this standard supports the whole
development lifecycle phases. All these phases
define product development best practices for
system, hardware and software levels. It is widely
known that automotive industry does not require a
certification based on t he ISO26262, but there are
some literature referring to a c ertification process
[23] and it is becoming a reference model for the
automotive industry. In addition the emergence of
autonomous vehicles will increase the relevance of
this certification. In our context we focus on
software component certification [24], and
specifically the so-called SEooC components
including hardware and software aspects.
Concerning the software aspect, ISO26262 states
the specification of the software safety requirements
considering the timing constraints among others. All
these requirements impact on a wide set of
ISO26262 clauses such as specification of software
safety requirements, software unit design and
implementation, and software unit testing.
Jeff Voas defined a certification process for off-the-
shelf components [25] which is based on t he
analysis of quality characteristics, considering
components as black boxes. A component is
considered to be certifiable if its quality
characteristics are met. Voas' approach does not
define what high quality [25] means, and our
approach extends his approach with our ROS based

Assumed
requirements

SEooC
requirements

SEooC Design

Assumptions
on design

external to
SEooC

Assumptions

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 54 Volume 16, 2017

architecture. He also considers wrappers to limit its
component’s behaviour, and the analysis of its
operational system which can also affect the
component behaviour.

2.2 Software reliability engineering
Musa and Everett defined Software-reliability
engineering as the applied science of predicting,
measuring, and managing the reliability of software
based systems to maximize customer satisfaction
[26]. Nowadays there are software based systems
such as R OS providing functionalities to critical
systems for its appropriate functioning. Software
has a r elevant role on these systems. In fact,
Software Engineering as a d iscipline is a
cornerstone in the development of software based
systems. A myriad of aspects are taking relevance in
these scenarios such as debugging, early error
detection, fast recovery, long term support, dynamic
and static analyses, and evolution. One key
characteristic is that they must be reliable to some
extent. Otherwise the resulting products will not
satisfy customer needs, and will have an impact into
customer satisfaction.
The theory of software reliability was defined by
Musa [27], and several approaches are grounded on
this theory such as Software Reliability Growth
Models (SRGM). In this sense, according to [28],
there are two types of models: black box and white
box models.
(1) Black-box Software Reliability Models assume
systems as monolithic systems.
(2) White-box Software Reliability Models provide
a detailed view of the systems.
Basically Software reliability growth models are
used for fault prevention, fault removal, fault
tolerance and fault/failure forecasting [28]. Black
box models are usually applied during these testing
phases which can be considered too late in the
development process [29].

2.3 Software reliability certification
Basic steps are defined for implementing software
reliability such as [28] where the main steps are: list
related systems, implement operational profiles,
define necessary reliability, prepare for test, execute
test and guide test. A similar approach is the
Software Reliability Engineering Process [22]
where once the reliability objective is determined
and the operational profile is developed, we proceed
with the software testing, collection of failure data,
and so on. C oncerning certification, certifying the
reliability of software is not easy task, and all these
approaches agree on the fact that we need to set up

the operational profiles. In fact, a certification
process will take into account these operational
profiles as a basis. In this context safety evidences
[30] are used to support certification processes, and
they are a co rnerstone in software component
certification [24] as well. Wholin and Regnell
defined a reliability certification of software
components for different usage profiles [31] (see
Fig 2). In our context we identify and characterize a
usage profile for a SEooC component as well as its
reliability. This is needed because during the
certification process the auditor/evaluator checks
these characteristics in the resulting product by
means of measurable attributes.

Fig 2: Component, usage model, usage profile and

its related reliability [31]

2.4 Robotic Operating System (ROS)
Robotics software has been chronically facing
problems in industry and academy due to the lack of
standardization, interoperability and reuse of
software libraries [32]. The most relevant problems
that prevented the robotics community from
producing a h ealthy software ecosystem were: (1)
lack of code reuse; (2) higher needs of integration of
components and; (3) finding the appropriate trade-
off between efficiency and robustness. As a
solution, free software and open source software
(FOS) initiatives such as the Robot Operating
System (ROS) initiative were promoted [32].
In particular, ROS [33] provides operating system-
like tools and package tools. ROS defines different
entities including nodes, message topics and
services. Nodes are processes or software modules
that can communicate with other nodes by passing
simple messages (or data structures) by means of
publisher/subscriber mechanisms on t op of TCP or
UDP. In ROS a service is modelled as a p air of
messages, one for request and another for reply.
ROS has several client libraries implemented in
different languages such as C++, Python, Octave or
Java in order to create ROS applications. Its major
advantage is code reuse and sharing [34].
ROS has been successfully used in different kinds of
robots such as autonomous guided vehicles [35] or
even in the automotive industry. For example, ROS

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 55 Volume 16, 2017

[5] is proposed to support the Co-Pilot system at
highly automated vehicles; the driver should take
over the control within a certain time constraint
when the system requests it, otherwise the system
pulls over the car safely. ROS is also used [35] for
establishing a Collision Avoidance system for
Autonomous Driving tasks.

2.5 Safety Cases
There is an existing debate whether safety cases are
enough to provide confidence in order to consider a
system safe [19]. Together with other authors [6] we
consider safety cases as a useful way to provide
enough confidence using structured arguments and
evidences [36] in safety critical applications [37]. In
our approach Safety Cases are used for gathering
primary assets during certification process.
Safety cases have been applied to several domains
such as avionics [38] [39]. The OMG is devoting
efforts with a special task force2 and a dependability
assurance framework3. They have released a
metamodel for representing assurance cases, the so-
called Structured Assurance Case Metamodel
(SACM).

3 The Architecture of a SeooC for
certification testing
This section briefly describes the ROS architecture
used and the experimentation carried out.

3.1 ROS Description: through an
operational profile
Software architectures are needed in order to
improve the software engineering process by
connecting components which allow code reuse
while keeping an appropriate trade-off between
efficiency and robustness. These architectures
should be properly certified according to the ISO
26262 standard.
Our component wrapper implemented with ROS
technology is aimed at hiding both sensors and
actuators by means of a two level architecture:
1. Advanced Level Processing (ALP), implemented

on a higher processing device with higher
computation and connectivity capabilities

2. Low Level Processing (LLP), implemented on
devices with limited capabilities

So, while ALP nodes are typically communicate to
similar nodes by means of standard interfaces, such
as AUTOSAR interfaces, communication between

2 http://sysa.omg.org/
3 http://www.omg.org/hot-topics/cdss.htm

APL and LLP nodes can use proprietary
mechanisms. ROS is adopted in order to avoid low
level programming details. For the sake of testing
this architecture is implemented using two different
and easily available devices: A Raspberry Pi board
as ALP node, which processes the data acquired
from an LLP node, implemented with an Arduino
Board, both linked via an USB serial connection.
Fig 3 provides a UML diagram of this architecture.
Fig 4 provides a detailed representation of the
implementation of this architecture, which is
deployed in a vehicle as shown in Fig 5.

Fig 3: UML Deployment Diagram showing the main

elements in our SEooC

Fig 4: Implementation of the architecture with

Raspberry Pi & Arduino

3.2 Architecture used in the experiments
Since this architecture is aimed at building
components that could be connected into a broader
system, typically for measuring or actuation
purposes, they must be represented externally by a
limited set of chosen parameters. In order to ease the
integration of the component it is of key importance
that these parameters represent only the most
relevant aspects of the component behaviour, while
wrapping to a m aximum the characteristics of the
internal off-the-shelf components involved, i.e. ROS
framework, devices at ALP and LLP layers. The
selected parameters are:
1. Period: It describes the time interval, in

milliseconds, of communication between the ALP
(Raspberry Pi) and LLP (Arduino) nodes.

SEooC

<<device>>
Mecatronics
components<<ROS component>>

rosserial

<<microcontroller>>
Arduino

<<device>>
Raspberry Pi

<<component>>
linux kernel

<<ROS component>>
ctrl

<<component>>
docker container

serial

USBUSB

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 56 Volume 16, 2017

2. Granularity: It represents a m essage delivery
update frequency parameter related to the ROS
message-passing mechanism. It is expressed in
kHz.

3. Queue: ROS follows the Publisher/Subscriber
paradigm and stores messages in fixed length
queues. This parameter is the internal size of
these queues.

Fig 5: Our Raspberry Pi & Arduino in an

autonomous car prototype

4 Certifying a SEooC component
The certification process for our ROS based
component is based on [25] [31] [40]. The main
activities of the certification process are described
as follows (Fig 6) [40]:
1. Scope [40]: this activity is mainly related to the
scope definition of our certification process. In fact,
our scope is focused on ROS, and on t he Safety
Element out of Context based on ISO26262.
2. Primary documentation [40]: this activity is
focused on providing the primary certification
documentation such as Safety Requirements
Specifications, Safety Architecture and Safety Cases
[41]. Our focus is to highlight the main
argumentations used for building a safety case for a
ROS based architecture and ISO26262 SEooC
definition used for certification purposes [42].
3. Assessment [40]: This activity is structured in
three sub-activities:
a. Component usage model definition: the use of a

component can vary its reliability based on a set
of properties that are identified for our ROS
architecture [31].

b. Measurable attributes: The aforementioned
properties are the attributes which are going to
be measured.

c. Results: analysis of the results in order to
determine whether our ROS component
behaviour is relevant.

4. Report & Certificate [40]: basically this activity
is a su mmary of the main results of our ROS

component with a set of usage models proposed for
its integration with other systems.

Fig 6: Certification process [40]

Each activity of this process is described in the
following sub-sections.

4.1 Scope
This first activity is focused on defining the main
scope of the certification. In this sense, it is required
to analyze the steps for developing a SEooC based
on ISO26262:
1. Assumptions on the scope of SEooC: purpose,

boundaries and functionalities for our component
are identified.

2. Assumption on Functional Safety Requirement of
the SEooC: functional safety requirements for our
ROS component are taken into account.

3. Execution of SEooC development: this step is
devoted to the whole development of the
component.

4. Identification of work products: these work
products validate the assumed functional safety
requirements, and assumptions are met.

5. SEooC integration: SEooC assumptions are
verified, including ASIL capability, and the
assumed safety requirements are correctly
integrated with the rest of the system.

These assumptions and boundaries characterize our
ROS architecture, and measurable attributes are
identified. We are therefore going to focus just on
identifying them. According to [31], a component
has different usage profiles for different reliabilities.
In fact we do not know the most appropriate usage
profile for our ROS architecture. Consequently, we
need to identify these boundaries which help us
during the assumptions definition. We have defined
a set of experiments (tests) based on by combining
three parameters of our ROS based architecture: (1)
Time between messages (period), (2) Granularity
and (3) Queue size. These elements modify the
behaviour of our architecture, and accordingly they
modify its reliability. Each experiment or test
modifies one parameter of the architecture (Table
1). These parameters characterize the behaviour of
our SEooC. It is under designer’s responsibility to
accept or to decline a specific configuration
according to the requirements of a sp ecific
application.
4.2 Primary documentation
One relevant aspect during a certification process is
the gathering of the primary assets during

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 57 Volume 16, 2017

certification. Clear arguments are the basis for
safety certification [41] [42], and they help us to
structure primary documentation. All this
information is represented by a safety case which is
used to demonstrate by argumentations and
evidences that our ROS based component is safe
and it conforms to the ISO26262. Then this goal is
split into several sub-goals which fulfil some of the
ISO26262 clauses which are traditionally used in
these scenarios. Apart from the hazard analysis, a
set of goals related to SEooC are identified such as
the design which takes into account all safety
requirements. Measures are identified to show the
correct implementation of safety requirements. The
details of the documentation containing safety cases
and our representation using GSN notation is
considered out of the scope of this paper.

4.3 Assessment
Our assessment process (Fig 7) is used to determine
what ROS aspects are going to be represented and
tested for certifications purposes. The following
sections describe in detail the activities of this
process.

Fig 7: Assessment process

4.3.1 Component usage model definition
Our certification approach is aligned with ISO26262
and the SEooC definition (ISO26262 part 10)
because it takes into account their specific clauses,
and they are gathered in our safety case. A
component usage conceptual model (Fig 8) is
defined for our ROS based architecture based on
[31]. This means that each usage model is
configured by three previously defined parameters:
period, granularity and queue. Each configuration is
related to a s pecific reliability based on the tests
results (Table 1). We can therefore derive different
reliabilities based on different configurations.

 4.3.2 Measurable attributes
According to [31] we need to identify different
profiles for the usage of our SEooC component. At
least we need to identify the reliability behaviour for
the ROS based architecture [43]. A quantitative
technique for profiling the runtime behaviour is
based on testing workloads [44]. We test our ROS
based architecture by sending messages. In this
sense stress testing [45] has been used in the past,
and it is an essential activity in safety-critical
software [46].

Fig 8: Component usage conceptual model

Software reliability models require failures intensity
measurement to work [43] [47] [48] [49]. Therefore
we need to define in our context what a f ailure is.
ISO26262 part 1 [10]] defines fault as an abnormal
condition that can cause an element (1.32) or an
item (1.69) to fail. An error is a d iscrepancy
between a computed, observed or measured value or
condition, and the true, specified or theoretically
correct value or condition. Finally, a failure is a
termination of the ability of an element (1.32) to
perform a function as required.
In our definition, we are just considering as f aults
basically lost messages. A lost message means, for
example, that the information sent to an actuator is
not received, and therefore not processed. These
faults can also be considered as relative errors in
this context [28]. In consonance with some
experiences reported in the literature using, among
others, number of failures, probability and mean
[29] [50] [51] [52], we are going to measure the
following aspects for each experiment:
• Faults: number of undelivered messages or

messages arrived after a cer tain latency
threshold.

• Mean [29]: mean latency of all arrived messages.
• Median [29]: central latency of all arrived

messages.
• Standard Deviation [51]: variation of arrived

messages.
• Minimum: minimum latency value of all arrived

messages.
• Maximum: maximum latency value of all arrived

messages.
• Confidence Interval (CI) 95% (lower and upper):

thresholds delimiting outliers [50] [51]. We only
consider outliers latencies higher than Upper CI
95 %.

• Undelivered Density [52]: number of
undelivered messages per total number of
messages sent.

• Outlier Density [52]: number of outliers per total
number of arrived messages.

• Reference Interval (RI) 99% (lower and upper):
thresholds delimiting 99% of the arrived
messages.

4.3.3 Black box testing performance

Usage model

QueueGranularityPeriod

ReliabilityROS
1..* 1..*

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 58 Volume 16, 2017

Following Voas’ proposal, we aim at determining
whether the component quality is high enough [25].
Fig 9 describes the steps carried out for testing our
SEooC component. Tests are grounded on the
analysis of SEooC component attributes: period,
granularity and queue size. For each attribute value
combination the platform is executed, recording the
latency for each arrived message. As an
implementation decision, non-arrived messages
(undelivered) are marked as zero latency. Although
it is not a valid latency value it is visually easy to
spot.
One aspect to analyze is whether these data follow a
normal distribution or an SRGM in order to evaluate
the reliability of the experiments determined by
these measures: mean, median, standard deviation,
minimum, maximum, CI 95% (lower and upper),
fault density and RI 99% (lower and upper).

Fig 9: Black box testing process

4.3.4 Results
We need to assess software operational quality [53]
based on stressing our architecture. So, we
identified 40 di fferent configurations (5 x 2 x 4 =
40) for our SEooC component, being their input
variables and values:
• Period values: 2, 3, 4, 5 and 8 ms.
• Granularity values: 5 and 10 kHz.
• Queue size values: 1, 2, 10 and 100.
Each experiment combination was executed 24
times during 10 minutes, therefore resulting
altogether in 960 executions (see Annexes). These
empirical cases provided an overview of the SEooC
component behaviour under stress conditions.
In a p reliminary data analysis we determine which
experiments were meaningful. Fig 10 depicts the
latency of two executions of out SEooC component.
X axis represents the execution time in seconds (10
minutes altogether). Y axis represents the latency of
each message over time in milliseconds.
Undelivered messages are shown as having null
latency. Fig 10 (a) shows a high density of messages
delivered within the range from 6 to 12 ms latency.
Four spots close to the X axis (zero latency value)
correspond to undelivered messages. On the upper
zone of the thick stripe, loose dots represent
messages with a h igh-out of common latency. Fig

10 (b) depicts a completely different scenario. At
the beginning, some messages are delivered with an
extremely high latency (more than 150 s econds).
Further to a given point (around 300 s econds
execution time) messages no longer arrive, so that
they all remain null (representing undelivered
messages). Clearly, in this case the component
cannot be considered reliable as messages mostly
remain undelivered. The whole experiment set with
a period of 2 m s behaves similarly. Furthermore,
they are not comparable and we shall exclude them
from the remaining of our study. This reduces our
data set to 768 (24 executions of 4 x 2 x 4 = 32
experiments).

(a) 3 ms, 5 kHz, queue size 2

(b) 2 ms, 5 kHz, queue size 2

Fig 10: Data plots of two executions of the SEooC
component

Similar figures to those provided in Fig 11 are
obtained for the whole set of 768 v alid executions
and in general terms they all look like Fig 11 (a).
We have visually compared the figures of the 24
executions under the same experimental conditions
and they are consistent. All summarized information
has been collected and compared in spread sheets
with two different sorting views: (1) blocks of the
24 executions under each experimental condition
and (2) blocks of all experiments under the same
execution number. All this information can be
consulted in the Annexes.
Another visual representation utilized in our
analysis has been the density plot. Fig 11 shows an
execution instance of our SEooC. In this picture we

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 59 Volume 16, 2017

have integrated some of the extracted
aforementioned measures with the values for this
case.

Fig 11: Density plot of execution 19, period 3ms,

granularity 5 kHz, queue size 1

In order to formally analyze the experimental results
we need to check if they follow a n ormal
distribution to apply the Central Limit Theorem.
When sample size is 8 t o 29 (in our case 24), we
need to verify whether the Shapiro-Wilk and
Kolmogorov-Smirnov normality test is fulfilled.
Since the mean latency values do not violate the
normal assumption, the Confidence Intervals (CI)
95% can be calculated as in Equation (1).

Confidence Interval 95% = μ ± 2σ (1)

Table 1 synthesizes this information by combining
the average of all 24 execution measures under each
experimental condition.

4.4 Report & Certificate
This final activity for the certification process
involves producing a report containing the details of
the process, the safety case, the ROS architecture
description, the usage model and the final results.

5 Discussions
ROS is a set of open-source software libraries. It is
becoming popular in several domains but it is just in
its infancy and its maturity can be debatable.
As demonstrated in this paper, it can be configured
in different specific usage models so that each usage
model may be related to a specific reliability level.
In fact our tests reveal some relevant behaviour
depending on these attributes: period, granularity
and queue size.

Table 1: Summary of SEooC component executions

Our ROS based architecture behaviour is
characterized in terms of timing and, therefore, our
research question 1 (RQ1: What is the timing
behaviour of a ROS based architecture?) is
answered. A different sensor, controller and actuator
configuration can generate other values and
therefore require other reliabilities. However, it is
useful to understand how a single ROS
configuration can interact with other components,
and to know its acceptable thresholds. The usage
model represents different configurations and
reliabilities, and it is the designer's responsibility to
decide upon which reliability he/she wants to run.
Our safety case provides a set of argumentations and
asserted inferences for supporting ISO26262 and the
SEooC concept. All these assumptions and asserted
evidences supporting goals argue that a specific
instantiation of a ROS based architecture is
acceptably safe and compliant to some ISO26262
clauses. So, our second research question (RQ2:
What are the safety aspects that should be taken into
account during the safety case d efinition?) is
therefore accomplished.
A certification process is a double edged sword
[54], and a balance of activities should be defined.
The proposed certification process deals with
specific ISO26262 practices related to SEooC. A
certification process should clarify what evidences

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 60 Volume 16, 2017

are the most relevant but also what are the main
ISO26262 aspects involved for a SEooC
certification. This article provides an example on the
arguments, assertions and evidences used in this
context. This leads us to conclude that our third
research question (RQ3: What aspects should be
highlighted during a certification process for a ROS
based architecture?) is reached. However, these
arguments and assertions and evidences can vary
depending on each situation and context. If this
ROS component were integrated in a more complex
scenario, additional arguments and evidences should
be defined.
Our ROS based architecture is tested on a basic
platform which is not a complex situation where
several ROS and other components are interacting.
More studies are required on complex
infrastructures and mechanisms. For example, the
current bus communicator is a Universal Serial Bus
(USB), and traditionally communications in
automotive domain use the so called CAN bus [55].
However it can be used with USB for connecting
other automotive components. In addition, further
research should be devoted to security issues which
are not covered in CAN bus systems representing a
main weakness.
The presented approach helps us to identify what
use of a ROS component can be defined by the
designer. In fact, it is under the designer’s
responsibility to accept or to decline a sp ecific
configuration according to one specific application
requirements. Our ROS characterization provides an
overview of the acceptable values considering
Confidence Intervals (95%) and Reference Intervals
(99%). During a certification process these values
are taken as reference values. These aspects are used
during ISO26262 SEooC component definition.

6 Conclusions and future work
Software is playing a key role in automotive
industry, and ROS has its place for specific
activities. This paper presents a characterization of a
ROS based architecture with a d eep analysis of its
behaviour according to three parameters: period,
granularity and queue size. Certifying third party
components in the automotive industry should
consider the ISO26262 SEooC concept definition.
Our ROS is defined as a SEooC component, and it
is used on a vehicle for testing purposes. The
presented approach defines a cer tification process
compliant to ISO26262 and to the SEooC concept.
A set of reference values is defined to be used
during assessment activities. These values represent

a usage model, and a specific reliability is related to
each usage model.
This certification approach relies on the use of
safety cases for representing primary
documentation. This documentation must include
reference values for a SEooC component, and these
values are provided in this paper. Our safety case
provides a s et of argumentations and asserted
inferences for supporting ISO26262 and the SEooC
concept. All these assumptions argue that a specific
instantiation of a ROS based architecture is
acceptably safe and it is compliant to some
ISO26262 clauses. At the end we provide a ROS
based architecture analysis and its compliance to
ISO26262 SEooC.
As future work, one relevant aspect is to model ROS
behaviour as an SRGM, but further analysis should
be devoted to define this SRGM model. We are
currently working on a preliminary proposal in this
sense but some formalism is required to present this
model. In addition, we have identified behavioural
improvements modifying the ROS kernel. In this
sense there are some interesting initiatives such as
Linux for automotive4, and how ROS can be
smoothly integrated with this operating system.

Annexes
A more detailed description of the experimental
environment and the individual execution results are
available in data and graphical modes at the
following annexes web address:

http://lsi.vc.ehu.es/CPS-data

Acknowledgments
This work was supported by the Basque
Government Project CPS4PSS Etortek14/10.

References
[1] Jo K, Sunwoo M. Generation of a Precise

Roadway Map for Autonomous Cars. IEEE
Trans Intell Transp Syst 2014;15:925–37.
doi:10.1109/TITS.2013.2291395.

[2] Kerr J, Nickels K. Robot Operating Systems:
Bridging the gap between human and robot,
44th IEEE SouthE Symp System Theory; 2012,
99–104. doi:10.1109/SSST.2012.6195127.

[3] Zubrycki I, Granosik G. Test setup for multi-
finger gripper control based on Robot
Operating System (ROS), 9th IEEE Intl
Workshop Robot Motion and Control; 2013, p.
135–40. doi:10.1109/RoMoCo.2013.6614598.

4 https://www.automotivelinux.org/

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 61 Volume 16, 2017

[4] Sen Z, Lei S, Zhongliang C, Lishuang Z,
Jingtai L. A ROS-based smooth motion
planning scheme for a home service robot, 34th
IEEE Chinese Control Conf; 2015, p. 5119–24.
doi:10.1109/ChiCC.2015.7260438.

[5] Noh S, Park B, An K, Koo Y, Han W. Co-Pilot
Agent for Vehicle/Driver Cooperative and
Autonomous Driving. ETRI J 2015;37:1032–
43. doi:10.4218/etrij.15.0114.0095.

[6] Hawkins R, Habli I, Kelly T, McDermid J.
Assurance cases and prescriptive software
safety certification: A comparative study.
Safety Science 2013; 59:55–71.
doi:10.1016/j.ssci.2013.04.007.

[7] Gallina B. A Model-Driven Safety Certification
Method for Process Compliance, IEEE Intl
Symp Soft Reliability Eng Workshops; 2014, p.
204–9. doi:10.1109/ISSREW.2014.30.

[8] Larrucea X, Combelles A, Favaro J. Safety-
Critical Software [Guest editors’ introduction].
IEEE Software 2013; 30:25–7.
doi:10.1109/MS.2013.55.

[9] Areias C, Cunha JC, Iacono D, Rossi F.
Towards Certification of Automotive Software,
IEEE Intl Symp Software Reliability Engin;
2014, p. 491–6. doi:10.1109/ISSREW.2014.54.

[10] International Standard Organisation. Road
vehicles – Functional safety; ISO 26262, 2011.

[11] Adedjouma M, Hu H. Process Model Tailoring
and Assessment for Automotive Certification
Objectives, IEEE; 2014, p. 503 –8.
doi:10.1109/ISSREW.2014.23.

[12] Mader R, Armengaud E, Grießnig G, Kreiner
C, Steger C, Weiß R. OASIS: An automotive
analysis and safety engineering instrument.
Reliability Eng & Syst Safety 2013;120:150–
62. doi:10.1016/j.ress.2013.06.045.

[13] OpenCert: Evolutionary Assurance and
Certification for Safety-Critical Systems n.d.
https://www.polarsys.org/introducing-opencert-
evolutionary-assurance-and-certification-
safety-critical-systems (Accessed March 16,
2017).

[14] Hawkins R, Habli I, Kelly T, McDermid J.
Assurance cases and prescriptive software
safety certification: A comparative study.
Safety Science 2013; 59:55–71.
doi:10.1016/j.ssci.2013.04.007.

[15] Dale C, Anderson T, editors. Advances in
Systems Safety. London: Springer London;
2011.

[16] Steele P. Certification-based development of
critical systems, IEEE; 2012, p. 1 575–8.
doi:10.1109/ICSE.2012.6227033.

[17] Ayoub A, Kim B, Lee I, Sokolsky O. A
Systematic Approach to Justifying Sufficient
Confidence in Software Safety Arguments. In:
Ortmeier F, Daniel P, editors. Comput. Saf.
Reliab. Secur., vol. 7612, Berlin, Heidelberg:
Springer Berlin Heidelberg; 2012, p. 305–16.

[18] Dardar R, Gallina B, Johnsen A, Lundqvist K,
Nyberg M. Industrial Experiences of Building a
Safety Case in Compliance with ISO 26262,
IEEE; 2012, p. 349 –54.
doi:10.1109/ISSREW.2012.86.

[19] Wassyng A, Maibaum T, Lawford M, Bherer
H. Software Certification: Is There a C ase
against Safety Cases? In: Calinescu R, Jackson
E, editors. Found. Comput. Softw. Model. Dev.
Verification Adapt. Syst., vol. 6662, B erlin,
Heidelberg: Springer Berlin Heidelberg; 2011,
p. 206–27.

[20] Barry MR. CertWare: A workbench for safety
case production and analysis, IEEE; 2011, p. 1–
10. doi:10.1109/AERO.2011.5747648.

[21] Hernandez C, Abella J. Timely Error Detection
for Effective Recovery in Light-Lockstep
Automotive Systems. IEEE Trans Comput-
Aided Des Integr Circuits Syst 2015;34:1718–
29. doi:10.1109/TCAD.2015.2434958.

[22] Lyu MR. Software Reliability Engineering: A
Roadmap, IEEE; 2007, p. 153 –70.
doi:10.1109/FOSE.2007.24.

[23] Hernandez C, Abella J. Timely Error Detection
for Effective Recovery in Light-Lockstep
Automotive Systems. IEEE Trans Comput-
Aided Des Integr Circuits Syst 2015;34:1718–
29. doi:10.1109/TCAD.2015.2434958.

[24] Morris J, Lee G, Parker K, Bundell GA, Chiou
Peng Lam. Software component certification.
Computer 2001; 34:30–6.
doi:10.1109/2.947086.

[25] Voas JM. Certifying off-the-shelf software
components. Computer 1998; 31:53–9.
doi:10.1109/2.683008.

[26] Musa JD, Everett WW. Software-reliability
engineering: technology for the 1990s. IEEE
Software 1990;7:36–43. doi:10.1109/52.60588.

[27] Musa JD. A theory of software reliability and
its application. IEEE Trans Softw Eng
1975;SE-1:312–27.
doi:10.1109/TSE.1975.6312856.

[28] Software Reliability. Reliab. Saf. Eng., vol. 0,
London: Springer London; 2010, p. 193–228.

[29] Jung H-J, Yang H-S. Software Reliability
Measurement Use Software Reliability Growth
Model in Testing. In: Gervasi O, Gavrilova
ML, Kumar V, Laganà A, Lee HP, Mun Y, et
al., editors. Comput. Sci. Its Appl. – ICCSA

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 62 Volume 16, 2017

2005, vol. 3482, B erlin, Heidelberg: Springer
Berlin Heidelberg; 2005, p. 739–47.

[30] Panesar-Walawege RK, Sabetzadeh M, Briand
L. Using Model-Driven Engineering for
Managing Safety Evidence: Challenges, Vision
and Experience, IEEE; 2011, p. 7 –12.
doi:10.1109/WoSoCER.2011.8.

[31] Wohlin C, Regnell B. Reliability certification
of software components, IEEE Comput. Soc;
1998, p. 56–65.
doi:10.1109/ICSR.1998.685730.

[32] Bruyninckx H. Robotics Software: The Future
Should Be Open [Position]. IEEE Robot
Autom Mag 2008;15:9–11. doi:10.1109/M-
RA.2008.915411.

[33] Quigley M, Conley K, Gerkey B, Faust J, Foote
T, Leibs J, et al. ROS: an open-source Robot
Operating System. ICRA Workshop Open
Source Softw 2009;3:5.

[34] Staranowicz A, Mariottini GL. A survey and
comparison of commercial and open-source
robotic simulator software, ACM Press; 2011,
p. 1. doi:10.1145/2141622.2141689.

[35] Noh S, Han W-Y. Collision avoidance in on-
road environment for autonomous driving,
IEEE; 2014, p. 884 –9.
doi:10.1109/ICCAS.2014.6987906.

[36] Nair S, de la Vara JL, Sabetzadeh M, Briand L.
Classification, Structuring, and Assessment of
Evidence for Safety - A Systematic Literature
Review, IEEE; 2013, p. 94–103.
doi:10.1109/ICST.2013.30.

[37] Ayoub A, Kim B, Lee I, Sokolsky O. A
Systematic Approach to Justifying Sufficient
Confidence in Software Safety Arguments. In:
Ortmeier F, Daniel P, editors. Comput. Saf.
Reliab. Secur., vol. 7612, Berlin, Heidelberg:
Springer Berlin Heidelberg; 2012, p. 305–16.

[38] Linling S, Wenjin Z, Kelly T. Do safety cases
have a r ole in aircraft certification? Procedia
Eng 2011;17:358–68.
doi:10.1016/j.proeng.2011.10.041.

[39] Dodd I, Habli I. Safety certification of airborne
software: An empirical study. Reliab Eng Syst
Saf 2012;98:7–23.
doi:10.1016/j.ress.2011.09.007.

[40] Fachet R. Re-use of software components in
the IEC-61508 certification process. vol. 2004,
IEE; 2004, p. 8–8. doi:10.1049/ic:20040532.

[41] Zeng F, Lu M, Zhong D. Software Safety
Certification Framework Based on Safety Case,
IEEE; 2012, p. 566 –9.
doi:10.1109/CSSS.2012.147.

[42] Hawkins R, Kelly T, Knight J, Graydon P. A
New Approach to creating Clear Safety

Arguments. In: Dale C, Anderson T, editors.
Adv. Syst. Saf., London: Springer London;
2011, p. 3–23.

[43] Musa JD, Iannino A, Okumoto K. Software
reliability: measurement, prediction,
application. New York: McGraw-Hill; 1987.

[44] Sârbu C, Johansson A, Suri N, Nagappan N.
Profiling the operational behavior of OS device
drivers. Empir Softw Eng 2010;15:380–422.
doi:10.1007/s10664-009-9122-z.

[45] Jiang B, Chen P, Chan WK, Zhang X. To What
Extent is Stress Testing of Android TV
Applications Automated in Industrial
Environments? IEEE Trans Reliab 2015:1–17.
doi:10.1109/TR.2015.2481601.

[46] Baker R, Habli I. An Empirical Evaluation of
Mutation Testing for Improving the Test
Quality of Safety-Critical Software. IEEE
Trans Softw Eng 2013;39:787–805.
doi:10.1109/TSE.2012.56.

[47] Jelinska Z, Moranda PB. Software reliability
research. Stat. Comput. Perform. Eval., n.d., p.
465–84.

[48] Goel AL, Okumoto K. Time-Dependent Error-
Detection Rate Model for Software Reliability
and Other Performance Measures. IEEE Trans
Reliab 1979;R-28:206–11.
doi:10.1109/TR.1979.5220566.

[49] Davidsson M, Jiang Zheng, Nagappan N,
Williams L, Vouk M. GERT: An Empirical
Reliability Estimation and Testing Feedback
Tool, IEEE; 2004, p. 26 9–80.
doi:10.1109/ISSRE.2004.21.

[50] Xi J. Outlier Detection Algorithms in Data
Mining, IEEE; 2008, p. 94 –7.
doi:10.1109/IITA.2008.26.

[51] Josephs HJ. The fixing of confidence limits to
measurements. J Inst Electr Eng - Part II Power
Eng 1945;92:194–206. doi:10.1049/ji-
2.1945.0049.

[52] Hatton L. Reexamining the fault density
component size connection. IEEE Software
1997;14:89–97. doi:10.1109/52.582978.

[53] Hamlet D. Theory of Software Testing With
Persistent State. IEEE Transactions Reliability
2015; 64:1098–115.
doi:10.1109/TR.2015.2436443.

[54] Matsubara T. Process certification: a double-
edged sword. IEEE Softw 2000;17:104–5.
doi:10.1109/52.895176.

[55] Davis RI, Burns A, Bril RJ, Lukkien JJ.
Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised. Real-
Time Systems 2007; 35:239–72.
doi:10.1007/s11241-007-9012-7.

WSEAS TRANSACTIONS on SYSTEMS
Ismael Etxeberria-Agiriano, Xabier Larrucea,

Pablo Gonzalez-Nalda, Mari Carmen Otero, Isidro Calvo

E-ISSN: 2224-2678 63 Volume 16, 2017

