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Abstract: In this paper we discuss some properties of linear fractional dispersive waves. In particular, we compare
the dispersion relations emerging from the D’Alembert equation and from the linearized Korteweg – deVries
equation with the corresponding time-fractionalized versions. For this purpose, we evaluate the expressions for the
phase velocity and for the group velocity, highlighting the differences not only analytically, but also by means of
illuminating plots.
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1 Introduction
Linear dispersive waves are defined as physical phe-
nomena for which the relation that connects the wave
number k with the angular frequency ω is non-trivial.
This leads to different dependences in the behaviours
of the phase velocity vp and of the group velocity vg
as we vary the wave number.

In general, the relation between ω and k, known
as the dispersion relation, takes the form

D(ω, k) = 0 (1)

where D is a suitable real function of ω and k. Such a
relation is, in general, satisfied by certain ω, k ∈ C.

Let us assume that (1) can be solved explicitly in
terms of a real variable (k or ω) by means of complex
valued branches:

ω`(k) ∈ C , k ∈ R , (2)

km(ω) ∈ C , ω ∈ R , (3)

where `, m are two positive integers called mode in-
dices. These branches provide the so-called Normal
Mode Solutions for our physical system

ϕ`(t, x; k) = Re {A`(k) exp [i(ω` t− k x)]} ,(4)

ϕm(t, x;ω) = Re
{
A`(ω) exp

[
i(ω t− km x)

]}
.(5)

For sake of simplicity, in the following we will de-
note a normal mode simply by ϕ`(k) and ϕm(ω) so
dropping the dependence on the space-time coordi-
nates x, t, respectively.

The normal mode solutions represent a sort of
pseudo-monochromatic modes since generally they
are not sinusoidal in both space and time.

Now, for sake of brevity, we will omit the mode
labels. Then we define, for the to cases (4) and (5)
respectively, the phase velocity as

vp(k) :=
Reω(k)

k
, (6)

vp(ω) :=
ω

Re k(ω)
. (7)

In this paper, we will consider the relation (6) for the
phase velocity, depending on k.

Furthermore, restricting our discussion on the
case of real k, we define the corresponding group ve-
locity as

vg(k) :=
Reω(k)
∂k

. (8)

Despite the fact that the theory of linear disper-
sive waves is a very well established and developed
field of mathematical physics, the effects of fractional
extensions of such linear systems on the dispersion
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of waves can still represent an interesting, and utterly
non-trivial, research topic. The aim of this paper is to
present some examples of dispersion relations related
to fractional properties of mechanical systems.

Particularly, in Section 2 we introduce the
problem of dispersion for the simple case of the
D’Alembert wave equation. Then, in Section 3 we
deal with waves satisfying the linearised Korteweg –
de Vries (KdV) equation.

2 The wave equation
We first introduce the problem of dispersion in frac-
tional viscoelasticity showing the case of the wave
equation.

The well-known wave equation usually found in
literature is

∂2u(x, t)

∂t2
− c20

∂2u(x, t)

∂x2
= 0 , (9)

where the velocity of the waves c0 is set to one in the
following for sake of simplicity.

This equation leads to a dispersion equation

ω = |k| , (10)

from which one can easily infer vp = vg. Therefore,
this is a clear example of a non-dispersive scenario.

We can appreciate a different behavior replacing
the time derivative with the fractional derivative of or-
der α. Applying this change, our wave equation, will
be in the form

Dα
t u(x, t)−

∂2u(x, t)

∂x2
= 0 , (11)

where Dα
t is the well known Caputo derivative (see

[4]). Here, the dispersion relation becomes

ω(k) = i−1+3/αk2/α (12)

Thus, the frequency presents both a real and an
imaginary part. Indeed, for k > 0,

Reω(k) = cos
((
−1

2 + 3
2α

)
π
)
k2/α =

= cos
((
1 + 1

α

)
3
2π

)
k2/α , (13)

Imω(k) = sin
((
−1

2 + 3
2α

)
π
)
k2/α =

= sin
((
1 + 1

α

)
3
2π

)
k2/α . (14)

At this point, we can easily evaluate the veloci-
ties, respectively the complex phase velocity

vp(k) = i−1+3/αk(2−α)/α (15)

and the group velocity

vg(k) = i−1+3/α 2

α
k(2−α)/α . (16)

It is then important to remark that one can imme-
diately infer that a value of α 6= 2 introduces disper-
sion effects.

2.1 Numerical Results

Comparing the plots of certain relevant quantities can
therefore be useful to understand the phenomenon.
Firstly, it could be helpful to separate the real value
and the imaginary value of the expressions (15) and
(16). Indeed, one immediately finds that

vp(k) = Re vp(k) = cos

((
1 +

1

α

)
3

2
π

)
k(2−α)/α , (17)

Im vp(k) = sin

((
1 +

1

α

)
3

2
π

)
k(2−α)/α , (18)

and

vg = Re vg(k) =
2

α
cos

((
1 +

1

α

)
3

2
π

)
k(2−α)/α , (19)

Im vg(k) =
2

α
sin

((
1 +

1

α

)
3

2
π

)
k(2−α)/α . (20)

Figure 1: Comparison between phase velocity and group
velocity, for the wave equation with fractional derivative of
order α = 1.8. The straight lines represent real values, the
dashed lines represent imaginary values.

From Figure 1 and Figure 2 we can qualitatively
estimate the differences respectevely for α = 1.8 and
α = 1.5. Interestingly, one finds that the real part
vanishes for certain values of α.
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Figure 2: Comparison between phase velocity and group
velocity, for the wave equation with fractional derivative of
order α = 1.5. For α = 1.5 the two velocities are purely
imaginary functions of the wave number.

3 The Korteweg – de Vries equation
Now, we discuss a similar situation for the KdV equa-
tion. It is a non-linear equation with several applica-
tions, such as in the study of waves on shallow wa-
ter surfaces (see [1]) or solitons descriptions (see [7]).
The most general form of KdV equation is

∂u(x,t)
∂t + c0

∂u(x,t)
∂x + λu(x, t)∂u(x,t)∂x +

+µ∂
3u(x,t)
∂x3

= 0 (21)

where λ, µ and c0 are real numbers, as argued in [2].
However, in this paper, we will deal the linearised

KdV equation, that we recover setting λ = 0, namely

∂u(x, t)

∂t
+
∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0 , (22)

fixing also c0 = µ = 1 for sake of simplicity.
We can now focus our attention on the waves de-

scribed by the related dispersion relation

ω(k) = k − k3 . (23)

Thanks to the latter equation it is not difficult to
compute the phase velocity

vp(k) = 1− k2 (24)

and the group velocity

vg(k) = 1− 3k2 . (25)

It is worth remarking that, in this case, we have
dispersive effects even for the unmodified wave equa-
tion.

Now, following a procedure akin to the one dis-
cussed in the previous section, we get:

Dα
t u(x, t) +

∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0 . (26)

The resulting dispersion relation reads

ω(k) = i(1−α)/(α)
(
k − k3

)1/α
, (27)

and, again, the angular frequency can virtually be a
complex number with non-vanishing imaginary part.

Once more, from this expression of ω(k) we get,

vp(k) = i(1−α)/(α)
(
k1−α − k3−α

)1/α (28)

and for the group velocity

vg(k) = i(1−α)/(α)
(
k − k3

)1/α−1 (
1− 3k2

)
, (29)

which can be split as follows

vp(k) = Re vp(k) = cos

((
1

α
− 1

)
π

2

)
×

×
(
k1−α − k3−α

)1/α
, (30)

Im vp(k) = sin

((
1

α
− 1

)
π

2

)
×

×
(
k1−α − k3−α

)1/α
, (31)

and

vg = Re vg(k) =
2

α
cos

((
1

α
− 1

)
π

2

)
×

×
(
k − k3

)1/α−1 (
1− 3k2

)
, (32)

Im vg(k) =
2

α
sin

((
1

α
− 1

)
π

2

)
×

×
(
k − k3

)1/α−1 (
1− 3k2

)
. (33)
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3.1 Numerical Results

Figure 3: Comparison between phase velocity and group
velocity, for the linearised KdV equation with ordinary
derivative.

Figure 4: Comparison between phase velocity and group
velocity, for the linearised KdV equation with frational
derivative of order 1/2.

We can conclude that for α = 1, so in the ordi-
nary case, phase velocity and group velocity are real-
valued, as well shown by the Figure 3, and totally
imaginary-valued for other values (e.g. α = 1/4,
α = 1/2), as can be stated looking at Figure 4. For
real values of α, we find a mixed behavior, as we can
see from Figure 5.

Furthermore, from this latter plot, it is remarkable
to note that for k → 0, then Re vp(k) = Re vg(k), so
we have not dispersion for small values of the wave
number k.

Figure 5: Comparison between phase velocity and group
velocity, for the linearised KdV equation with fractional
derivative of order α = 3/4.

4 Conclusion
In conclusion, it seems that the procedure of fraction-
alizing a linear wave equation leads to major modifi-
cations of the corresponding dispersion relation.

This analysis can surely be extended further by
considering fractional derivative with respect to the
space spatial coordinate, however this discussion is
left for future investigations.
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