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Abstract: - Motion planning is an essential activity in executing manipulation tasks with robot arms like weld-

ing, painting or simple “pick-and-place” operations. A typical requirement for such tasks is to achieve flexibil-

ity of the robot arm motion similar to that of a human hand. The objective of the here proposed mathematical 

model is to satisfy this requirement in path planning a robot arm motion with redundant degrees of freedom. 

This model provides an efficient procedure for the computation of the motion in the joints that makes the end- 

effector motion to trace a given geometrical curve with prescribed linear and angular velocity. The novelty of 

the mathematical model is the clear separation of concerns related to planning the geometrical path in task 

space on the one hand and on the other hand, the control of motion along this path. This guiding design princi-

ple is implemented through vector space methods. It enables a new insight about identifying and processing 

Jacobian singularities by means of the Continuity principle. The application of the model is enabled through a 

detailed algorithm for computing the Jacobian, equations for kinematic path control and a heuristic procedure 

for handling the singularities of the Jacobian. The obtained results can be extended to non- redundant robot 

arms. 
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1 Introduction 
Robot arms cover a broad range of applications. The 

list of applications is constantly growing and it 

ranges from assembly operations in outer space and 

industry to executing highly specialized activities in 

surgery  [1, 2], for instance. In most cases the robot 

arm operates as a replacement in an activity usually 

done by means of a human hand. Research in bio-

mechanics and bionics motivates engineers to pro-

vide more degrees of freedom than the dimension of 

the task space in the design of modern robot arms. 

Such robot arms are referred to as redundant robot 

arm. 

A robot arm is useful in executing repetitive 

work tasks. Therefore it is common to preplan and 

control the motion of its end effector along a path in 

the task space. The dimension of the task space de-

pends on the specific task. It is represented in terms 

of a set of parameters specifying the desired position 

and orientation of the end- effector along the speci-

fied path. The solution of the inverse kinematic 

problem allows to find the motion in the joints that 

results in a desired motion of the end- effector.  

This paper presents a Jacobian based model for 

path planning the motion of robot arm with redun-

dant degrees of freedom. It is common for this kind 

of models to consider motion control implicitly 

coupled with geometrical characteristics of motion. 

Such design approach increases the complexity of 

the model and requires powerful numerical methods 

and optimization techniques, typically, Singular 

Value Decomposition or Damped Square Methods 

[3]. Most often the procedures for the computation 

of the Jacobian are valid only for a selected robot 

arm and rely on the symbolic representation of this 

robot arm model. Heavy numerical methods are 

employed to identify and avoid robot arm configura-

tions, where the rank of the Jacobian is not full [4].  

The novelty of the here proposed model is the 

clear separation of concerns related to planning the 

geometrical path in task space on the one hand and 

on the other hand, the control of motion along this 

path [5]. This reduces the usual complexity of the 

Jacobian- based models and allows its implementa-

tion in modern computational environments with 

multithreading. The here proposed model provides 

computationally efficient procedures for computing 

the Jacobian and resolving the singularities in mo-

tion planning making use of vector space methods.  

The paper is organized as follows. The Problem 

statement and the major mathematical notations are 

introduced in Section 2. Section 3 presents a compu-

tationally efficient algorithm for computing the Ja-
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cobian of a robot arm. The major results in this pa-

per are provided in Sections 4 and 5. In the last sec-

tion we summarize the obtained results.  

 

 

2 Problem Formulation 
The robot arm is assembled by 𝑛 links connected 

serially with revolute or prismatic joints in an open 

loop kinematic scheme (Fig. 1). The last link is the 

end- effector. Usually it is of type gripper holding a 

tool that is selected in accordance with a work task. 

The work task is assigned with respect to the base 

frame 𝑂𝑜 (𝑥𝑜, 𝑦𝑜, 𝑧𝑜 ) in terms of geometrical and 

motion parameters. The geometrical parameters 

comprise the orientation of the tool in the end- ef-

fector and the position of a characteristic point H of 

the tool along a geometrical curve. The motion pa-

rameters determine the linear speed of a characteris-

tic point H of the tool and the angular speed of rota-

tion of the tool in each point of the geometrical 

curve. The dimension of the task space is deter-

mined by the number 𝑚 (𝑚 ≤ 6) of geometrical 

parameters used to describe the position and the 

orientation during the execution of the work task.  

 
Fig.1 Motion planning with a robot arm. 

Denote by 𝐼𝑛𝑡 𝑄𝑀 the interior of the set 𝑄𝑀 =
{ 𝑞 = (𝑞1, . . ., 𝑞𝑛): 𝑞𝑖  ∈ [𝑎𝑖 , 𝑏𝑖 ] for 𝑖 =  1, 2, 3,
..  , 𝑛}  of configurations of the joint variables. The 

mapping  𝐹 ∶ 𝐼𝑛𝑡 𝑄𝑀  →  𝑊 defines the forward 

kinematics of a robot arm with workspace 𝑊 ⊂
𝑅𝑚. Note, that the workspace is a subset of the task 

space  𝑅𝑚. 

For clarity, let the geometrical parameters of the 

work task be represented in 𝑊 by a smooth geomet-

rical curve γ, defined parametrically in the inter-

val [ 𝜆1,  𝜆2  ]. Without loss of generality we assume 

that the points of γ belong to the workspace 𝑊 of 

the robot arm or in other words, 𝛾 ∶ [𝜆1,  𝜆2] →

𝐹(𝐼𝑛𝑡 𝑄𝑀). The motion parameters of the work task 

are given with respect to the points of  𝛾 . The ob-

jective is to find laws governing the motion in the 

joints such that the end- effector motion satisfies the 

geometrical and motion parameters of the work task. 

In the beginning we note the existing clear distinc-

tion between geometrical and motion parameters in 

task space. Obviously, the motion parameters can 

change without the need of changing 𝛾. Once 𝛾 is 

given, the end- effector can execute a variety of 

different motions along this path. These two groups 

of parameters reflect two different concerns in exe-

cuting the work task. It is natural to retain this kind 

of separation of concerns in the space of configura-

tions 𝐼𝑛𝑡 𝑄𝑀 of the robot arm. Then it would be 

possible to control the motion in the joints in a way 

similar to controlling motion over a geometric 

curve. For this reason, we add a  𝑛 + 1 dimension to 

the space of configurations, where the parameter 

𝑞𝑛+1 represents parametrically 𝛾 =
 𝛾(𝑞𝑛+1), 𝑞𝑛+1  ∈  [𝜆1,  𝜆2]. 
Definition. The set Q =  𝐼𝑛𝑡 𝑄𝑀 x 𝑅 we refer to as 

extended space of configurations 

The introduction of Q provides a new interpreta-

tion for the inverse kinematic equation. Consider the 

smooth manifold 

ℬ = { 𝑞∗ = (𝑞, 𝑞𝑛+1): 𝐹(𝑞) −  𝛾(𝑞𝑛+1) = 0,  𝑞∗  ∈
 Q } (1) 

defined by means of the inverse kinematics equa-

tion. It is 𝑛 − 𝑚 + 1 dimensional in the general 

case. Hence, all the motions 𝑞∗(𝑡) =

(𝑞(𝑡), 𝑞𝑛+1(𝑡)), 𝑡 ∈ [𝑡1, 𝑡2]  of the robot arm that 

satisfy the assigned geometrical parameters of the 

work task, belong to ℬ. Among these motions are 

also motions that satisfy the motion parameters of 

the assigned work task.  

Definition. A smooth motion 𝑞∗(𝑡)  ∈  ℬ that satis-

fies given in advance motion parameters of the end- 

effector motion we refer to as admissible motion of 

the robot arm. 

It is noteworthy, that the introduction of the ex-

tended space of configurations enables the separa-

tion of concerns in the inverse kinematic problem 

solution. Similarly to the curve 𝛾, the manifold ℬ is 

a fixed geometrical structure. It is determined by the 

geometrical structure of the robot arm and the as-

signed geometrical parameters of the work task. On 

the other hand, the trajectory of the required robot 

motion in Q lies on ℬ for any given values of the 

motion parameters of the work task. This represen-

tation allows to control the robot motion over ℬ in a 

similar way we control the motion over 𝛾 in task 

space. 
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The proposed mathematical model allows to re-

solve the inverse kinematic problem into two sepa-

rate types of concerns. The first type of concerns 

involves modelling the immutable geometrical arte-

facts in motion control. The second part of the mod-

el deals with constructs for motion control. In par-

ticular, the separation of concerns guarantees that 

cyclic motions in task space map cyclic motions in 

the extended space of configurations.  

In the following section we present a uniform 

model of the robot arm geometrical structure and 

develop a detailed numerical algorithm for compu-

ting the Jacobian on this basis. Next, we make use 

of the here introduced separation of concerns to 

build a model for motion control of redundant robot 

arms subject to given motion parameters. The thus 

obtained results allow us to address from a new 

point of view the important issue of singularities in 

the space of configurations. In contrast to existing 

approaches, this mathematical model allows to in-

terpret the singularity problem in terms of the Con-

tinuity principle [6]. As a result we propose an effi-

cient heuristic procedure for identifying and “pass-

ing – through” singularities of the Jacobian during 

motion control with prescribed geometrical and mo-

tion parameters of the work task. This procedure 

relies on. 

 

 

3 Computation of the Jacobian 
The following equation represents the Jacobian- 

based model for solving the inverse kinematic prob-

lem in the extended space of configurations: 

𝐽(𝑞)𝑞̇ − 
∂γ

𝜕𝑞𝑛+1
⁄ (𝑞𝑛+1) 𝑞̇𝑛+1 = 0 (2) 

where  𝐽(𝑞) = 𝐷(𝐹)/𝐷(𝑞) is the Jacobian matrix of 

the forward kinematics 𝐹(𝑞) and 𝑞̇𝑛+1 is the time 

derivative of 𝑞𝑛+1(𝑡). It is common to present the 

computation of the Jacobian employing the symbol-

ic representation of the forward kinematics 𝐹(𝑞). 

The derivation of the symbolic formulas for 𝐹(𝑞) 

and differentiation of the thus obtained expressions 

is time-consuming in most cases and it is justified in 

only in some special cases of robot arm investiga-

tion. Here we will develop an algorithm for compu-

ting the Jacobian without the knowledge for the 

forward kinematics 𝐹(𝑞) in symbolic form. 

The investigation of a robot arm starts by attach-

ing a frame  𝑂𝑖  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖  ), 𝑖 = 1,2, … , 𝑛 to each one 

of the  𝑛 links, where the coordinate axes are fixed 

according to the Denavit- Hartenberg (DH) rules 

[7]. The mutual disposition of the local frames is 

defined by a set of fixed geometrical parameters and 

the values of the joint variables 𝑞𝑖 . This set of fixed 

geometrical parameters we define in a slightly dif-

ferent way than the one used by the DH notation. It 

will enable us to introduce a common representation 

for the displacements in the joints  [8].  

First we note that axes 𝑧𝑖 and 𝑧𝑖+1 are fixed in 

links 𝑖 and  𝑖 + 1, respectively (Fig. 2). The fixed 

geometrical parameters that define the mutual dis-

position between frames 𝑖 and  𝑖 + 1  for 𝑖 =
1,2, … , 𝑛 − 1 are as follows: 

- the distance 𝑙𝑖  between axes 𝑧𝑖 and 𝑧𝑖+1 

measured along the axis 𝑥𝑖 Without loss of 

generality we assume 𝑙𝑛 = 0. Corresponds to 

link length 𝑎𝑖 in the DH notation. 

- the distance 𝑑𝑖+1  between points  𝑂𝑖,𝑖+1  and 

𝑂𝑖+1 measured along the axis 𝑧𝑖+1. Without 

loss of generality we assume 𝑑𝑛 = 0. Corre-

sponds to link twist 𝑑𝑖+2 in the DH notation. 

- the angle 𝛼𝑖+1 between axes 𝑧𝑖+1 and 𝑧𝑖 

measured in the positive direction of axis 𝑥𝑖.. 

Corresponds to link twist 𝛼𝑖 in the DH nota-

tion. 

- the angle 𝛽𝑖+1 between axes 𝑥𝑖+1 and 𝑥𝑖 

measured in the positive direction of axis 

𝑧𝑖+1. In case joint 𝑖 + 1 is revolute, then an-

gle 𝛽𝑖+1 coincides with the joint variable 

𝑞𝑖+1. Corresponds to link angle 𝜃𝑖+2 in the 

DH notation. 

 
Fig.2 Structure of the local frames in the links. 

Then the transformation matrix from frame  𝑖 in-

to frame  𝑖 − 1 can be represented in terms of these 

notations as follows. 

𝐺𝑖,𝑖−1 = |

𝑐𝑜𝑠𝛽𝑖 −𝑠𝑖𝑛𝛽𝑖 0
𝑠𝑖𝑛𝛽𝑖𝑐𝑜𝑠𝛼𝑖 𝑐𝑜𝑠𝛽𝑖𝑐𝑜𝑠𝛼𝑖 −𝑠𝑖𝑛𝛼𝑖

𝑠𝑖𝑛𝛽𝑖𝑠𝑖𝑛𝛼𝑖 𝑐𝑜𝑠𝛽𝑖𝑠𝑖𝑛𝛼𝑖 𝑐𝑜𝑠𝛼𝑖

| (3) 

Accordingly, the matrix product 

𝑇𝑖 = 𝐺1,0𝐺2,1 … 𝐺𝑖,𝑖−1   (4) 

defines the transformation of the unit vectors 

𝑒1
𝑖 , 𝑒2

𝑖 , 𝑒3
𝑖   from frame 𝑂𝑖  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 ), 𝑖 = 1,2, … , 𝑛 

into the base frame 𝑂𝑜 (𝑥𝑜, 𝑦𝑜, 𝑧𝑜 ). The columns of 

matrix 𝑇𝑖 are the coordinates of the unit vectors 

𝑒1
𝑖 , 𝑒2

𝑖 , 𝑒3
𝑖  of  𝑂𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) in frame 𝑂𝑜 (𝑥𝑜, 𝑦𝑜, 𝑧𝑜 ). 

It allows us to express the rotations and the transla-
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tions that occur along the 𝑧𝑖 axis in case of revolute 

and prismatic joint in terms of a common notation. 

Let  𝜇𝑖   , 𝑖 = 1,2, … , 𝑛  takes values 0 or 1 for 

revolute and prismatic joints, correspondingly. Then 

depending on  𝜇𝑖 the following expression 

𝑧𝑖 =  [(1 − 𝜇𝑖  )𝑑𝑖 +  𝜇𝑖𝑞𝑖]𝑒3
𝑖    (5) 

determines the distance between points  𝑂𝑖,𝑖+1  and 

𝑂𝑖+1 in case of a revolute and in case of prismatic 

joint, as well. Similarly, we represent the vector of 

the angular velocity 𝜔𝑖 in joint  𝑖 = 1,2, … , 𝑛 as 

follows: 

𝜔𝑖 = (1 − 𝜇𝑖  )𝑞̇𝑖 𝑒3
𝑖    (6) 

where the scalar function 𝑞̇𝑖 denotes a generalized 

joint velocity 𝑖 = 1,2, … , 𝑛 . 

Denote by 𝑣 and 𝜔 the given motion parameters 

of the work task motion defined along the path 𝛾. 

Here 𝑣 is the velocity vector of the characteristic 

point H of the end- effector and 𝜔 is the angular 

velocity vector of the tool in the end effector. Using 

the notations on Figure 1 we obtain the following 

representation for 𝑣  

𝑣 =  𝜔 ×  𝜌 + 𝑟̇𝑜  (7) 

For shortness 𝜌 denotes 𝑂𝑛𝐻 and 𝑟̇𝑜 is the veloci-

ty vector of point 𝑂𝑛. Here we note that 𝑟̇𝑜 is the 

sum of the velocities in the prismatic joints along 

their unit vector 𝑒3
𝑖 . Hence, from (5) we obtain: 

𝑟̇𝑜 =  ∑ 𝜇𝑖 𝑞̇𝑖  𝑒3
𝑖𝑛

𝑖=1   (8) 
Similarly, vector 𝜔 is the vector sum of the an-

gular velocities  𝜔𝑖 (6): 

𝜔 =  ∑ (1 − 𝜇𝑖 )𝑞̇𝑖 𝑒3
𝑖𝑛

𝑖=1    (9) 
Replacing (8) and (9) in (7) yields the following 

general expression for the vector   𝑣  

𝑣 =  ∑ [(1 − 𝜇𝑖 )𝑒3
𝑖 × 𝜌 + 𝜇𝑖𝑒3

𝑖   ]𝑛
𝑖=1 𝑞̇𝑖 (10) 

Consider the general case when the task 

space has the maximum dimension of 6 (three 

parameters for position and three parameters for 

orientation). Then 
∂γ

𝜕𝑞𝑛+1
⁄ (𝑞𝑛+1) 𝑞̇𝑛+1 =

(𝑣, 𝜔)𝑇 and from (2), (9) and (10) it follows 

that column 𝑖 =  1, 2, 3, ..  , 𝑛 of the Jacobian 

can be represented by the following vector row  

[((1 − 𝜇𝑖  )𝑒3
𝑖 × 𝜌 + 𝜇𝑖𝑒3

𝑖   )
𝑇

, ((1 − 𝜇𝑖  )𝑒3
𝑖 )

𝑇
]

 (11) 

Note, that vectors 𝑒3
𝑖   and 𝜌 must be in the same 

frame in order to compute 𝑒3
𝑖 × 𝜌, 𝑖 =  1, 2, 3,

..  , 𝑛. Therefore, the coordinates of vector 𝜌 

must transformed from 𝑂𝑛 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛 ) down to  

frame 𝑂𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ), before computing the vec-

tor product 𝑒3
𝑖 × 𝜌. 

The following pseudocode explains in details 

how to compute the Jacobian making use of the 

expression (11). For clarity of explanation the 

pseudocode sequentially computes the rows 

𝐽𝑖  𝑖 =  1, 2, 3, ..  , 𝑛 of the transposed Jacobi-

an, starting from row 𝑛. 

S1. Compute the transformation matrixes 𝑇𝑖, 

𝑖 =  1, 2, 3, ..  , 𝑛 defined in  (4). 

S2. Compute vector ℎ =  𝑇𝑛𝜌 , where  𝜌 is de-

fined in (7). 

S3. Set a counter  𝑖 = 𝑛 . 

S4. Compute the six coordinates of vector 

𝑗𝑐𝑏𝑅𝑜𝑤 =  [
((1 − 𝜇𝑖  )𝑇𝑖,3 × ℎ + 𝜇𝑖𝑇𝑖,3  )

𝑇

,

 ((1 − 𝜇𝑖 )𝑇𝑖,3)
𝑇

]  

where  𝑇𝑖,3 is the third column of matrix 𝑇𝑖. 

S5. Store 𝑗𝑐𝑏𝑅𝑜𝑤 as row 𝑖 of the transpose of 

the Jacobian. 

S6. Set 𝑖 = 𝑖 − 1 . 
S7. If 𝑖  is equal to zero go to Step S11.  Else 

continue with step 8. 

S8. Compute the scalar 𝑧   

𝑧 =  [(1 − 𝜇𝑖+1 )𝑑𝑖+1 +  𝜇𝑖+1𝑞𝑖+1] 
S9. Compute vector ℎ = ℎ + 𝑙𝑖 𝑇𝑖,1 + 𝑧 𝑇𝑖+1,3, 

where 𝑇𝑖,1 is the first column of matrix 𝑇𝑖 

and 𝑙𝑖 is the distance parameter. 

S10. Go to step S4. 

S11. End of algorithm. 
This algorithm is applicable for both redundant 

and non redundant robot arms (𝑛 = 𝑚). It can be 

easily adapted for computing the Jacobian in cases 

when the work task is defined in terms of a subset of 

the coordinates of the motion parameters 𝑣 and 𝜔.  

 

 

4 Motion Control 
The separation of concerns introduced in the prob-

lem statement enables the computation of an admis-

sible motion matching given motion criteria. The 

definition (1) of the smooth manifold ℬ implies that 

the vector 𝑞̇∗ = (𝑞̇𝑇  𝑞̇𝑛+1)𝑇  belongs to the tangent 

vector space at an arbitrarily selected point 𝑞∗ =
(𝑞, 𝑞𝑛+1)  of  ℬ. Furthermore, an arbitrary vector  

𝑢∗ = (𝑢𝑇 , 𝑢𝑛+1)𝑇 that satisfies  

𝐽(𝑞)𝑢 −  
𝜕𝛾

𝜕𝑞𝑛+1
⁄ (𝑞𝑛+1)𝑢𝑛+1 = 0 (12) 

also belongs to the tangent vector space at point 

𝑞∗ = (𝑞, 𝑞𝑛+1)  of ℬ. This way we can solve the 

inverse kinematic problem by controlling the tan-

gent vector field over ℬ with respect to one or an-

other quality criterion. The manifold ℬ and the func-

tion controlling the vector field reflect the geometry 

concern and the motion concern, respectively.  
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Equation (12) allows to define explicitly the con-

trol function for the vector field of  ℬ . For a fixed 

value of 𝑢𝑛+1 the solutions 𝑢 of this equation repre-

sent a linear manifold  

𝐿𝑢𝑛+1
=    𝑢(0)  +  ℵ(𝐽) (13) 

where 𝑢(0) is an arbitrary  particular solution of (12) 

and ℵ(𝐽) is the linear subspace ℵ(𝐽) =
 {𝑥 ∈ 𝑅𝑛: 𝐽𝑥 = 0} defined at  any point of the 

smooth manifold 

ℬ𝑞𝑛+1
=  {𝑞 ∈ 𝐼𝑛𝑡 𝑄𝑀: 𝐹(𝑞) −  𝛾(𝑞𝑛+1) = 0} (14) 

The manifold ℬ𝑞𝑛+1
 (Fig. 3) consists of all the con-

figurations 𝑞 of the robot arm for which the end 

effector position retains position 𝛾(𝑞𝑛+1), 𝑞𝑛+1  ∈
 [ 𝜆1,  𝜆2  ]. Therefore ℬ𝑞𝑛+1

  is known also in the 

literature as Null- space. This is a special feature of 

redundant robot arms (𝑛 > 𝑚).  In particular, ℵ(𝐽) 

contains just the zero vector in case of non-

redundant robot arms (𝑛 = 𝑚). 

 
Fig. 3. The null space of a redundant robot arm. 

Let us define the operator  

𝑃 = 𝐸 − 𝐽+𝐽 (15) 

where 𝐸 is the unity 𝑛 𝑥 𝑛 matrix and 𝐽+ is the 

Moore- Penrose pseudoinverse matrix of the Jacobi-

an 𝐽. From the properties of the pseudoinverse ma-

trix  [9] it follows that for a given 𝑞 the operator 

𝑃(𝑞) is a symmetric  𝑛 𝑥 𝑛 matrix projecting 𝑅𝑛 

onto ℵ(𝐽(𝑞)) in (13) i.e. 𝑃𝑢 ∈  ℵ(𝐽(𝑞)) for an arbi-

trary 𝑢 ∈  𝑅𝑛.  

Let us consider the vector 𝜉 defined as follows: 

𝜉 =  𝐽+   
𝜕𝛾

𝜕(𝑞𝑛+1)⁄  (16) 

The definition of the operator 𝑃 implies that the 

product 𝑃𝜉 is the zero vector. Furthermore, the vec-

tor 𝑢(0) =  𝜉𝑢𝑛+1 is a particular nonzero solution of 

(12). In summary, vector 𝜉𝑢𝑛+1 is orthogonal to the 

linear space ℵ(𝐽)  and   𝜉𝑢𝑛+1  ∈  𝐿𝑢𝑛+1
. Moreover, 

𝜉𝑢𝑛+1 is the vector with the minimum norm pos-

sessing this property.  

Thus, we obtain the following common represen-

tation for any element of  𝐿𝑢𝑛+1
 in an arbitrary point 

𝑞 of the manifold ℬ𝑞𝑛+1
 (Fig. 3): 

𝐿𝑢𝑛+1
=  𝑃𝑢 +   𝜉𝑢𝑛+1 (17) 

Equation (16) represents an arbitrary solution of 

the inverse kinematic problem for redundant robot 

arms (12). Hence, the vector 𝑞̇∗ = (𝑞̇𝑇  𝑞̇𝑛+1)𝑇 in 

equation (12) can be represented explicitly in the 

following concise form  

𝑞̇∗ = 𝐾𝑈̂𝑡  , 𝑡 ∈ [𝑡𝑜, 𝑡1 ] (18) 

where 𝑈̂𝑡 = (𝑢𝑇 , 𝑢𝑛+1)𝑇 ∶  ℬ → 𝑅𝑛+1 is a given 

continuous, piecewise smooth vector function and 𝐾 

is a (𝑛 + 1) 𝑥 (𝑛 + 1) block matrix in the form 

𝐾 =  [
𝑃 𝜉
0 1

] (19) 

The vector function 𝑈̂𝑡  is projected on the tan-

gent vector space on ℬ by means of matrix 𝐾. 

Hence, the selection of 𝑈̂𝑡  allows us to control the 

tangent vector field on ℬ and in particular, the robot 

arm motion. Therefore we refer to 𝑈̂𝑡   as kinematic 

path control. It is defined by the quality criteria for 

computing an optimal robot motion. The kinematic 

path control and the manifold ℬ are the analogues 

for the motion parameters and the geometric path  in 

task space, respectively. 

 

 

5 Processing singularities 
The application of Jacobian- based models in in-

verse kinematics including the here proposed math-

ematical model relies on the assumption that the 

rank of the Jacobian is equal to the dimension of the 

task space for all the configurations of joint varia-

bles. In practice, there exist configurations  𝑞 , 

where 𝑟𝑎𝑛𝑘 𝐽(𝑞) < 𝑚.   
These so called singularities of the Jacobian ap-

pear to be a major obstacle for the wide implemen-

tation of this kind of models. Typical approaches for 

resolving singularities attempt to “avoid” them by 

employing singularity analysis based on a symbolic 

representation of the Jacobian [10], Singular Value 

decomposition [7] or manipulability resolution [11]. 

Here we will present a solution to this problem in 

the context of the here proposed mathematical mod-

el for motion control of redundant robot arms. The 

first part of this solution provides an efficient crite-

rion to identify a singularity and the second part 

deals with processing of the identified singularity. 

Consider the matrix 𝑃 defined in (15). It is a 

symmetric 𝑛 × 𝑛 matrix and 𝑟𝑎𝑛𝑘 𝑃(𝑞) = 𝑛 − 𝑚  
for all 𝑞 , where  𝑟𝑎𝑛𝑘 𝐽(𝑞) = 𝑚. On the other 

hand, the trace of 𝑃 is the sum of its eigenvalues. 

This trace is invariant with respect to the change of 

basis. Now from the Spectral theorem in algebra 

[12] it follows that  𝑃 has exactly 𝑛 − 𝑚  orthonor-

mal eigenvectors. The sum of their corresponding 

eigenvalues is equal to 𝑛 − 𝑚 . This proves the fol-

lowing proposition. 
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Proposition. The Jacobian has full rank, if and only 

if, the trace of matrix P is equal to  𝑛 − 𝑚. 

This proposition provides an efficient numerical 

criterion to identify a singularity of the Jacobian. It 

is enough to establish when the trace of matrix P 

becomes larger than 𝑛 − 𝑚. 

Corollary. A configuration 𝑞 is a singularity of the 

Jacobian, if and only if, the trace of matrix P is larg-

er than 𝑛 − 𝑚. 

Consider now an admissible motion 𝑞∗(𝑡) =
(𝑞(𝑡), 𝑞𝑛+1(𝑡)) of the robot arm. Denote by 

𝛾(𝑞𝑛+1) the position of the end- effector in work 

space 𝑊. Then all the configurations  𝑞 that allow 

the end- effector to remain in this position belong to 

ℬ𝑞𝑛+1
 (Fig. 3). The dimension of manifold ℬ𝑞𝑛+1

 is 

𝑛 − 𝑚 for all  𝑞  where 𝑟𝑎𝑛𝑘 𝐽(𝑞) = 𝑚. Assume 

that among these configurations there is a singulari-

ty  𝑞(𝑠). Then 𝑟𝑎𝑛𝑘 𝑃(𝑞(𝑠)) > 𝑛 − 𝑚 and the tan-

gent vector field on ℬ at 𝑞∗(𝑡) = (𝑞(𝑠), 𝑞𝑛+1) is 

undefined in a singular configuration. It appears that 

the singularity 𝑞(𝑠) separates one set of non-singular 

configurations from another set of non-singular con-

figurations. In terms of the Principle of continuity 

[6] we can interpret the singularity as a “gate” be-

tween sets of non- singular configurations on ℬ𝑞𝑛+1
. 

This allows a redundant robot arm to reconfigure 

itself with continuous internal movements without 

changing the position and orientation of the end- 

effector even when “passing through” a singular 

configuration like 𝑞(𝑠) for instance. Therefore we 

can replace the tangent vector field at (𝑞(𝑠), 𝑞𝑛+1)  

in ℬ with the tangent vector field at point  

(𝑞, 𝑞𝑛+1)   in ℬ selected in a sufficiently small 

neighbourhood of (𝑞(𝑠), 𝑞𝑛+1) such that 

𝑟𝑎𝑛𝑘 𝐽(𝑞) = 𝑚.  

Consider now a small variation in the configura-

tion 𝛿𝑞∗(𝑠) = (𝛿𝑞(𝑠), 𝛿𝑞𝑛+1). The end- effector 

movement has a limited set of independent manipu-

lability directions in a singularity. Recall that 𝑞∗(𝑡) 

is admissible. Then the variation   𝛿𝑞𝑛+1 of the pa-

rameter of γ produces variations both in task space 

and in the extended space of configurations, where  

the manipulability directions satisfy the given geo-

metrical and motion parameters of motion control.  

These findings allow us to propose the following 

heuristic procedure for “passing through” singulari-

ties in motion control in the context of the here con-

sidered problem statement. When the integration 

procedure of equation (18) reaches a Jacobian sin-

gularity, continue the integration procedure by com-

puting the right side of equation (18) for the last 

computed non- singular configuration.  

 

 

6 Conclusion 
This paper presents a Jacobian- based mathematical 

model for motion control of redundant robot arms 

subject to given geometrical and motion parameters. 

A guiding design principle in this model is the sepa-

ration of concerns addressing geometry and motion 

in the inverse kinematic problem. This approach 

enables to reduce the inherent complexity in exist-

ing models and formulate results suitable for soft-

ware implementation. Such results are efficient pro-

cedures for computing the Jacobian and the kine-

matic control. The Principle of continuity provides a 

new insight about resolving singularities through a 

heuristic procedure. In view of this principle non- 

redundant robot arms are a particular case of redun-

dant robot arms. Therefore the obtained results can 

be extended for non-redundant robot arms, as well.  
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