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Abstract: We describe a simple algorithm for estimating the elements of a matrix as well as its product decompo-

sition under the condition that only the matrix-vector product is accessible. This algorithm is based on application

of the stochastic simultaneous perturbation (SSP) method. Such problems arise frequently in solving inverse prob-

lems, nonlinear filtering and control of dynamical systems, especially in data assimilation in high dimensional

systems where the numerical model is given by a computer code and the error covariance matrix is to be estimated

in order to specify the filter gain for state estimation. Theoretical results on the convergence of the proposed algo-

rithm are proven, its efficiency is demonstrated in numerous engineering estimation problems, especially for the

design of an adaptive filter for data assimilation in a high dimensional ocean model.
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1 Introduction

Consider the following linear system of equations

Φx = b, (1)

where Φ ∈ Rm×n, b ∈ Rm, x ∈ Rn. We assume

in (1) that the matrix Φ is unknown, but the vector y′,
y′ = Φx′, is known once x′ is given. The problem

we are interested in is to estimate the matrix Φ, and,

when needed, to decompose it into the product of two

matrices, Φ = AB.

The motivation for solving the aforementioned

problem arises in many engineering inverse problems.

As an example, consider the filtering problem

xk+1 = φ(xk) + wk,

zk+1 = h(xk+1) + vk+1. (2)

where φ(.) and h(.) may be linear or nonlinear

functions. Based on a set of observations zl, l =
1, 2, ..k, the filtering problem is to estimate the system

state xk as precisely as possible. For the linear φ(x) =
Φx, h(x) = Hx and under standard conditions re-

lated to the model and observation noise sequences

wk, vk, the minimum mean squared (MMS) estimate

x̂k can be obtained by the well-known Kalman filter

(KF) [19]. In the KF algorithm, the exact values of

Φ, H and statistics of the noises wk, vk are required.

For nonlinear φ(.), h(.), the Taylor series expan-

sions are used to linearize the model about a current

estimate and the standard KF formalism is applied to

obtain the extended KF (EKF) [17].

If the system model is non-linear or not well

known, or simply inaccurate, the Monte Carlo meth-

ods, especially particle filters, are good candidates [6].

Particle filter techniques provide a methodology for

generating samples from the required distribution. In

this context, Sampling Importance Resampling (SIR),

introduced in [8] and developed in [7], is an origi-

nal particle filtering algorithm. The distribution is ap-

proximated with importance weights, which are ap-

proximations to relative posterior densities of the par-

ticles, and the sum of the weights is one. A main point

is that, most of the times, SIR is used in a sequential

setting and this is why one needs to reallocate parti-

cles to best deal with the next time integration. Re-

sampling allows to reallocate particles from low den-

sity regions into high density regions, making thus to

more optimal use of available particles.

However, these methods do not perform well

when applied to very high-dimensional systems. One

of the reasons is that they require ensembles of large

size to estimate posterior densities.

One class of filters, more adapted for solving fil-

tering problems in the high dimensional environment,

is an ensemble Kalman filter (EnKF) [9]. The EnKF is
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a Monte Carlo approximation of the KF, in which the

filtered and forecast error covariance matrices (ECM)

are evolved using an ensemble of error samples for

the state estimate. The most important difference be-

tween the particle filter and the EnKF is lying in the

proposition that all probability distribution functions

in the EnKF are Gaussian. Using the KF formalism

for linear systems, starting from an ensemble of sam-

ples from the initial state, the EnKF is performed on

the basis of the Bayesian update, combined with ad-

vancing the model in time and incorporating new data

from time to time. In the EnKF, the ECM is replaced

by a sample covariance computed from the ensemble

of samples. One of the major disadvantages of the

EnKF is the rank deficiency of the sample ECM since

usually one can generate the number L of samples

only of order O(100) which is too small compared

to the dimension of the system state O(106). The lo-

calized EnKF is proposed in [25] to overcome such

difficulty.

In many engineering applications, in particular in

data assimilation in meteorology and oceanography,

generally speaking, we do not know about φ(.) (and

possible about h(.)) : they are given only in the form

of the computer code. It means that we can obtain

the value φ(x) (or h(x)) for a given x using the com-

puter code. To see the idea to follow in this paper,

let us consider the situation φ(x) = Φx, h(x) = Hx
with the unknown Φ. As the code Φx is given, the

question we are interested in is how one can com-

pute numerically Φ in order to perform, for example,

the KF. One of the widely used methods for numer-

ically computing Φ in this situation is a component-

wise technique. It has been used in [10] to compute

the fundamental matrix of a linearized system for up-

dating the Riccati equation in the EKF to estimate the

circulation in an idealized Gulf Stream model: the el-

ements of Φ are obtained by computing the product

Φei, i = 1, ..., n, where ei = (0, ..., 1, ..., 0)T - the

vector with all zero components except the ith equal

to 1. This method is applicable only if the dimension

n is moderate. For numerical models with n, being

in the range[106 − 107], such a method is inapplica-

ble. As an example, one integration Φx in the HY-

COM (Hybrid Coordinate Ocean Model) for the Bay

of Biscay at SHOM (parallel version, 62 processors)

requires about 1h for simulating 5 day prediction at

the supercomputer Beaufix (Météo France). It means

that during 5 days, it is possible to make maximally

100 model integrations. Clearly, the described method

is impossible to apply for the actual model HYCOM

at SHOM.

In such situations, it is important to have a proce-

dure capable of estimating the transition matrix inde-

pendently on its dimension.

Another question, being addressed in this paper,

concerns the estimation of the ECM. This matrix plays

an essential role in providing a high performance of

the adaptive filter (AF). It will be shown that the nu-

merical method, developed in this paper for matrix es-

timation, can be applied also to estimate the ECM by

generating the prediction error (PE) samples. As the

size of an ensemble of samples is insufficient for ap-

proximating the ECM, to avoid the rank deficiency,

the optimal ECM will be found as a solution of an

optimization problem under the hypothesis on separa-

bility of the horizontal and vertical structure (SeVHS)

of the ECM [5]. This new strategy for generating an

ensemble of PE samples is different from the method

described in [9] for estimating the ECM in the EnKF

as well as from that proposed in [12] based on Schur

decomposition. The efficiency of this method will be

compared with that based on dominant Schur vectors

[12].

The paper is organized as follows. In section 2 the

algorithm for estimating an unknown matrix is pre-

sented (Algorithm 2.1). The proof of convergence of

the estimation procedure is given (Theorem 2.1). It

will be seen that for a matrix of given dimensions,

convergence to true unknown matrix is guaranteed as

the number of iterations tends to infinity. For prac-

tical applications with high dimensional matrices, as

the matrix-product (or model integration) operation is

time-consuming, we can run only the algorithm for a

very limited number of iterations. As a consequence,

it is expected to obtain good estimates only if the re-

quired matrix has a sparse structure [3]. In section 3,

the algorithm for estimating unknown parameters in

a matrix product is described which is based on solv-

ing a minimization problem by the SPSA (Simultane-

ous Perturbation Stochastic Approximation) [29]. As

a particular case, it will be proved (Theorem 3.1) that

the procedure yields the solution which is equivalent

to a singular value decomposition (SVD) for a given

matrix [11]. Before going to the problem of estima-

tion of the gain matrix in a high dimensional AF, in

section 4 we outline the AF and variational methods

(VM) approaches widely used in data assimilation for

high dimensional systems. We will show the principal

differences between these two approaches from which

follow the advantages of the AF. In section 5 the algo-

rithm for solving the parameter estimation problem,

closely related to Nearest Kronecker Product (NKP)

problem, is presented. This algorithm is important

for estimating the ECM which participates in the con-

struction of the AF. Here the SeVHS hypothesis is in-

troduced for the estimated ECM, with the ”data” ma-

trix generated by integrating the numerical model with

all state components perturbed by SSP method. Nu-

merical examples and simulation results are presented
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in section 5 for systems of small and moderate dimen-

sions. Application of the numerical algorithms (ma-

trix estimation, product decomposition) for generat-

ing the PE samples as well as for estimation of the

ECM are demonstrated here. The obtained ECM will

be used in the experiment on the sea surface height

(SSH) data assimilation in a high dimensional ocean

model MICOM by the AF is presented in section 7.

The conclusion is given finally in section 8.

2 Estimation of matrix

Return to Eq. (1). For b := (b1, ..., bm)T , taking the

derivative of b1 with respect to (wrt) x yields

db1/dx = (∂b1/∂x1, ..., ∂b1/∂xn) = (φ11, ..., φ1n)

where φi,j are the i, j element of Φ. One can write

then

db/dx = [(db1/dx)
T , ..., (db1/dx)

T ]T = Φ

Thus, if we are able to find a procedure to approx-

imate the derivative of b wrt to x, independently of the

dimension of x and at a low cost, it is possible to esti-

mate the elements of the high dimensional Φ.

2.1 Stochastic simultaneous perturbation

(SSP) and gradient approximation

In [29] Spall proposes a simultaneous perturbation

stochastic approximation (SPSA) algorithm for find-

ing optimal unknown parameters by minimizing some

objective function. The main feature of this new al-

gorithm resides in the way to approximate the gradi-

ent vector : a sample gradient vector is estimated by

perturbing simultaneously all components of the un-

known vector in a stochastic way (SSP). This method

requires only two or three measurements of the objec-

tive function, regardless of the dimension of the vector

of unknown parameters. For details on this algorithm,

see [29].

2.2 Algorithm for estimation of Φ

Let ∆̄ := (∆1, ...,∆n)
T , ∆i, i = 1, ..., n be Bernoulli

independent and identically distributed (i.i.d.) vari-

ables assuming two values +/- 1 with equal proba-

bility 1/2. Introduce [∆̄]−1 := (1/∆1, ..., 1/∆n)
T ,

∆̄c := c∆̄, c > 0 is a small positive value.

In the context of estimation of Φ, the proposed

algorithm looks as follows :

Algorithm 2.1. Suppose it is possible to compute

the product Φx = b(x) for a given x. At the beginning

let l = 1. Let the value u be assigned to the vector x,

i.e. x := u, L be a (large) fixed integer number.

Step 1. Generate ∆̄(l) whose components are lth

samples of the Bernoulli i.i.d. variables assuming two

values +/- 1 with equal probabilities 1/2;

Step 2. Compute δb(l) = Φ(u + ∆̄
(l)
c ) − Φu,

∆̄
(l)
c = c∆̄(l), c is a small positive value;

Step 3. Compute g
(l)
i = δb

(l)
i [∆̄

(l)
c ]−1, δbi is the

ith component of δb, g
(l)
i is the column vector consist-

ing of derivative of bi(u) wrt to u, i = 1, ...,m.

Step 4. Go to Step 1 if l < L. Otherwise, go to

Step 5.

Step 5. Compute

ĝi =
1
L

∑L
l=1 g

(l)
i , i = 1, ...,m,

Φ̂(L) := Dxb = [ĝ1, ..., ĝm]T

Comment 2.1. For a fix L, this algorithm yields

an unbiased estimation with mean square error pro-

portional to (1/L) (see below).

2.3 Demonstration of convergence of algo-

rithm 2.1

Let us analyse a convergence of Algorithm 2.1. We

have

δb := Φ(u+ δu)− Φu = Φδu, δu = ∆̄c.

Let δb
(l)
i denote the ith component of δb(l). Then

δb
(l)
i

δu
(l)
j

=
∑n

k=1 φikδu
(l)
k /δu

(l)
j =

∑n
k=1 φik∆

(l)
k /∆

(l)
j =

φi,j +
∑

k 6=j φikξ
(l)(k, j), ξ(l)(k, j) = ∆

(l)
k /∆

(l)
j

We have then

1

L

L
∑

l=1

δb
(l)
i

c∆
(l)
j

= φi,j +
n
∑

k 6=j

φik[
1

L

L
∑

l=1

ξ(l)(k, j)]. (3)

However, the sequence (by l) of ξ(l)(k, j) =

∆
(l)
k /∆

(l)
j is also a sequence of Bernoulli i.i.d vari-

ables assuming two values +/- 1 with equal probabil-

ities 1/2, the sum [ 1L
∑L

l=1 ξ
(l)(k, j)] will tend to zero

as L → ∞. We have then

ei,j(L) :=
1

L

L
∑

l=1

δb
(l)
i

c∆
(l)
j

− φi,j = ηL,

ηL :=
n
∑

k 6=j

φik[
1

L

L
∑

l=1

ξ(l)(k, j)], (4)
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and

|ηL| ≤ C(i)|n
L

L
∑

l=1

ξ(l)(k, j)|,

C(i) = max|φi,k|, k = 1, ..., j, j + 1, ..., n, (5)

which will tend to zero as L → ∞ for fix n and

finite C(i). Mention that for µL := 1
L

∑L
l=1 ξ

(l)(k, j),

E(µ2
L) =

1
L hence ei,j(L) will tend to φi,j (in a mean

squared sense) with the error proportional to (1/L).
We have

Theorem 2.1 Consider Algorithm 2.1 for estima-

tion of the elements of the matrix Φ. Then this al-

gorithm will yield the estimates for the elements of

Φ with the mean squared error (MSE) proportional to

1/L where L is the number of samples used in the

estimation procedure.

Comment 2.2

The estimation in (3) shows for a fix n the con-

vergence of the estimate φi,j is proportional to 1/L.

It is seen that for large n, if many elements of Φ are

of nearly the same magnitude (and not to small), the

convergence will be slow and a large number of sam-

ples (L) will be required. Fortunately, for numerical

models resulting from discretization of the set of par-

tial differential equations (PDEs) (they are just what

we expect to do with) the things look quite different

([3], p. 509). The local character of the PDE (contains

only low-order derivatives), as well as the local char-

acter of the discretization schemes applied to the dif-

ferential operators (implying only neighboring mesh

points) cause the numerical models to have the so-

called sparse matrix, with non-zero elements on just

a few diagonals. A moderate number of samples L
then is possibly sufficient to provide good estimates

for φi,j .

3 Estimation of decomposition of Φ

3.1 Problem statement

In practice, if the dimensions of Φ are too high, there

is no interest to store Φ by its elements (even if they

are known). There is a need to approximate this ma-

trix by some matrix in a subspace of fewer dimen-

sions, which in some sense is the best estimate among

the members of a class of matrices of a given structure

(for example, a class of matrices of given rank).

Let Φ be a matrix of dimensions (m × n). For

definiteness, let m ≤ n with rank(Φ) = m. We want

to find the best approximation for Φ among members

of the class of matrices

Φe = ABT , A ∈ Rm×r, B ∈ Rn×r. (6)

under the constraint

Condition (C)

A,B are matrices of dimension m× r, r×n, r ≤
m, rank(ABT ) = r.

Under the condition (C) the optimization problem

is formulated as

J(A,B) = ||Φ− Φe||2F = ||Φ−ABT ||2F → min(A,B), (7)

where ||.||F denotes the Frobenius matrix norm.

In the context of the problem of estimation Φ, the

problem (7) sometimes is replaced by

J(A,B) = ||Φ̂(L)−ABT ||2F → minA,B, (8)

where Φ̂(L) is some estimate of Φ obtained, for

example, by application of Algorithm 2.1. The prob-

lem (7)(8) is a particular case of the parameter esti-

mation when A,B are parametrized by θ - vector of

unknown parameters, i.e. A := A(θ), B := B(θ),
and

J(θ) = ||Φ−A(θ)B(θ)T ||2F → minθ, (9)

It is evident that (7) is a particular case of (8) for

θ consisting of all elements of A and B.

Consider Φ and let UΣV T be SVD of Φ [11], i.e.

Φ = UΣV T , U ∈ Rm×m, V ∈ Rn×n,

Σ = [Σm|0],
Σm = diag[σ1, ..., σm], σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0. (10)

Let

Φ̃ = Φ +∆Φ, Φ̃ = Ũ Σ̃Ṽ T . (11)

and σ̃1 ≥ σ̃2... ≥ σ̃m, σ̃k be the kth singular

value of Φ̃.

Then we have

Lemma 3.1 (Mirsky’ Theorem [30])

The following inequality holds

m
∑

i=1

(σ̃i − σi)
2 ≤ ||∆Φ||2F (12)

where ||.||F denotes the matrix Frobenius norm.
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Theorem 3.1 below characterizes a solution of the

problem (9)(C).

Theorem 3.1. Suppose AoB
T
o is a solution to the

problem (7) subject to Condition (C). Then

J(Ao, Bo) =
m
∑

k=r+1

σ2
k (13)

where σk is the kth singular value of Φ, σ1 ≥
σ2 ≥ ... ≥ σm.

Theorem 3.1 implies that Φo
e := AoB

T
o is equal

to the matrix formed by truncating the SVD of Φ to

its first r singular vectors and singular values.

Proof.

Consider Φ, Φ̃ defined in (10), (11).

Introduce

Φr := UrΣrV
T
r = UΣ′V T , Σ′ =

(

Σr 0
0 0

)

,

U := [Ur, U
′], V := [Vr, V

′],Σr = diag[σ1, ..., σr],

or it can be rewriten as

Φr = ABT , A := U [Σ′]1/2, B := V [Σ′]1/2.

One sees that Φr is the matrix formed by truncat-

ing the SVD of Φ to its first r singular vectors and

singular values. As Φr has the rank equal to r hence

J attains the minimum at Φr,

J(X) = ||Φ−X||2F → minX ,

with

J(Φr) =
∑m

k=r+1 σ
2
k

(see [30]).

This proves that the problem (7)(C) has Φr as its

solution and the value J(Φr) is equal to the right hand

side of (13).

Let now A′, B′ be such that A′ ∈ Rm×r, B′ ∈
Rn×r, and rank (A′B′T ) = r. We show that

J(A′, B′) ≥ J(Φr).

Let the singular values of A′B′T be σ′
1 ≥ σ′

2... ≥
σ′
m. Then σ′

r+1 = ... = σ′
m = 0. By Lemma 3.1,

||Φ′ − Φr||2F ≥∑m
i=1 |σ′

i − σi|2 ≥
σ2
r+1 + ...+ σ2

m = ||Φr − Φ||2F

which proves the theorem. (End of Proof)

3.2 Decomposition algorithm

Theorem 2.1 allows to avoid storing elements of

the estimate Φ̂(L) of Φ (their number is of order

O(10m×n)). In fact, it is our interest to consider the

estimate Φ̂(L) (see Algorithm 2.1) as composed from

two following ensembles of vectors-elements :

EnL(δx) := [δx(1), ..., δx(L)], δx(l) = c∆̄(l),

EnL(δb) := [δb(1), ..., δb(L)],

δb(l) = (δb
(l)
1 , ..., δb(l)m )T , l = 1, ..., L. (14)

The ensemble EnL(δx) is composed of all

vectors of random perturbations and the ensemble

EnL(δb) - from all perturbed output vectors. It is seen

that the number of all elements of these two ensem-

bles is proportional to (L(m+n)) which is much less

than O(10m×n) - the number of elements of Φ̂(L) -

for large m and n.

As an example, computing the product z =

Φ̂(L)y with a vector y ∈ Rn can be performed as fol-

lows : as zi =
∑n

k=1 φ̂ikyk =
∑n

k=1[
1
L

∑L
l=1

δb
(l)
i

δx
(l)
k

]yk,

zi =
1
L

∑L
l=1 δb

(l)
i [
∑n

k=1
yk

δx
(l)
k

], i = 1, ...,m

where zi is the ith component of z. In a more

compact form we have

z =
1

L

L
∑

l=1

αlδb
(l), αl :=

n
∑

k=1

yk

δx
(l)
k

. (15)

Thus, from the computational point of view, Eq.

(15) allows to perform z = Φ̂(L)y with L(m+2n)+1

elementary operations. In contrast, if Φ̂(L) is stored

by its elements, it requires mn elementary operations

to fulfill the same product.

Similarly, it is not hard to calculate zi of z =

Φ̂T (L)y, y ∈ Rm as

zi =
1

L

L
∑

l=1

1

δx
(l)
i

m
∑

k=1

δb
(l)
k yk, i = 1, ..., n (16)

The formula (16) is of extreme importance : it

allows us to perform a matrix-vector product of the

transpose (adjoint) ΦT by a vector. It means that

if Φ is well approximated, the product ΦT y can be

easily performed without the need to construct an

adjoint code. As it is known, writing an adjoint code

for high dimensional systems is time consuming and

hard task, especially when the direct model code has

discontinuity elements.
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3.2.1 Algorithm 3.1

For simplicity, let the elements of Φ (or Φ̂) be avail-

able (may be in an algorithmic form). At the be-

ginning let l = 1. Let us choose Â(1) ∈ Rm×r,

B̂(1) ∈ Rn×r, rank [Â(1)B̂(1),T ] = r.

Step 1. For a given l, generate ∆
(l)
A ∈

Rm×r,∆
(l)
B ∈ Rn×r whose elements are samples of

Bernoulli i.i.d. variables assuming two values +/- 1

with equal probabilities 1/2;

Step 2. Compute

δJ (l) := J [Â(l) + c(l)∆
(l)
A , B̂(l) + c(l)∆

(l)
B ]

−J [Â(l), B̂(l)],

c(l) is a small positive value, the sequence {c(l)}
satisfies the conditions for convergence of SPSA pro-

cedure [29].

Step 3. Compute G
(l)
A (i, j) = δJ (l)/δa

(l)
i,j , i =

1, ...,m; j = 1, ..., r, G
(l)
B (i, j) = δJ (l)/δb

(l)
i,j , i =

1, ..., n; j = 1, ..., r where δa
(l)
i,j , δb

(l)
i,j are the (i, j) el-

ements of c(l)∆
(l)
A , c(l)∆

(l)
B respectively;

Step 4. Compute the elements of Â(l), B̂(l) by

â
(l+1)
i,j = â

(l)
i,j − γ(l+1)G

(l)
A (i, j), i = 1, ...,m; j =

1, ..., r,

b̂
(l+1)
i,j = b̂

(l)
i,j − γ(l+1)G

(l)
B (i, j), i = 1, ..., n; j =

1, ..., r.

γ(l) is a sequence of positive values guaranteeing

a convergence of the SPSA algorithm (for the condi-

tions for both sequences {γ(l)}, {c(l)}, see [29]).

Step 5. Go to Step 1 if l ≤ L. Otherwise, go to

Step 6.

Step 6. Compute

Φ̂(L) := Â(L)B̂(L).

Step 7. Stop.

Comment 3.1. To accelerate a convergence of the

estimation procedure, one can use, instead of the es-

timate in Step 6, the averaging procedure [27] as fol-

lows

Φ̂a(L) :=
1

L

L
∑

l=1

Â(l)B̂(l). (17)

3.2.2 Algorithm 3.2

Another way to decompose the matrix Φ is to apply

iteratively Algorithm 3.1 as follows

Algorithm 3.2.

At the beginning let i = 1.

Step 1. For i = 1, solve the minimization problem

J1 = ||Φ1 − abT ||2F → mina,b, a ∈ Rm, b ∈ Rn.

Φ1 := Φ, rank(abT ) = 1.

Its solution is denoted as â(1), b̂(1).
Step 2. For i < r, put i := i + 1 and solve the

problem

Ji = ||Φi − abT ||2F → mina,b, a ∈ Rm, b ∈ Rn.

Φi := Φ−∑i−1
k=1 â(k)b̂

T (k), rank(abT ) = 1

Its solution is denoted as â(i), b̂(i).
Step 3. If i = r, compute

Φ̂ = Â(r)B̂T (r),

Â(r) = [â(1), ..., â(r)], B̂(r) = [b̂(1), ..., b̂(r)].

and stop. Otherwise, go to Step 2.

Theorem 3.2. The couple Â(r), B̂(r) produced

by Algorithm 3.2 is a solution for the problem (8)(C).

Proof. By Theorem 3.1, after Step 1 one obtains

â(1)b̂T (1) = u1v
T
1 σ1 where u1, v1 are the left- and

right-singular vectors associated with σ1 (see (10)).

The matrix Φ2 then has σ2 as its biggest singular value

with u2, v2 as associated left and right singular vec-

tors. Solving J2 → mina,b then yields â(2)b̂T (2) =

u2v
T
2 σ2 and so on for i = 3, ..., r. It means that

Â(r)B̂T (r) =
∑r

k=1 â(k)b̂
T (k) =

∑r
k=1 ukv

T
k σk = UrΣrV

T
r .

(End of proof)

Comment 3.2. Algorithm 3.2 requires to solve r
optimization problems of the type Ji → mina,b com-

pared with one optimization problem in Algorithm

3.1. However, as a and b are vectors, the number of it-

erations should be much fewer in solving Ji → mina,b
compared with that of (8).

4 Adaptive filter and variational

method

In this section, we first describe the AF based inno-

vation approach and the VM widely used for data

assimilation in high dimensional systems. The dif-

ferences between these two approaches are presented
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from which it follows clear advantages of the AF over

the use of the VM.

Consider the problem of estimation of the system

state xk,

xk+1 = Φxk + wk, k = 0, 1, ... (18)

given the observations zk

zk+1 = Hxk+1 + vk+1, k = 0, 1, 2, ... (19)

here xk ∈ Rn is the system state at k instant, Φ ∈
Rn×n is the fundamental matrix, zk ∈ Rp is the ob-

servation vector, H ∈ Rp×n is the observation opera-

tor, wk, vk are the model and observation uncorrelated

noise sequences which are mutually uncorrelated and

uncorrelated with x0.

For the today’s ocean (or meteorological) numer-

ical models, the system state xk has the dimension ly-

ing in the range [106 : 108] and there is uncertainty in

statistics of the initial state, model and observational

noises. Due to very large n, it is impossible to apply

traditional optimal procedures to estimate the system

state and for that reason there exist different approx-

imation algorithms for solving this estimation prob-

lem.

4.1 Variational method (VM) [31]

The VM consists of minimizing

J [x0, ..., xN ] = e0M
−1
0 e0 +

N
∑

k=1

(zk −Hxk)
TR−1(zk −Hxk) → min[x0,...,xN ],

(20)

under the constraints (18), where e0 := x0−x̄0. Thus,

the VM seeks an optimal solution in the functional

space (space of functions {xk}). For systems of high

dimension, this task is impossible to perform. The

simplification is required. Suppose the system (18) is

perfect, i.e. wk = 0. Expressing all xk as functions of

the initial state x0,

xk = Φ(k, 0)x0,

Φ(k, l) = Φk−l, (k > l),Φ(k, k) = I, (21)

Iis the identity matrix of appropriate dimension

and substituting xk, ∀k (21) into (19), at each kth ob-

servation instant we have

zk = H1
kx0 + ǫ′k, k = 1, 2, .. (22)

H1
k := [(H1Φ(1, 0))

T , ..., (HΦ(k, 0))T ]T ,

v1k = [vT1 , ..., v
T ]T .

The optimization problem (20) now is simplified,

J [x0] → min[x0], (23)

J [x0] := eT0 M
−1
0 e0 +

(1/N)
N
∑

k=1

(zk −H ′
kx0)

TR−1
k (zk −H ′

kx0), (24)

H ′
k := HΦ(k, 0).

We have now the unconstrained optimization problem

(23)(24) with the control vector θ := x0 - the initial

state.

4.2 Adaptive filter

The main underlying principle in the construction of

the AF concerns the choice of the innovation repre-

sentation [18] instead of the original input-output sys-

tem (18)(19) to formulate the optimization problem

[16]. The innovation process, associated with zk, is

written as ζk = zk −E[zk|z1k] where E[zk|z1k] is con-

ditional expectation, and under standard conditions

(gaussianness, uncorrelated noise sequences ...), we

have E[zk|z1k−1] = Hx̂k/k−1 hence

ζk = zk −Hx̂k/k−1, x̂k/k−1 = Φx̂k−1, (25)

where x̂k/k−1 is an optimal in MSE one-step ahead

prediction for xk given z1k−1. Using ζk instead of

zk, under standard conditions, one can write out the

formula for the optimal (in minimum mean squared -

MMS) estimate x̂k using the KF

x̂k = Φx̂k−1 +Kkζk, (26)

Kk = MkH
T [HMkH

T +R]−1 (27)

where Mk is the ECM for the prediction x̂k/k−1 which

can be computed recursively as a solution to the Alge-

braic Riccati equation (ARE) [19], R is the covari-

ance of vk. For high dimensional systems, no com-

putational capacity and memory storage are sufficient

to solve the ARE. The AF is introduced to overcome

these difficulties [13]. From (25) one can rewrite

zk = HΦx̂k−1 + ζk = Hpx̂k−1 + ζk, (28)

Considering the problem of estimation x̂k for the

input-output system (26)(28), one can formulate here

the optimization problem (like (23))

J [x0] → min[x0], (29)

J [θ] := eT0 M
−1
0 e0 +

(1/N)
N
∑

k=1

(zk −Hpx̂k−1)
TΣ−1

k (zk −Hpx̂k−1), (30)

Hp := HΦ.
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As the system (26) must be stable by its construc-

tion [13], the error e0 in the estimate for the initial

state x̂0 decreases as assimilation progresses, the term

eT0 M
−1
0 e0 in (30) can be neglected, and as a conse-

quence, the choice of x̂0 as a control vector (as in the

VM), loses its meaning. The matrix Σk in principle

can be estimated using the innovation sequence ζk.

For simplicity, let Σk = I . On the other hand, from

Eqs (26)(28) it is evident that, the behavior of the sys-

tem (26)(28) depends on the choice of the gain Kk.

As the innovation ζk is of minimal variance if the fil-

ter is optimal, the AF in [13] is designed to minimize

(30) subject to θ consisting of some pertinent param-

eters of the filter gain Kk = Kk(θ). For more details

on the stabilizing structures for Kk(θ), see [13]. The

optimization problem (30) now takes the form

JN [θ] → minθ,

JN [θ] = (1/N)
N
∑

k=1

Ψ(ζk),Ψ(ζk) := ||ζk||2. (31)

under the constraints (26)(28).

One can see that (31) represents a sample version

of the following optimization problem

J [θ] = E[Ψ(ζk)] → minθ, (32)

where E(.) is the mathematical expectation.

From a practical point of view, there is a less inter-

est in formulating the AF in the form (31) because the

filter loses then its sequential character and, as a con-

sequence, the amount of computational burden and

memory storage remains still too high. In contrast,

it is possible to greatly simplify the implementation

of the AF on the basis of (32).

As an example, the problem (32) can be solved by

applying a stochastic approximation (SA) algorithm,

θk+1 = θk − ak∇θΨ(ζk+1) (33)

where {ak} is a sequence of positive scalars satis-

fying some conditions to guarantee a convergence of

the estimation procedure. The standard conditions are

ak > 0, ak → 0,
∞
∑

k=1

ak = ∞,
∞
∑

k=1

a2k < ∞ (34)

Another advantage of the formulation (32) concerns

the gradient computation. Writing out the gradient

of the objective function (24) for the VM (or even

for Ψ(ζk) in (33)) one sees that their computation re-

quires the product ΦT y, y ∈ Rn. It means that it is

absolutely necessary to have, at least, the code of the

adjoint ΦT to compute the product ΦT y (since it is im-

possible to stock ΦT of very high dimensions). That

adjoint equation (AE) approach constitutes a key tool

in the implementation of the VM.

With the formulation (32), one can achieve the

optimality of the AF by using the SPSA algorithm

[29]. The main feature of the SPSA algorithm is the

gradient approximation that requires only two mea-

surements of the objective function, regardless of the

dimension of the optimization problem. By this way,

there is no need in the construction of the tangent lin-

ear (if the model is nonlinear) and adjoint models. For

more details, see [14].

4.2.1 Differences between VM and AF

We list here the main differences between two ap-

proaches VM and AF from which it becomes clear

what are the advantages of the AF over the VM.

(D1) Dynamical system (DS): if in (24), the DS

is the initial system (18), in (30) the DS is the filter-

ing equation (15). This difference has an interesting

consequence : if in practice, there is very little known

about statistics of wk, the sequence ζk is observed and

hence it is possible to estimate its statistics.

(D2) wk in (18) is white, while ζk in (26) is a

white only if the filter is optimal : This allows to apply

different statistical tests for verifying the optimality of

the assimilation procedure.

(D3) Control variable x0 in the VM is the initial

state, whereas the control variable in the AF is the gain

parameters.

This difference has an important consequence :

as x0 has to be of precise physical meaning (depend-

ing, for example, on the ocean domain of interest), the

structure for the guess θ0 := x̂00 - initial state, as well

as its correction δx̂ν0 , must be chosen carefully so that

x̂ν0 , x̂ν0 = x̂ν−1
0 + δx̂ν0 , must be of physically realistic

structure. That is not an easy task. As for the AF, the

parameters usually are immaterial hence the choice of

structure for θ is of no importance.

(D4) Suppose (18) is unstable. It implies the er-

ror growth in estimating x0 during integration of the

direct and AE. As for the AF, by its construction, the

filtering system remains stable. It implies that the fil-

tering error is bounded during model integration since

the parameters θi are lying in the interval guaranteeing

a stability of the filter (26).

(D5) Taking the derivative of (24) wrt x0 one sees

that one needs to compute N terms, the kth term is as-

sociated with the assimilation instant k and one needs

to compute first µk := Φ(k, 0)eν0 - i.e. to integrate k
times the direct model Φk and next to integrate back-

ward (k times also) the AE ΦT . The larger k, the big-

ger amplification of the initial error eν0 and of the ob-

servation error vk. The error eν0 is amplified doubly

since it is integrated by the direct and adjoint models.
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1. Time averaged variance between the true trajectory and

model trajectory in the VM as a function of perturbed

third component of the initial state. The global minimum

is attained at the true initial condition, but there is no

guarantee for the VM to approach the true initial state

even in the perfect model case. For the noisy model, the

global minimum is not attained at the true initial state. The

curve ”noisy-model” is scaled by the factor C = 1/15.

But the amplification of vk (and wk when wk 6= 0) is

most worrying since it is integrated in the gradient es-

timate, making the gradient direction to be, possibly,

completely erroneous.

In Figure 1 we show the time averaged vari-

ances of the difference between the true trajectory and

model trajectory, denoted as AV (x∗, x̂) in the data

assimilation experiment with the Lorenz system [23]

based on the VM. The Lorenz system is 3 dimensional

chaotic system. In this experiment the estimate for

the initial state is the same as that for the true sys-

tem except for the third component which varies in

the interval [24.5 : 26.5]. The true x∗3(0) = 25.46091.

The curve ”perfect-model” corresponds to the situa-

tion wk = 0 whereas the curve ”noisy-model” is com-

puted for wk 6= 0 (with variance equal to 2). It is seen

that for the perfect model, the global minimum is at-

tained at x∗0(3) = 25.46091 as expected. However,

if the system is initialized by the estimate in a vicin-

ity, even not so far from the true x∗3(0), there is no

guarantee that the VM can approach to the true initial

state and the resulting estimation error may be very

large. For the noisy model, the global minimum is not

attained at x∗0(3).

Figure 2 shows the objective function (32) result-

ing from the filter (26) whose gain (27) is computed

on the basis of Mk = M using PE samples gener-

ated on the basis of Schur decomposition [12] (de-

noted as PEF). Here only the third gain component

is varying the interval [0:2]. One sees that the func-

tion AV (x∗, x̂) is quadratic wrt to the gain parameter,

for both situations of the perfect and noisy models. It
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2. Cost function in the PEF as a function of perturbed

third gain parameter θ3. It is seen that in the PEF the cost

function is quadratic wrt to the gain parameter in both

situations of the perfect and noisy models. The curve

”noisy-model” is scaled by the factor C = 1/50.

means that by optimization one can approach the op-

timal filter for both situations of the perfect and noisy

models. as seen in Figure 4.2.1 : here the sample cost

function is averaged over all assimilation period, by

varying the third parameter θ3 in the gain (related to

the third observed component of the system state).

5 Decomposition in Kronecker prod-

uct

5.1 Decomposition in Kronecker product

and Prediction Error Filter (PEF)

The decomposition algorithm, studied in the previous

section, can be applied to solve the problem of de-

composition of some matrix into a Kronecker product

of two matrices [11]. We show in this section that

estimation of parameters of the matrix, given in the

form of a Kronecker product, is of particular inter-

est in the design of a filter for high dimensional sys-

tem. This concerns the prediction error ECM M (or

”background” covariance) which plays an important

role in determining the filter’ gain. The difficulty en-

countered here is that for high dimensional systems it

is impossible to solve the Algebraic Riccati equation

to find M and hence to apply the KF. An alternative

adaptive filtering (AF) approach is developed in [13]

to overcome this difficulty. According to [13], first

a class of PEFs is constructed and next the filter per-

formance is optimised by tuning some parameters of

the filter gain to minimise the PE of the system out-

puts (innovation vector [18]). As the PEF requires to

specify the ECM, this matrix is estimated in two steps.

First a sample ”data” matrix Md is obtained on the
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basis of an ensemble of PE samples (generated, for

example, by using dominant Schur vector approach

(En(SCH) [12], ... ). The second step is to solve

the optimisation problem to estimate the parameters

of the Kronecker product matrix [15].

The objective of this section is to show there ex-

ists an another, potentially efficient way to generate

an ensemble of PE samples (denoted as En(SSP )).
This approach is based on perturbing the system state

using SSP perturbations. Once having the En(SSP ),
two step procedure, described above, will be applied

to obtain the data matrix Md and to estimate the pa-

rameters of the Kronecker product matrix. The per-

formances of two filters, PEF(SCH) and PEF(SSP),

which are designed on the basis of two ensembles of

samples En(SCH) and En(SSP ) respectively, will

be presented and compared with the standard Cooper-

Haines filter (CHF). Mention that the CHF is widely

used in the oceanic data assimilation [4].

5.2 Estimation of parameters in error co-

variance matrix M

One of the classical problems in multivariate statis-

tics is to estimate the covariance matrix. For the n-

dimensional zero mean error vector δx, given an en-

semble of L independent samples, the sample covari-

ance matrix for x is estimated through

Md(L) =
1

L− 1

L
∑

l=1

δx(l)δx(l),T . (35)

The properties of the estimate (35) are well stud-

ied in classical setting when the dimension of x is

small (see [1], [24]).

For the problem of high dimensional covariance

matrix, there is no possibility to produce a large num-

ber of samples L compared with the state dimension

of the numerical model. This happens in today prac-

tice of data assimilation in ocean models: the numer-

ical dimension of the problems to be solved is ex-

tremely large. As an example, the state dimension of

the present ocean models lies in the range 106 − 107

and the number of L samples is of the order O(100).
With the large number of elements of Md(L), it is

critical to exploit the sparse structure of the covari-

ance, resulting from numerical models. Using the es-

timate (35) does not take advantage of the sparsity

and, as is known, performs poorly under usual ma-

trix norms for large n. For approaches dealing with

sparse models in the high dimensional covariance es-

timation, see [21], [22], [20]. When the dimension n
is larger than the number of samples L, the sample co-

variance matrix (35) is not of full rank, so its inverse

will not exist. Secondly, even if the sample covariance

matrix is invertible, the expected value of its inverse is

a biased estimator for the theoretical inverse since (see

[2]),

E([Md(L)]−1) = L
L−n−2M

−1.

The idea to follow here is to use Md(L) in (35)

only as a ”data” matrix and the ECM to be used in the

filter is estimated by solving an optimization problem.

More precisely, a class of parametrized ECMs will be

introduced and we will fit a parameterized ECM to

the data Md(L). Concretely, let the estimated ECM

Me ∈ Rn×n be Me = Me(s, s
′), s := (i, j, lr)

where (i, j, lr) represents a grid point in the three di-

mensional space. The hypothesis on the separability

of vertical and horizontal structure (SeVHS) for Me

(widely used in meteorology and oceanography, [5])

implies

Me(s, s
′) = Mv(sv, s

′
v)⊗Mh(sh, s

′
h),

sv := l, sh := (i, j), (36)

where ⊗ denotes the Kronecker product between

two matrices,

Mv(sv, s
′
v)⊗Mh(sh, s

′
h) = M(i, j, l; i′, j′, l′) =











mv(1, 1)Mh mv(1, 2)Mh ... mv(1, nv)Mh

mv(2, 1)Mh mv(2, 2)Mh ... mv(2, nv)Mh

... ... ... ...
mv(nv, 1)Mh mv(nv, 2)Mh ... mv(nv, nv)Mh











(37)

In (36) Mv(sv, s
′
v) represents the vertical ECM

whereas Mh(sh, s
′
h) - the horizontal ECM. There are

two main advantages of the parametrized structured

ECM (36)(37): (i) it is easy to ensure a full rank

of Me (by ensuring a positiveness of Mh and Mv)

and to avoid rank deficiency in covariance Me; (ii)

the number of parameters to be estimated in the co-

variance matrix Me is reduced drastically (see below)

compared to the number of elements of M . As the

elements clm := mv(l,m) of Mv represent horizon-

tal averaged covariances between lth and mth layers,

one ensemble (of samples) with small size L consti-

tutes a large data set (the similar averaging procedure

is applied to estimate the parameters of Mh). This is

equivalent to noise cancelling and provides a fast con-

vergence of the parameter estimation procedure (see

section 4).

Represent the estimated matrix Me (37) in the

form
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Me(s, s
′) = Mv(sv, s

′
v)⊗Mh(sh, s

′
h),

Mv(sv, s
′
v)⊗Mh(sh, s

′
h) = M(i, j, l; i′, j′, l′) =











c11Mh c12Mh ... c1nvMh

c21Mh c22Mh ... c2nvMh

... ... ... ...
cnv1Mh cnv1Mh ... cnvnvMh











(38)

At the present, in meteorological and oceanic

models, the number of vertical layers nv < 100. It is

therefore possible to estimate all the elements ckm of

the vertical ECM, without necessity to introduce addi-

tional constraints like homogeneity or isotropy. As to

Mh, one assumes that it is homogeneous and is well

determined analytically up to a vector of unknown pa-

rameters. For example, Mh is usually assumed to have

the structure like Gaussian, first-order (second-order)

auto-regressive models (FOAR, SOAR, ... [26]). In

what follows, for illustration purpose, let Mh = Ch,

Ch(sh, s
′
h) = exp[−d/Lh], d = d(sh, s

′
h) (39)

where d = d(i, j; i′j′) =
√

(i− i′)2 + (j − j′)2,

Lh has the meaning of correlation length. Thus, for

the model (38)(39) the vector of parameters θ has
(nv+1)nv

2 + 1 parameters to be estimated.

The procedure related to estimation of vertical

and horizontal covariance matrices Mv, Mh is out-

lined as follows

Let

EnL[.] := [δx(1), ..., δx(L)] (40)

be an ensemble of PE samples δx(l), l = 1, ..., L.

The data matrix Md is obtained by applying (35),

Md(L) =
1

L− 1

L
∑

l=1

M (l),M (l) := δx(l)δx(l),T (41)

The reason for generating δx(l) in directions of

dominant real Schur vectors of the transition matrix

of the (linearized) linear dynamical system is given in

[12].

Define the vector of unknown parameters as

θ := (θTv , θ
T
h )

T ,

θv := (c11, ..., c1nv , c21, ..., c2nv , cnv1, ..., cnvnv)
T ,

θh := Lh. (42)

Considering M (l), l = 1, ..., L as a sequence of

samples for M , the SPSA algorithm (see [29]) can be

used to solve the following optimization problem for

determining the vector θ,

J [θ] = E[Ψ(M (l), θ)] → minθ,

Ψ(M (l), θ)] :=

||M (l) −Mv(sv, s
′
v)⊗Mh(sh, s

′
h)||2F , (43)

where ||A||F denotes the Frobenius norm of the

matrix A [11].

Comment 5.1. Compared to the Nearest Kro-

necker Problem (NKP) [11], the problem (43) is dif-

ferent : (i) it is aimed at minimizing the cost function

which is a mathematical expectation of the squared

Frobenius norm of the difference between the data

matrix and estimated matrix (which is the Kronecker

product of two matrices); (ii) not all the elements of

Mv, Mh are estimated but only a few parameters of

these matrices are adjusted to minimise the cost func-

tion. Of course, this procedure can be applied to solve

the traditional NKP problem described in [11].

6 Numerical examples

6.1 Small dimension case

Let us consider the problem of estimating el-

ements of the following matrix Φ ∈ R4×5

(see https://en.wikipedia.org/wiki/Singular-value-

decomposition)

Φ := A = [ai,j ] =











1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 4 0 0 0











(44)

In the SVD-decomposition the matrix A has 3

non-zero singular values σ1 = 4, σ2 = 3, σ3 =
√
5.

In the experiment, first we have applied Algorithm 2.1

to obtain the estimate Ae and next Algorithm 3.1 sub-

ject to different approximation subspaces correspond-

ing to r = 1, 2, 3, 4.

Figure 3 displays the cost function during the es-

timation process by Algorithm 2.1. It is seen that the

process converges after about 120 iterations.

Figure 4 shows the values of sample cost func-

tions (SCFs) resulting from experiments with Algo-

rithm 3.1 on the basis of results produced by Algo-

rithm 2.1, subject to different subspaces with r =
1, 2, 3. To see the performance of Algorithm 3.1, re-

member (13)
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convergence is observed after about 120 iterations
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Figure 4. Cost function resulting from experiments subject

to different subspaces with r = 1, 2, 3. One sees the

convergence of the estimation procedure and the value of

cost function gives the information on the singular values

of the true matrix

||A||2F =
m
∑

k=1

σ2
k (45)

where σk are the singular values of A. In the se-

quel we assume σ1 ≥ σ1 ≥ ... ≥ σm ≥ 0.

In the first experiment we solve the problem (7)

subject to Φe := A1B
T
1 , A1 := [a1], B1 := [b1],

a1 ∈ Rm, b1 ∈ Rn which corresponds to setting

r := r1 = 1 (for Φe, see Eq. (6)). The curve r1 shows

values of SCF as a function of iteration. It is seen that

SCF attains a stationary regime for less than 200 itera-

tions and reaches the value Jr1 = 14. As ||A||2F = 30
and minJr1 =

∑m
k=2 σ

2
k = 14, one concludes that Al-

gorithm 2.1-3.1 allow to find the optimal ao1, b
o
1 (since

σ2
1 = 16).
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Figure 5. Estimates of matrix elements by

one-dimensional subspace approximation : The biggest

element a4,2 = 4 is well estimated, whereas all others are

assigned to 0
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Figure 6. Estimates of matrix elements by

two-dimensional subspace approximation : Only two

elements a4,2 = 4, a2,3 = 3 are well estimated

The second experiment solves the problem (7)

subject to r := r2 = 2, i.e. Φe := A2B
T
2 , A2 :=

[a1, a2], B2 := [b1, b2], ai ∈ Rm, bi ∈ Rn, i = 1, 2.

The theoretical minimal value of Jr2 =
∑m

k=3 σ
2
k is

equal to 5 that is well approached by Algorithms 2.1-

3.1

In the experiment 3, the problem (7) is solved

subject to r := r3 = 3 hence Φe := A3B
T
3 , A3 ∈

Rm×3, B3 ∈ Rn×3. Figure 4 shows that the SCF

tends to 0 which is the minimal value of Jr3.

To check whether increasing the subspace dimen-

sion can lead to other estimation results, we have per-

formed the experiment 4 which solves (7) subject to

Φe := A4B
T
4 , A4 ∈ Rm×4, B4 ∈ Rn×4. It is found

(not shown here) in this case that the cost function de-

creases more quickly than Jr3 makes. This happens
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Figure 7. Estimates of matrix elements by

three-dimensional subspace approximation : All elements

a4,2 = 4, a2,3 = 3, a1,5 = 2, a1,1 = 1

only up to about 200 iterations and remains almost

the same as does Jr3 thereafter, tending to the min-

imal value 0. This result is correct since rank(Φ) =

3.

Figure 5 shows the estimates for four ele-

ments Ae(1, 1), Ae(1, 5), Ae(2, 3), Ae(4, 2) produced

by Algorithms 2.1-3.1 in the experiment 1. As r = 1,

the algorithms are capable of well estimating only the

biggest element a4,2 = 4 using one dimensional sub-

space approximation. All other elements are assigned

to the value 0. The two dimensional subspace approx-

imation allows to well estimate the two largest ele-

ments a4,2 = 4, a2,3 = 3 (see Figure 6). As to the

three dimensional subspace approximation, all four

elements a4,2 = 4, a2,3 = 3, a1,5 = 2, a1,1 = 1 are

well estimated (see Figure 7). One observes here that

the choice r = 3 is sufficient to well estimate all four

non-zero elements of the matrix. Figure 8 displays

the estimates produced in two experiments subject to

r = 3 and r = 4. As happened with the cost func-

tions, a more quick convergence is obtained for r = 4.

We conclude that by involving initially a subspace of

dimension higher than the rank of the estimated ma-

trix, it is possible to accelerate convergence of the es-

timates, but asymptotically they produce the estimates

of the same precision.

Comment 6.1. In the experiments presented

above, the algorithms are implemented under the con-

dition that all the elements of A are unknown and they

are all estimated. It results in a slow convergence of

the estimation procedure. If the algorithms estimate

only the 4 nonzero elements, the convergence must be

much faster (see also Comment 2.2).
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A more quick convergence is observed for the estimates

produced by the four-dimensional subspace

approximation.

6.2 Moderate dimension case

Consider the nonlinear transport problem [28]

dh

dt
= 2

dh

dx
− h2 + e4t+2x,

h(1, t) = e2t+1, 0 ≤ t ≤ 1,

h(x, 0) = ex, 0 ≤ x ≤ 1. (46)

Introduce xi = (i − 1)dx, i = 1, ..., n, x1 =
0, xn = 1. The numerical model is obtained using

the upwind difference formula,

dh
dt ≈ h(xi,tk+1)−h(xi,tk)

dt , dh
dx ≈ h(xi+1,tk)−h(xi,tk)

dx ,

Define the system state at the k := tk instant,

sk := s(tk) = [s1(k), ..., sn(k)]
T , si(k) = h(xi, tk).

Then one can write a discretized version of (46)

as

sk+1 = f(k, sk) + uk + wk, k = 0, 1, 2, ...

fi(k, sk) = si(k) + c(si+1(k)− si(k))− s2i (k)dt,

c := 2dt/dx, uk := e4tk+2xi . (47)

Suppose at each time instant tk we are given the

observations at the points zi(k) := xj(k) + vi, i =
1, ..., 25, j = 2i. The model and observation errors

{wk} are assumed to be random sequences of uncor-

related Gaussian variables with zero mean and vari-

ance σ2
w = 1 and σ2

v = 1 respectively. The following

parameters are used in modeling the transport prob-

lem
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n = 51, δx = 1/(n− 1), δt = 0.00833

To apply Algorithm 2.1, f(k, sk) is linearized

around the nominal state ŝ∗i = exi , i = 1, .., n and

the obtained linearized model has the transition ma-

trix denoted as Φ. From (47) one has

φi,i = 1− 2
δt

δx
− 2δtŝ∗

φi,i+1 = 2
δt

δx
, φn,n = e2δt (48)

It is seen that the matrix Φ has a diagonal struc-

ture with non-zero diagonal φi,i and up-diagonal ele-

ments φi,i+1. Such (large) sparse matrices often ap-

pear in scientific or engineering applications when

solving partial differential equations. Despite the fact

that Theorem 2.1 guarantees a convergence of esti-

mates, Eq. (4) says that the speed of convergence

depends on the number of non-zero elements of Φ.

Hence, if Φ is dense (i.e. not sparse) and high di-

mensional, convergence will be extremely slow : the

speed of convergence is linearly dependent on n/L
where n is the state dimension and L is the number of

samples. With the state dimension of order 106 it is

unimaginable to produce a sufficiently large number

of iterations L to yield a small n/L. Operations using

standard dense-matrix structures and algorithms are

slow and inefficient when applied to large sparse ma-

trices : From Eq. (4), the estimates of zero elements

remain significantly non-zero (see below) which con-

tribute to increase of estimation errors. That is why

any information about a particular structure of the es-

timated matrix (for example, the sparseness of the

matrix structure as in this experiment), should be ex-

ploited maximally to accelerate a convergence of esti-

mates and to save memory and CPU time.

To illustrate this fact, Algorithm 2.1 has been ap-

plied subject to 3 following assumptions :

A1. Nothing is known about the structure of Φ
(hence all elements of Φ will be estimated),

A2. It is known approximately that all elements

of Φ are zero except for φi,j such that |i− j| ≤ 1,

A3. We know exactly the structure of Φ.

Figure 9 shows squared Frobenius norm of esti-

mation error δΦ := Φ− Φe where Φe is the estimate.

The curves ”A1”, ”A2”, ”A3” correspond to the errors

resulting from applying Algorithm 2.1 subject to three

assumptions A1, A2, A3 respectively. It is seen that

for A2, and especially, for A3, one can reduce signif-

icantly the estimation errors and accelerates conver-

gence of the algorithm.

To see how the estimated matrices Φe are useful

for filtering problem, we have applied the EKF to es-

timate the system state using the observations. The
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different estimates for Φe are obtained as described

above subject to the assumptions A1-A3 and after

1000 iterations. The ”TEKF” (True EKF) is obtained

using the formulas (48) for computing the transition

matrix of the linearized system. Mention that the tran-

sition matrix is calculated at each assimilation instant

subject to the last filtered estimate for sk. Figure 10

shows the performances of different EKFs (in term of

root mean square error (rms) of prediction error for

the system state).
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7 Assimilation in high dimensional

ocean model MICOM

In this section the results in section 5 will be applied

to choose a class of the ECMs in the form of the Kro-

necker product. The decomposition algorithm will be

implemented after to estimate its unknown parame-

ters in the ECM.. The ”data” ECM is obtained from

an ensemble of PE samples (denoted as En(SSP ))
which is generated on the basis of the SSP method.

The efficiency of the PEF constructed on the basis

of En(SSP ) (denoted as PEF(SSP) ) will be com-

pared with the CHF (Cooper-Haines filter, [4]) and

PEF(SCH) (based on an ensemble of Schur PE sam-

ples [12]) for the experiment on sea the sea surface

height (SSH) data assimilation with the ocean model

MICOM.

7.1 Ocean model MICOM

The ocean model used here is the MICOM (Miami

Isopycnal Ocean Model) which is identical to that de-

scribed in [12]. The model configuration is a domain

situated in the North Atlantic from 300 N to 600 N and

800 W to 440 W; for the exact model domain and some

main features of the ocean current (mean, variability

of the SSH, velocity ...) produced by the model, see

[12]. The grid spacing is about 0.20 in longitude and

in latitude, requiring Nh = Nx×Ny = 25200 (Nx =

140, Ny = 180) horizontal grid points. The number of

layers in the model is Nz = 4. It is configured in a flat

bottom rectangular basin (1860km×2380km×5km)

driven by a periodic wind forcing. The model relies

on one prognostic equation for each component of the

horizontal velocity field and one equation for mass

conservation per layer. We note that the state of the

model is x := (h, u, v) where h = h(i, j, lr) is the

thickness of lrth layer, u = u(i, j, lr), v = v(i, j, lr)
are two velocity components. The layer stratification

is made in the isopycnal coordinates, i.e. the layer is

characterized by a constant potential density of water.

Thus, with three variables x := (h, u, v), the state of

the discretized model has the dimension n = 302400.

The model is integrated from the state of rest

during 20 years. Averaging the sequence of states

over two years 17 and 18 gives a so-called clima-

tology. During the period of two years 19 and 20,

every ten days, we calculate the SSH from the layer

thickness h which are considered as observations in

assimilation experiments (totally 72 observations are

available). To be closer to realistic situations with

the observations available only at along-track grid

points, assume that we are given the observations not

at all grid points at the surface, but only at the points

i = 1, 11, ..., 131, j = 1, 11, ..., 171 and they are

noise-free.

7.2 Filter and gain structure

As seen above, the system state x in the MICOM

is composed from three variables x := (h, u, v).
The filter used in assimilating SSH observations is

a reduced-order filter where the component h is esti-

mated from SSH and two velocity components (u, v)
are estimated from h using geostrophy hypothesis.

For estimating x, the following filter will be used

x̂(k) = F [x̂(k − 1)] + [I, EqT ]TKζ(k),

k = 0, 1, ... (49)

where x̂(k) is the filtered estimate for x(k), at

k := tk, tk+1 − tk = ∆t = 10 ds (days), F (.)
represents the integration of the MICOM nonlinear

model over 10 ds, K is the gain of the reduced-

order filter, ζ(k) is the innovation vector. Thus the

corrections for three variables (h, u, v) are dh =
Kζ(k), (du, dv) = Eq[dh] where Eq(.) is the oper-

ator, computing geostrophic velocity correction from

dh.

As SSH observation is a linear function with re-

spect to h, the observation operator H is of the form

H = [H1, ..., HNz
], (50)

where H1 = H2 = ... = HNz
= Hh, Hh :=

Ip×Nh
∈ Rp×Nh is the matrix whose elements are

equal to 1 at the horizontal points where SSH is ob-

served and 0 otherwise, p is the number of observa-

tions available at the surface.

Substituting M := Me into the gain

K = MHT [HMHT +R]−1 (51)

for R = σ2
rI , one can prove that the gain K is of

the form

K = Kv ⊗Kh,Kv = [k(1), ..., k(Nz)]
T ,

Kh = MhH
T
h [HhMhH

T
h +R]−1,

k(lr) =

∑Nz

l=1 clr,l
∑Nz

l,m=1 clm + σ2
r

, lr = 1, ..., Nz, (52)

substituting (52) into Kζ results in

Kζ = Kv ⊗Khζ (53)

Looking at Khζ one recognizes that Kh plays the

role of the interpolation operator which interpolates
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the innovation ζ, available at the observation points,

over all surface grid points.

Mention that the elements clm may be chosen a

priori, from different physical considerations ... For

example, in the Cooper-Haines filter (CHF, see [4],

[12]), clm participate indirectly in deducing the gain

coefficients from several physical constraints (conser-

vation of potential vorticity, no motion at the bottom

layer ...).

7.3 Assimilation results

7.3.1 Generating ensemble of PE samples

The gain K (51) will be completely defined if the

ECMs M and R are given. While R is more or less

well known, there is a great difficulty in specification

of M . To do that, assume M is of the form of Kro-

necker product (38)(39) and our task is to estimate

optimally the parameters clm and Lh by solving the

problem (43). This is possible if the data matrix Md

is available. In [15] the matrix Md is obtained using

the dominant Schur vector approach. Here the SSP

approach will be used to generate an ensemble of PE

samples En(SSP ) and the produced assimilation re-

sults will be compared to those obtained in [15]. The

PE samples are simulated as follows : let

δh(l)(i, j, lr) = δho(i, j, lr) + c∆h(l)(i, j, lr), c > 0,

be lth sample where ∆h(l)(i, j, lr) are random

Bernoulli i.i.d. variables assuming 2 values +/- 1 with

the equal probability 1/2 and c > 0 is small value. For

h(l)(i, j, lr) = h(i, j, lr) + δh(l)(i, j, lr) we compute

the velocity components u(l)(i, j, lr) and v(l)(i, j, lr)

by applying the geostrophy to h(l)(i, j, lr). The com-

ponent δho(i, j, lr) = h(i, j, lr; ko+1)−h(i, j, lr; ko)
where ko is a fix time instant. This component

is added to the perturbation in order to guarantee

δh(l)(i, j, lr) to be of ”well defined physical struc-

ture”.

At the moment t0, let the model be integrated

from the state x0 := xclim where xclim represents a

climatology (see section 6.1). Let xp := F (x0) be

the prediction resulting from forwarding the MICOM

from x0 over the interval (t0, t1). In the same way, for

l = 1, forwarding MICOM from x
(l)
0 = x0 + δx(l),

δx(l) := (δh(l)(i, j, lr), δu(l)(i, j, lr), δv(l)(i, j, lr))

over the interval (t0, t1) will produce x
(l)
p = F (x

(l)
0 ).

Here δu(l)(i, j, lr), δv(l)(i, j, lr) are also computed

from δh(l)(i, j, lr) be gepstrophy. One sees that

δx
(l)
p = (δh

(l)
p , δu

(l)
p , δv

(l)
p ) = x

(l)
p − xp

represents the PE sample, resulting from forward-

ing the state x := x0 and its perturbed state x′ :=
x+ δx(l) over 10 days, by the model,

δx
(l)
p = F (x′)− F (x), x′ := x+ δx(l)

By drawing an ensemble of samples

∆h(l)(i, j, lr), l = 1, 2, ..., L and repeating the

sample procedure, we obtain the ensemble of samples

EnL[δh
(l)
p ], l = 1, ..., L and it can be used to generate

the sample ECM

Md(L) =
1

L

L
∑

l=1

Md
l ,M

d
l := δh(l)p δh(l),Tp (54)

It is seen that each sample is generated by two

integrations of the model, one is started from the state

x, another - from x′.
In parallel, for the comparison purpose, one en-

semble of PE samples En(SCH) is also generated

using the sampling procedure in [12]. According to

[12], the PE samples from En(SCH) are simulated

in the direction of the most rapid growth of the predic-

tion error (the first dominant Schur vector or Krylov

vector [12]) associated with the linearized transition

matrix over time period (tk, tk+1) (as MICOM is a

nonlinear model).
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Figure 11. Evolution of estimates for the gain coefficients

at the first layer, computed from ĉkl on the basis of

En(SSP ) and En(SCH) during model integration

7.3.2 Estimation of gain elements

The vector of parameters θ (see Eq. (42)) is estimated

by applying the SPSA algorithm to solve the optimiza-

tion problem (43). For a comparison purpose, the cor-

relation length Lh is fixed, Lh = 25 and we estimate
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Table 1: Gain coefficients in different filters

En[.] k(1) k(2) k(3) k(4)

CHF 185.97 0 0 -184.97

PEF(SCH) 196.65 -70.49 -59.07 -66.09

PEF(SSP) 148.235 -28.161 -31.389 -87.686

Table 2: rms of prediction error for ssh, and u, v ve-

locity components

rms CHF PEF(SCH) PEF(SSP)

ssh(fcst) (cm) 6.455 4.091 3.704

u(fcst) (cm/s) 7.501 5.255 4.966

v(fcst) (cm/s) 7.618 5.599 5.331

only the elements of Mv, i.e. θ := [clm] since the

CHF (see below) is also applied subject to Lh = 25.

In Figure 11 we show the evolution of the gain

coefficient k(1) (for the first layer) as a function of

the number of samples which are obtained from two

ensembles En(SCH) and En(SSP ) (see (52)). In

(52) we put σ2
r = 0 which corresponds to the situation

when the observations are noise-free.

Table 1 displays the values of gain coeffi-

cients obtained from two ensembles En(SCH) and

En(SSP ). Here we show also the gain coefficients

of a so-called Cooper-Haines filter (CHF) [4] which

projects the PE of the surface height data by lift-

ing or lowering of water columns. We observe that

all k(lr), lr = 1, .., 4 in the three filters are of the

same sign. Compared to PEF(SSP), corrections in

PEF(SCH) are bigger at the three upper layers and

smaller at the bottom. In the CHF, no corrections are

assigned in the intermediate thickness layers (2 and

3). As σ2
r = 0,

∑4
l=1 k(l) = 1, the magnitude of cor-

rection in the 4th layer in the CHF is more important

compared to that in PEF(SCH) and PEF(SSP).

7.3.3 Performance of different filters

In Table 2 the performances of the three filters are dis-

played. The errors are averaged (spatially and tem-

porally) rms of prediction error for the SSH and two

velocity components u and v.

The results in Table 2 show that two filters

PEF(SCH) and PEF(SSP) largely overperform the

CHF, with a slightly better performance for the

PEF(SSP). We note that as the PEF(SCH) is con-

Table 3: Error reduction (rms prediction error)

chf−pef(sch)
chf

chf−pef(ssp)
chf

pef(sch)−pef(ssp)
pef(sch)

ssh 37 % 43 % 9 %

u 30 % 34 % 6 %

v 26 % 30 % 5 %
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Figure 12. Filtered errors for the u-velocity component

estimate, resulting from PEF and APEF (AF based on

PEF). Optimization is performed by SPSA. By tuning the

parameters in the filter gain, one can improve considerably

the performance of the PEF

structed on the basis of an ensemble of samples

tending to the first dominant Schur vector, its per-

formance must be theoretically better than that of

the PEF(SSP). The slightly better performance of

PEF(SSP) (compared to that of PEF(SCH)) may be

explained by the fact that the best theoretical perfor-

mance of PEF(SCH) can be obtained only if the model

is linear, stationary and the number of PE samples in

En(SCH) at each iteration must be large enough.

The ensemble size of En(SCH) in the present ex-

periment is too small compared with the dimension

of the MICOM model. It is therefore possible that in

such situations, a more efficient way to simulate the

PE samples is to perturb randomly all components of

the system state. Detailed study of this question is of

undoubted interest and is left for a future study.

Error reductions, produced by different filters, are

presented Table 3. For example, in average, the SSH

forecast errors in PEF(SCH) and PEF(SSP) are 37 %
and 43 % lower than that produced by the CHF.

For the improvement of performance of the AF

compared to its nonadaptive version, see [12]-[14].

As illustration, Figure 12 displays the filtered errors

for the u-velocity component estimates at the surface,

produced by the PEF(SCH) and APEF respectively.
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The APEF is an AF, which is an adaptive version of

the PEF. Here the tuning parameters are optimized by

the SPSA method. From the computational point of

view, the SPSA requires much less time integration

and memory storage compared with the traditional AE

method. At each assimilation instant, we have to make

only two integrations of the MICOM for approximat-

ing the gradient vector. From Figure 12 one sees that

the adaptation allows to reduce significantly the esti-

mation errors produced by the PEF. Mention that the

effect of adaptation is more important if the corre-

sponding nonadaptive version is less performant as it

happens, for example, with the CHF.

8 Conclusion

In this paper a simple algorithm for estimating the el-

ements of an unknown matrix as well as the way to

decompose the estimated matrix into a product of two

matrices, under the condition that only the matrix-

vector product is accessible, has been proposed. This

approach is beneficial for manipulating matrices of

high dimensions encountered frequently in solving fil-

tering and estimation engineering problems.

As it is seen, the proposed algorithm is simple to

implement, it requires two times matrix-vector prod-

uct, one from a nominal state, another from a per-

turbed state, to generate one sample-estimate for all

elements of the unknown matrix, independently on

its dimensions. The final estimate is obtained by an

averaging procedure. For high dimensional systems,

despite the fact that the estimated matrix cannot be

stored directly in element-wise form, it is possible to

manipulate this matrix by considering it as a collec-

tion of two ensembles of vectors, one consists of per-

turbed output vectors, another - from vectors of ran-

dom perturbations. For the other purposes (storage

compression, seeking directions of most rapid growth

of prediction error ...), based on this algorithm, the

SPSA procedure can be applied to solve different nu-

merical problems like SVD decomposition, Nearest

Kronecker Problem (NKP) of high dimension, param-

eter estimation ... in a simple and efficient way, com-

pared with the classical algorithms (see the algorithms

in [11] for solving NKP, for example).

Although the theoretical results on the conver-

gence of the algorithm are established, it would be

emphasized that for high dimensional systems, such

algorithm will be efficient only if the estimated ma-

trix has a sparse structure. Fortunately, such type of

structure takes a place in the majority of the numeri-

cal systems resulting from discretization of the system

of partial differential equations.

Numerical experiments in section 6 (low and

moderate systems) and section 7 (high dimensional

system) well illustrate the theoretical results and the

efficiency of the proposed algorithms.
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