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Abstract: This article introduces two identification possibilities with emphasis to the use of various support soft-
ware tools. Mechanical structure with strongly non-linear behaviour was used for the purpose of identification and
subsequent simulation and the motion control law design. Deductive identification, the first identification method,
is based on physico-analytical principle - corresponding mathematical model is derived using Lagrange equations
of the second type. The second identification method is inductive identification. It is an experimental method
based on the dependence measurement between independently generated input and the real system measured out-
put. This measurement was carried out on the physical model, which was designed by using SolidWorks 3D CAD
software and a SimMechanics library. Control laws are designed for the both identified models and the regulatory
processes’ results are compared.
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1 Introduction
Nowadays, a large amount of support software tools is
available. These tools facilitate our work in analysing,
modelling, simulating and designing a control law for
complex mechanical structures. By connecting these
resources a considerable simplification of the synthe-
sis can be achieved as well as clarity by using visual-
isation in 3D space directly in the regulation process,
or creating a physical model in Simulink directly from
CAD software (SolidWorks), without the need to de-
rive the equations of motion.

The system which is the object of our interest is
called ”Ball and beam”, and the description of the dy-
namic behaviour is derived in the most general way as
possible for use in the control of a real model. The
ball and beam are mass objects and are thus situated
in the 3D space - only the movement is limited to
planar. The system is located in the Earth’s gravita-
tional field and has two degrees of freedom. The mass
of the ball is chosen to have a significant impact on
the movement changes of the beam; the beam may be
unbalanced. The ball position is measured from the
axis of rotation of the beam (i.e. the axis of the shaft
of the driving motor). The Denavit-Hartenberg (DH)
notation/method of placement for coordinate systems
is used to determine the ball’s position in a selected
global coordinate system.

First, the whole system is sketched-out for the

purpose of compiling a transformation matrix to de-
termine the position of the ball in the global coor-
dinate system. Using this transformation, the equa-
tions of motion of the system are derived (deductive
identification) - they include the moments of iner-
tia, the centrifugal/centripetal and Coriolis general-
ized forces, linear friction, etc. Than, a 3D model
was constructed in the CAD design software Solid-
Works suite, including all kinematic constraints and
the mass distribution of the whole assembly. This
model is also useful for detecting the masses or ma-
trices/moments of inertia of complex objects, which
cannot be determined analytically. The subsequent
CAD model is then export into the SimMechanics for-
mat in Matlab/Simulink, which leads to a physical
model - including its kinematic link and the distribu-
tion of the mass of the whole assembly. This model
is used for experimental (inductive) identification and
subsequently tests the proposed control algorithm and
compares the outputs with a mathematical model.

2 Deductive identification

2.1 Transformation of coordinate systems
Fig. 1 shows the system drawn for the purpose of
determining the transformation matrix from the lo-
cal coordinate system (x2, y2, z2) to the global system
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Figure 1: Model with the selected coordinate system
placement

(X0, Y0, Z0). Rotation of the beam is only possible
around the global axis Z0; rolling the ball only in di-
rection of local axis z1 is ideal. The connection of the
beam with the frame in the place where the torque ac-
tions provide controlled tilting of the beam (i.e. the
first degree of freedom) is shown schematically. The
second degree of freedom is the movement of the ball
on the beam.

The resulting homogeneous transformation ma-
trix between the coordinate systems is:

0T2 =


− sinϕ(t) 0 cosϕ(t) −h sinϕ(t) + r(t) cosϕ(t)
cosϕ(t) 0 sinϕ(t) h cosϕ(t) + r(t) sinϕ(t)

0 1 0 0
0 0 0 1

 (1)

For determining the homogeneous coordinates of
the ball position relative to the origin of the global
coordinate system, the equation is:

0r = 0T2 · 2r⇒


X
Y
Z
1

 =


−
(
R+

b

2

)
sinϕ(t) + r(t) cosϕ(t)(

R+
b

2

)
cosϕ(t) + r(t) sinϕ(t)

0
1

 (2)

In order to determine the square-size of the abso-
lute speed vector (in the global coordinate system), it
is:

|v|2 =
(
ẋ2 + ẏ2

)
=

(
2R+ b

2

)2

ϕ̇2 + r2ϕ̇2 + ṙ2 − (2R+ b)ṙϕ̇ (3)

Note, the Ball and beam is only planar in this
model (processes take place in 2D).

2.2 Motion equations
To be able to use Lagrange equations of the second
kind, it is therefore necessary to determine the kinetic
and potential energy of the whole system.

The kinetic energy of the balls is comprised of its
translational and rotational motion:

Ekball
=

1

2
Mv2 +

1

2

2

5
MR2︷︸︸︷
Jkul

ṙ2

R2︷︸︸︷
ω2
kul︸ ︷︷ ︸

1

5
Mṙ2

=

=
1

2
M

[(
2R+ b

2

)2

ϕ̇2 + r2ϕ̇2 +
7

5
ṙ2 − (2R+ b)ṙϕ̇

]
(4)

The potential energy of the ball is:

Epball
=Mgy =Mg

[(
2R+ b

2

)
cosϕ+ r sinϕ

]
(5)

The Beam is cuboid in shape, with an optionally-
stored rotation axis as shown in Fig. 1. Its inertia ma-
trix has 3x3 moments of inertia, and is defined as:

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 =
∫∫∫
B

ρ(x, y, z)

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 (6)

in which ρ(x, y, z) is the density of the material body.
If a new coordinate system is selected such that all
the deviance moments will be zero; the torques to the
individual axes of the system will be equal to the po-
lar moments of the inertia matrix with respect to these
axes. A well established system already meets this
assumption, it is not necessary to introduce a new co-
ordinate system and the moment of inertia relative to
the axis of rotation (axis Z0) will be equal to the polar
moment Jzz .

Jbeam = Jzz =
1

12
m
[
b2 + 4

(
i2 − ij + j2

)]
(7)

The kinetic energy of the beam is:

Ekbeam
=

1

2
ϕ̇2Jbeam =

1

24
mϕ̇2

[
b2 + 4

(
i2 − ij + j2

)]
(8)

The relationship between the mass element and the
length element can be expressed as:

dm = ρ a b dr =
m

ab l
a b dr =

m

l
dr (9)

The potential energy of the beam element is:

dEpbeam
= dmg sinϕ r =

mg sinϕ

i+ j
r dr (10)

The potential energy of the whole beam is:

Epbeam
=
∫ j
−idEpbeam =

1

2
mg sinϕ(j − i) (11)

The total kinetic and potential energy of the system is
the sum of their partial energies:

Ek =
1

24
mϕ̇2

[
b2 + 4

(
i2 − ij + j2

)]
+

+
1

2
M

[(
2R+ b

2

)2

ϕ̇2 + r2ϕ̇2 +
7

5
ṙ2 − (2R+ b)ṙϕ̇

] (12)
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Ep =Mg

[(
2R+ b

2

)
cosϕ+ r sinϕ

]
+

1

2
mg sinϕ(j − i) (13)

The Lagrangian calculation is:

L =Ek − Ep =
1

24
mϕ̇2

[
b2 + 4

(
i2 − ij + j2

)]
+

+
1

2
M

[(
2R+ b

2

)2

ϕ̇2 + r2ϕ̇2 +
7

5
ṙ2 − (2R+ b)ṙϕ̇

]
−

−Mg

[(
2R+ b

2

)
cosϕ+ r sinϕ

]
− 1

2
mg sinϕ(j − i)

(14)

The linear friction - dependent upon the gener-
alised speed (i.e. sliding friction with a friction factor
k1 and rolling resistance with a friction factor k2) will
be added to the system. The equations of motion are
therefore:

d

dt

(
∂L

q̇i

)
− ∂L

qi
= Qi ⇒ d

dt

(
∂L

ṙ

)
− ∂L

r
= 0

d

dt

{
1

2
M

[
14

5
ṙ − (2R+ b) ϕ̇

]}
−Mrϕ̇2 +Mg sinϕ = 0

(15)

7

5
Mr̈− 2R+ b

2
Mϕ̈−Mrϕ̇2 + k1ṙ+Mg sinϕ = 0 (16)

d

dt

(
∂L

q̇i

)
− ∂L

qi
= Qi ⇒ d

dt

(
∂L

ϕ̇

)
− ∂L

ϕ
= 0

d

dt

{
1

2
M

[
(2R+ b)

2

2

ϕ̇+ 2r2ϕ̇− (2R+ b) ṙ

]
+

1

12
mϕ̇

[
b2+

+4
(
i2 − ij + j2

)]}
+Mg

[
r cosϕ−

(
2R+ b

2

)
sinϕ

]
+

+
1

2
mg cosϕ (j − i) = Q

(17)

M

(
2R+ b

2

)2

ϕ̈+Mr2ϕ̈+
1

12
m
[
b2 + 4

(
i2 − ij+ j2

)]
ϕ̈−

−M2R+ b

2
r̈+ 2Mrṙϕ̇+ k2ϕ̇+Mgr cosϕ−

−Mg

(
2R+ b

2

)
sinϕ+

1

2
mg(j− i) cosϕ+ 2Mrṙϕ̇ = Q

(18)

After modification, we can write:

r̈ =

60A

[
Q− k2ϕ̇+AMg sinϕ−Mgr cosϕ+

+
1

2
mg(i− j) cosϕ− 2Mrṙϕ̇

]
24MA2 + 84Mr2 + 7Bm

−

−
5

[(
12MA2 + 12Mr2 +Bm

)
·

·
(
k1ṙ −Mrϕ̇2 +Mg sinϕ

)]
24M2A2 + 84M2r2 + 7BMm

ϕ̈ =

6

14Q− 14k2ϕ̇− 10Ak1ṙ + 10AMrϕ̇2+
+4AMg sinϕ− 14Mgr cosϕ+
+7mg(i− j) cosϕ− 28Mrṙϕ̇


24MA2 + 84Mr2 + 7Bm

(19)

in which:

A =

(
2R+ b

2

)
B =

[
b2 + 4

(
i2 − ij + j2

)]
(20)

Figure 2: The non-linear mathematical model in
Simulink

The block diagram in Simulink that corresponds
to the derived non-linear mathematical model was cre-
ated from the Equation (19). The modified equations
of motion are part of the r” and fi” functional blocks,
and it is also possible to choose non-zero initial con-
ditions of the mathematical model.

For the state vector: [r v ϕ ω]T = [x1 x2 x3 x4]
T

and input signal: Q = u the state-space representation
will correspond to the shape of:


ẋ1

ẋ2

ẋ3

ẋ4

 =



x2

60A

 Q− k2x4 +AMg sinx3−
−Mgx1 cosx3 +

1

2
mg(i− j) cosx3−

−2Mx1x2x4


24MA2 + 84Mx21 + 7Bm

−

−
5

[ (
12MA2 + 12Mx21 +Bm

)
·

·
(
k1x2 −Mx1x

2
4 +Mg sinx3

)]
24M2A2 + 84M2x21 + 7BMm

x4

6

14Q− 14k2x4 − 10Ak1x2 + 10AMx1x
2
4+

+4AMg sinx3 − 14Mgx1 cosx3+
+7mg(i− j) cosx3 − 28Mx1x2x4


24MA2 + 84Mx21 + 7Bm



(21)

From these equations, it can be determined that
the system has only one unstable singular point and
its steady-state is only given by the ball position on
the lever/beam x1.

All remaining state variables are zero in singular
point.
The singular (stationary) point is:

[
x01 x02 x03 x04

]T
=

[
m(i− j)

2M
0 0 0

]T
(22)
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The Steady state is:

xs
1 =

us

Mg
+
m(i− j)

2M

us =Mgxs1 −
1

2
mg(i− j)

(23)

Linearisation in the working point xs1 (i.e. steady
state) can be obtained from the transmission of the lin-
ear model:

G(s) =
X1(s)

U(s)
=

b2s
2 + b0

s4 + a3s3 + a2s2 + a1s+ a0
(24)

in which:

b2 =
60A

24MA2 + 336Mxs1
2 + 7Bm

b0 =
−60g

24MA2 + 336Mxs1
2 + 7Bm

a3 =
60MA2k1 + 240Mk1x

s
1
2 + 84Mk2 + 5Bk1m

M
(
24MA2 + 336Mxs1

2 + 7Bm
)2

a2 =

(
12096AgM3 + 20160Mk1k2

)
xs1

2−
−10080AgmM2(i− j)xs1 + 864A3M3g+

+1440A2Mk1k2 + 420Bk1k2m+ 252ABgmM2

M
(
24MA2 + 336Mxs1

2 + 7Bm
)2

a1 =
−60Agk1

24MA2 + 336Mxs1
2 + 7Bm

a0 =

−60Mg2
[

24MA2 + 336Mxs1
2+

+7Bm− 168m(i− j)xs1

]
(
24MA2 + 336Mxs1

2 + 7Bm
)2

(25)

Linearisation is derived in the general position of
the working point, so it is possible to continuously
recalculate it. In case of configuration with Equa-
tion (26)

g = 9.81m · s−2; i = 0.3m; j = 0.29m;

b = 15mm; R = 15mm; k1 = 3 · 10−3;

k2 = 5 · 10−4; m = 1.24 kg; M = 0.125 kg;

(26)

the transfer function is in the following format for
this configuration and linearisation at equilibrium:

G(s) =
0.431s2 − 187.9

s4 + 0.0305s3 + 0.3193s2 − 0.0127s− 231.9
(27)

3 Inductive identification
This method of identification is based on the depen-
dence measurement between independently generated
input and the real system measured output. This re-
quires having a real system which is possible to mea-
sure on. Currently it can be replaced by the 3D

model quite well. This model has integrated links be-
tween the system elements, masses (materials), fric-
tions, gravity, force effects, disturbances, bumpers,
etc. For this purpose was used SolidWorks 3D CAD
software and MATLAB/Simulink - especially Sim-
scape library.

3D model of the system will be constructed firstly.
It will have linkages and materials of all the individ-
ual parts (i.e. mass and the associated moments of
inertia, center of gravity, etc.). This model will be ex-
ported as .xml format and then it will be imported into
MATLAB. It is appears as a normal Simulink model.
Physical quantities are introduced to this model - ac-
tuators are connected to signals in Simulink and they
utilizing the variables/waveforms of MATLAB.

3.1 SolidWorks

Figure 3: The complete assembly in SolidWorks

The considered system consists of three basic
parts: the base, the beam and the ball. All of these
parts are material. Ideally, a rigid base is connected to
the frame so its physical properties are not relevant to
the dynamic behaviour of the system.

3.2 The SimMechanics physical model

Figure 4: A Real-time visualisation using the SimMe-
chanics Second Generation suite
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Figure 5: A separate model in the SimMechanics en-
vironment

The SolidWorks 3D CAD model (Fig. 3) was ex-
ported in SimMechanics second generation xml for-
mat and then imported into the MATLAB/Simulink
environment as a Simulink scheme (Fig. 5). The link
were revised because - between SolidWorks and Sim-
Mechanics; some are unknown or illicit.

3.3 3D Animation

Figure 6: Visualisation using a 3D Animation Toolbox
in a web-browser

This model is also exported from the SolidWorks
suite - but in the wrl format , which is loaded into a
special block through the 3D Simulation toolbox. As
inputs to this block are used, outputs from the math-
ematical model are converted through the transforma-
tion matrix (HD notation) into the translational and
rotational motions of the individual parts of the as-
sembly. Visualisation has more visualising options,
e.g. a Web browser can also be used (Fig. 6).

3.4 Physical model identification
Torque impulse from system steady-state was chosen
as input signal for identification. Nelder-Mead sim-
plex method was chosen to minimize the quadratic
functional (fminsearch in MATLAB). It does not use
derivation for minimum finding. It is capable to find
only a local minimum so it is necessary to properly
choose the initial conditions in the case of multiple lo-
cal minimum function. Quadratic functional was cho-
sen as difference between the actual and the estimated
response to control effort, squared.

It is the only acceptable solution due to the in-
stability of the system. Despite the perfect confor-
mity compared with the real system response, experi-

mentally determined transfer function is usable in the
vicinity of linearisation point only - because of the
fast-changing dynamics of the controlled system. The
size of the input signal was also necessary to change
judiciously. Approximately every tenth determined
transfer function is applicable to control the system
around the equilibrium state, but to a limited distance
only. The transfer function shape was chosen the same
as the deductive identification.

One of the successful identification course is
shown in Fig. 7.

Figure 7: Physical model response vs identified model
response

The transfer function of inductive identification
(numerical calculation) for the parameters in Equa-
tion (28):

G(s) =
0.6575s2 − 277.1

s4 + 0.7536s3 − 2.254s2 − 11.27s− 364.6
(28)

4 Control and results comparison
4.1 Cumulative Numerical Error
The large numbers of trigonometric functions and
multiples of rounded state variables it contains leads
to the generation of cumulative numerical error. Thus,
despite placing the ball in equilibrium, the system will
set itself into motion - as is apparent from Fig. 8.

Figure 8: Cumulative Numerical Error

4.2 Simulink control circuit
The system is controlled by a linear regulator with
1DOF designed by the pole placement with a continu-
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Figure 9: Complete Simulink scheme

ous linearisation in case of Equation (27) use - deduc-
tive identification. The controller parameters - result-
ing from the transfer function, are derived generally
so that they can be updating continuously. Continu-
ous linearisation is not possible for Equation (28) -
inductive identification, because the transfer function
is derived for equilibrium impulse response only. The
final regulator then, has the form:

Q(s) =
U(s)

E(s)
=

q(s)

p(s)
=

q4s
4 + q3s

3 + q2s
2 + q1s+ q0

s (p3s3 + p2s2 + p1s+ p0)
(29)

The step-changes in the reference value will be
followed by step-changes in the control deviation;
then there will be a problem with the physical real-
isation of a step changes in the torque - and thus to
the rapidly-changing tilt of the beam. In combination
with the centrifugal forces and inertia of the system,
the process will oscillate; and sometimes will be an
unmanageable state. In case of Equation (28) use,
the step-changes are big problem for control process
and often destabilizes the control system. Therefore, a
filter that prevents such step-changes was introduced
into the system.

Complete Simulink scheme with SimMechanics
and 3D Animation is shown in Fig. 9.
Fig. 10 shows configuration, where the ball initial po-
sition (x0) is 6 centimetres from equilibrium and ref-
erence value (w) is set to equilibrium. Regulatory
process course based on the inductive identification
model (black curve) is more oscillating and slower
stabilized than the course of deductive identification
model (red curve).

Figure 10: Deductive vs inductive identification -w =
0 cm, x0 = −6 cm

Figure 11: Deductive vs inductive identification -w =
5 cm, x0 = 0 cm
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Figure 12: Control processes for inductive and deductive identifications methods

Fig. 11 shows another configuration for the ball
initial position in equilibrium and reference value is
set to 5 centimetres from equilibrium. Control process
is similar to the previous simulation - Fig. 10.

Transfer function identified by inductive identifi-
cation will never be as accurate as well deductively
derived transfer function, because it does not contain
the complete dynamics of the system and when any
system parameter is changed, system should be re-
identified.

As shown in Fig. 12, the control processes of both
identification methods are nearly identical, but the in-
ductive identification curve has the same shortages as
in Fig. 10 and Fig. 11. The controller is designed to
compensate for disturbance and the reference value is
in the shape of a step-change, so a lag fault will appear
in the transition part of the process at the ramp-shaped
reference value. The trend of the reference value how-
ever, replicates very well.

5 Conclusion
This article contains a complete control design solu-
tion of a system known as a Ball and beam.

The first substantial part of the article relate
to the derivation of systems motion equations from
their energy balance and subsequent transfer function
derivation; deductive identification. The model was -
through to the definition of transmission, derived in a
quite general manner and corresponds to motion equa-

tions linearised at the operating point. Therefore, it is
possible to carry out a continuous linearisation effi-
ciently - and with low computational effort. This de-
scription however, applies only in the area surround-
ing the working point. When this point changes, lin-
earisation is needed again.

The second part of the article is inductive iden-
tification. It requires the use of software tools be-
cause the identification method is based on a numer-
ical calculation. The transfer function corresponding
this type of identification is derived from the system
impulse response and because of the great system in-
stability is valid in the vicinity of equilibrium only -
the identification was done here. From this purpose it
does not contain the complete dynamics of the system
and when any system parameter is changed, system
should be re-identified.

Linking with 3D CAD software and Mat-
lab/Simulink, while using toolboxes for physical mod-
elling (SimMechanics) and 3D visualisation outputs
(3D Animation) is a very visual and effective control
tool for the presentation of the results. In real time,
it is possible to observe dynamic processes occurring
in the system and for instance - for to slow then down
or to pause them for the purpose of detailed motion
analysis or the exploration of the energy interactions
between system components.

The third part is control the system. The control
methods designed a described herein are tested on a
unbalanced system with variable reference course and
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disorders. To achieve the desired quality of regula-
tion (particularly for inductively identified model), it
is necessary to eliminate a step-change in the control
deviation and to stabilize the course of the regulatory
process.

As shown Fig. 10, Fig. 11 and Fig. 12, control
process quality is more valuable in case of deductive
identification - it has not a high overshoot and it has
more stable courses.
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