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Abstract: - Query By Singing/Humming is a melody recognition system for music retrieval by using a singing 
or humming query. A segment-based melody matching approach is proposed to solve the problems of puff 
noise and inconsistent tempo, and to lower the computational complexity of traditional Linear Scaling method 
in Query By Singing/Humming system. The query and midi in database are separated into several segments by 
four methods we proposed, namely, “Cross n Semitones”, “Moving Average”, “Composite Moving Average”, 
and “Combination of Cross n Semitones and Composite Moving Average”. Linear scaling is then applied in 
each corresponding segment. The top 10 recognition rate of our method can reach 70.6%. In addition, from our 
examples, it shows that segment-based method can solve the problems of puff noise and inconsistent tempo 
better than traditional global Linear Scaling. The segment-based methods also reduce the computation 
complexity by jumping to the possible segment boundary and using the segment ratio as scaling ratio, instead 
of comparing frame by frame from the very beginning and trying different scaling ratio in traditional Linear 
Scaling method. 
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1 Introduction 
Due to the vigorous development of the Internet, a 
large amount of information flow on the web, which 
makes information more easily accessed. However, 
in this flood of information, how to find the 
information needed becomes a major issue and 
challenge. Keyword search engine is created, for 
quickly finding the information we want. Similar 
situation happens on the large amount of music on 
the Internet. When we think of a piece of music but 
do not know the song title or artist, how can we find 
it? Query By Singing/Humming, (QBSH) [1-10] for 
musical retrieval is the technology developed for 
this demand. 

QBSH is a melody recognition system by using a 
singing or humming query. The system will record 
the singing/humming query, extract the feature  (e.g. 
pitch) from the voice, and compare the feature of 
singing/ humming query with the feature of the 
songs stored in database, and report the most similar 
song to the user. 

Some systems combine the melody features with 
lyrics, [11-13], while the other focus on melody 
features only. For melody features, the mostly used 
feature for recognition is frame-level pitch, as we 

adopted in our system, or transcribed note [14-19], 
or both [20]. Pitch information is generally gotten 
from pitch tracking algorithm [6][21-22]. To 
increase the accuracy, detecting and filtering the 
effects of noise, vibrato, bending and inaccurate 
tuning by users [23] is helpful. At last, the song with 
the smallest feature distance [24] or the best score 
[25] with the query could mean that it is the most 
similar song and is the most possible answer to the 
query. 

However, QBSH for music retrieval encounter 
problems in the reality test. The very majority users 
of this system are amateurs, or even without 
musicality at all.  Their humming or singing 
generally has several flaws which make the music 
recognition or matching very difficult. For example, 
the pitch often drifts, or even out of tune. 
Sometimes the users change their singing key 
locally or globally. Their tempo is unstable, or they 
simply not follow the beat. In addition, some kind of 
drift is a natural phenomenon or is an expression for 
singing, like vibrato, that we cannot avoid as long as 
it is a human singing.  

To conquer the problem, there are currently 
several techniques of QBSH, for example, hidden 
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Markov model (HMM) [26-27], locality sensitive 
hashing [28], etc. As the retrieval accuracy becomes 
higher, the retrieval speed becomes slower because 
the methods have become more sophisticated and 
computationally expensive. Some researches start to 
turn their attention to increase recognition speed by 
using tree-based method [29], fast Fourier 
transforms of note sequences [30], or GPUs [31].  

Among the techniques of QBSH, the most 
common ones are Linear Scaling (LS), Dynamic 
Time Warping (DTW) [32-39] or their combinations 
[3][5][40]. LS stretches or compresses the query 
pitch contour globally and compares with the target 
pitch contour. However, DTW searches for the path 
of alignment and allows a non-linear mapping of the 
query to the target by minimizing their pitch 
distance to get the best mapping path. If we allow 
the paths to [i, j] are from [i-2, j-1], [i-1, j-1], or [i-
1, j-2], the minimum distance from [0, 0] to [i, j] is 

Dሾi, jሿ ൌ dሾi, jሿ ൅ min ቐ
ሾ݅ܦ െ 2, ݆ െ 1ሿ
ሾ݅ܦ െ 1, ݆ െ 1ሿ
ሾ݅ܦ െ 1, ݆ െ 2ሿ

.            (1) 

d[i,j] is the distance between sample i of query and 
sample j of target. DTW determine the path with the 
minimum D[M,N] as the best path. M and N are the 
length of query and target. Although the recognition 
rate of DTW is higher, the computational 
complexity is also higher and the recognition time is 
longer. LS, which simply stretches or compresses 
the query pitch contour globally and matches it 
frame-by-frame (one pitch point per frame) with the 
target pitch contour, is simpler. It uses more 
intuitive linear stretch. Its computational complexity 
is lower and recognition speed is faster.  

But when LS encounter the situation of short 
time puffs, which usually appears at the beginning 
of humming or singing, or unstable tempo, which is 
also very common especially for amateurs, the 
recognition rate will decline because of its simple 
global scaling. Besides, we do not know the singing 
or humming starting position in songs and we do not 
know the exact humming tempo variation, thus we 
generally need to compare from the beginning frame 
by frame with different scaling ratio, which 
increases computational load. We try to solve the 
puff and unstable tempo problems and speed the 
recognition time by introducing segment-based LS 
approaches. Our approach is to separate query and 
midi in database into several segments, and then 
apply LS on each corresponding segment. Points 
with abrupt pitch change will be considered as 
possible segment boundaries.  

There are four steps in the segment-based 
method we proposed. First, for both the query 
singing/humming and the midis in database, we 

select the points with abrupt change of pitch as the 
segment boundary candidates. Second, from the 
segment boundary candidates in query 
singing/humming, four segment boundaries, 
including the first, the last, the highest, and the 
second highest boundaries, are considered as query 
segment boundaries. Third, by calculating the 
matching distance of query segment boundaries and 
the segment boundary candidates in midi database 
and choosing the shortest distance pair, the most 
possible segment matching pairs are determined. 
Finally, we stretch each segment according to the 
matching pair by linear scaling. After compare all 
the songs in database, the song with the shortest 
distance is the answer to the query singing/humming. 

In the first step, selecting segment boundary 
candidates, we propose four approaches. We call 
them “Cross n Semitones”, “Moving Average”, 
“Composite Moving Average”, and “Combination 
of Cross n Semitones and Composite Moving 
Average”. “Cross n Semitones” selects the points 
with pitch variation over n semitones within frames 
as possible segment boundary candidates. Then, 
considering moving out the interference of the drifts 
in the pitch of query singing/humming, the 
technique of Moving Average” is applied to smooth 
out short-term fluctuations, and highlight the long-
term trend. Further, we found out that moving 
average curves with different window size overlap 
at area with large dynamic pitch variation. Therefore, 
this overlapped point can be used as a possible 
segment boundary candidate and we call it as 
“Composite Moving Average” method. The last 
method is a combination of Cross n Semitones and 
Composite Moving Average. If a point is selected 
by both “Cross n Semitones” and “Composite 
Moving Average”, then it is selected as a segment 
boundary candidate. We will introduce the four 
method of how to select segment boundary 
candidates in details in Section 3.  

We try to use the segment-based method to 
eliminate the recognition inaccuracy caused by puff 
noise and tempo inconsistency.  Besides, jumping to 
the possible segment boundary directly and using 
the segment ratio as scaling ratio, instead of 
comparing frame by frame from beginning with 
different scaling ratio in traditional LS, can also 
reduce computational load.  

This paper is organized as follows. The next 
section will introduce the background of LS, which 
we used in each corresponding segment pair. Then, 
the segment-based method we propose is presented 
in the third section. Experimental results will be 
shown in the following section. Finally, conclusions 
and future works are discussed. 
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2 Linear Scaling 
We propose segment-based approach in this paper. 
Segment boundaries are predicted and the query and 
songs in database are split into segments for 
matching. Inside each matching segment pair, LS is 
used. To understand it more clearly, the traditional 
LS is introduced in this section. 

LS [6][7] is also called uniform scaling or global 
scaling. It is a frame-based method for melody 
recognition. Compared with other methods, it is 
very straightforward. Typical LS working on frame-
level pitch uses interpolation to uniformly expand or 
compress the pitch vector of query 
singing/humming, and compare the scaled pitch 
curve with the midis in database. The scaling ratio, 
which is the length ratio between the original and 
scaled length of pitch vector, normally is 
constrained to a range, for example, 0.5 to 2.0. 
Different scaling ratio in the range with a certain 
amount of step increase, e.g. 0.1, are tried and 
compared. That makes the scaling ratio change from 
0.5, 0.6, 0.7,... to 2.0. Totally 16 different scaling 
ratio will be used in this case. Distances to all songs 
in database with different scaling ratio are 
calculated. The distance measure can be simply 
chosen as L1 or L2 norm. Generally, key 
transposition, which shifts the pitch to the same 
median in L1 norm or mean in L2 norm as that of 
midi song in database, are used, because key 
shifting is common and need to be taken into 
consideration. The midi in database with the 
minimum distance is the most likely song to the 
query singing/humming. Therefore, the range and 
the step increase of scaling ratio will have great 
impact on the recognition rate and computational 
load. Normally, the big range and the smaller step 
increase will increase the recognition accuracy, and 
also the computational load.  

The LS method is very straight and simple. But 
when the tempo of singing/humming is unstable, the 
recognition rate will decline because of the global 
scaling. 
 
 

3 Segment-Based Approaches 
Our approach is to separate the humming/singing 
into several segments, and find out the 
corresponding matching segments in midis in 
database by applying LS on each segment and 
calculating the distance. This segment-based 
approach will help us solve the problems of unstable 
tempo and puff noise which the traditional LS fails 
to solve. Therefore, how to determine the segments 
is the key point of our method. 

Before discussing our methods of determining 
segments, we will make an overview of our 
segment-based method of QBSH. In the segment-
based method we proposed, firstly, for query 
singing/humming and songs in database, we select 
the points with abrupt change of pitch as the 
segment boundary candidates. Four approaches will 
be discussed in detail in the following subsections. 
The same four methods are applied to midi database 
to determine the candidate segment boundaries. 
Secondly, from the segment boundary candidates in 
query singing/humming, four segment boundaries, 
the first, the last, the highest, and the second highest 
boundaries, are chosen and arranged according to 
their time sequence. Between the segment 
boundaries, there are, therefore, three segments. 
Considering the situation that the pitch curves of 
some songs are quite smooth, which makes the 
points with abrupt change of pitch may not be many, 
we only use three segments. In addition, though the 
distance calculation seems become more accurate if 
we use more segments, the calculation of matching 
boundary pairs also becomes more complex. Hence, 
in our experiments, only four segment boundaries 
are used. For convenience, when the pitch trend in 
candidate boundary is upward, we label the segment 
boundary as positive. On the other hand, if the pitch 
trend is downward, we label it as negative. 
Therefore, when the pitch is continuously upward in 
segment boundary, the boundary is marked as a 
“positive” boundary from the accumulative result, 
and when the pitch is continuously downward in 
segment boundary, the boundary is marked as a 
“negative” boundary from the accumulative result. 
We label the four segment boundaries in query and 
all the candidate segment boundaries in midi 
database in this way. When we try to find the 
corresponding matching segment boundaries in song 
database, it is convenient that we only search from 
the segment boundary candidates in song database 
with the same rising (positive) or decreasing 
(negative) pitch trend. To reduce the computational 
load, the labeling of segment boundary candidates in 
midi or song database can be done in advance 
instead of doing it at query. Thirdly, we need to find 
out the four corresponding matching segment 
boundaries pairs in all of the midis. Because the 
query singing/humming does not necessarily 
correspond to the very beginning of the midi in 
database, we need to search from the beginning to 
the end. However, since the query normally starts 
from a sentence of a song lyric, we can constrain the 
search region, for example, the first few numbers of 
frames from the beginning of a sentence. The 
corresponding matching segment boundary in midi 
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3.4 Combination of Cross n Semitones and 
Composite Moving Average 
This method is a combination of “Cross n Semitones” 
and “Composite Moving Average”. If a point is 
selected by both “Cross n Semitones” and 
“Composite Moving Average”, then it is selected as 
a segment boundary candidate. 
 
 

4 Experiments 
4.1 Database 
Two databases are used in our experiment. One is 
2009 MIR-QbSH corpus including 35 singers, 
totally 829 songs. The recording is in wave format 
with 8 kHz sampling rate, 8 bits per sample, and 
mono channel. Pitch files are also included. The 
frame size for pitch is 256 samples. The other 
database is called Mono-Midi including 342 midi 
songs, which is the corpus we collected from 
Internet. The relationship of MIDI note p and pitch 
frequency f is   









HZ

f
p

440
log1269 2

.                          (4) 

 
 
4.2 Experimental results 
In this section, we will observe the experimental 
results of our proposed methods and discuss their 
performance. The recognition results of using 
different parameters or threshold will also be shown 
and compared. 
First, we observe the impact of choosing different n 
value in “Cross n Semitones”. Table 1 Shows the 
comparison of the top 1 and top 10 recognition rates 
of “Cross n Semitones” with n equals 1 to 5 when m 
equals 5. That is, pitch variation is over n semitones 
within 5 frames. We can see when n equals 3, the 
recognition rate are best both for top1 and top 10 
results. When n is big, the option of possible 
segment boundaries becomes less and makes the 
recognition rate decline. 
In evaluating MA, we tried 10MA, 20MA, and 
30MA with different pitch trend threshold t. If the 
absolute value of pitch trend (upward or downward) 
exceeds a threshold t we set, we mark it as a 
possible segment boundary candidates. The top1 
and top 10 recognition rates with threshold t equals 
3, 5, 10, and 15, are shown in Table 2. Basically, the 
recognition rate of 20MA is better in most situations 
of t. Using 30MA makes the curve too smooth to 
keep the original characteristics, which causes the 
recognition rate decline. The performance of the 
threshold 10 is the best. Raising the threshold to 15 
makes the recognition rate decline, because the 

Table 1. Comparison of the top 1 and top 10 
recognition rates of “Cross n Semitones” with n 

equals 1 to 5 when m equals 5.  
n 1 2 3 4 5 
Top 1 28.5% 47.5% 52.2% 26.8% 6.6% 
Top 10 39.9% 57.4% 60.3% 33.2% 13.4% 
 
Table 2. Comparison of the top 1 and top 10 

recognition rates of 10MA, 20MA, and 30MA with 
pitch trend threshold t equals 3, 5, 10, and 15.  

t  10MA 20MA 30MA 
3 Top 1 34.1% 38.1% 35.8% 

Top 10 43.5% 48.7% 47.5% 
5 Top 1 43.3% 46.4% 41.5% 

Top 10 54.8% 58.9% 52.8% 
10 Top 1 56.0% 55.4% 44.3% 

Top 10 70.1% 70.1% 55.0% 
15 Top 1 38.4% 54.2% 43.7% 

Top 10 52.6% 69.6% 54.9% 
 

Table 3. Comparison of the top 1 and top 10 
recognition rate of 15MA(3), 15MA(5), 20MA(3), 

and 20MA(5) with pitch trend threshold t equals 10, 
20, and 35.  

t  15MA(3) 15MA(5) 20MA(3) 20MA(5) 
10 Top 1 48.0% 48.3% 51.7% 50.4% 

Top 10 64.3% 63.4% 67.7% 66.5% 
20 Top 1 49.8% 51.1% 50.4% 51.7% 

Top 10 68.3% 67.2% 69.7% 69% 
35 Top 1 51.7% 51.7% 52% 52.4% 

Top 10 68.3% 68.2% 70.4% 70.6% 

 
Table 4. Comparison of the top 1 and top 10 
recognition rate of “Cross n Semitones with m=5” 
and “20MA(5) with t=35” with different n.  

n 1 2 3 
Top 1 47.9% 49.6% 56.2% 
Top 10 61.4% 62.5% 67.8% 

 
Table 5. Comparion of the Recognition Rate of Our 

Four Segment-Based Approaches. 
 A B C D 
Top 1 52.2% 55.4% 52.4% 56.2% 
Top 10 60.3% 70.1% 70.6% 67.8% 

 
options of possible segment boundaries is not 
enough.  

Then, we compared the top1 and top 10 
recognition rate of “Composite Moving Average” - 
15MA(3), 15MA(5), 20MA(3), and 20MA(5) with 
pitch trend threshold t equals 10, 20, and 35 as in 
Table 3. The best result is 20MA(5) with pitch trend 
threshold 35.  

At last, we combined “Cross n Semitones with 
m=5” and “20MA(5) with t=35” and compared the 
recognition rate of different n. Table 4 shows the 
comparison of the top 1 and top 10 recognition rates 
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by considering more features in addition to pitch 
variation. 
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