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Abstract: In this paper an adaptive filter (AF) based on innovation approach is described and its efficiency is

compared with other estimation methods. Such AF is developed in the context of data assimilation problem in

high-dimensional dynamical systems. The emphasis is put on the importance of innovation approach which is a

basis for construction of the AF as well as the choice of a set of tuning parameters in the filter gain. It will be shown

that the innovation representation for the initial dynamical system plays an essential role in providing stability of

assimilation algorithms for stable and unstable system dynamics and allows to apply the economical and efficient

optimization method known as stochastic simultaneous perturbation (SSP) algorithm. Numerical experiments will

be given to illustrate the performance of the AF.
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1 Introduction

Data assimilation [5] is a procedure which is aimed

at estimating a best possible physical (ocean, atmo-

spheric ...) state by combining a model forecast with

observations available. The research on data assimi-

lation methods has been increasing quickly during the

last decade. This happens due to the exponential in-

crease of computer power and memory. This progress

allows to develop more and more sophisticated nu-

merical models to simulate real physical processes.

The latter, in its turn, results in gigantic growth of di-

mension of the numerical model state. At the present

it is still out of question of possible application of op-

timal estimation methods to the design of optimal data

assimilation schemes.

Mathematically, the data assimilation problem

can be stated as the following : Let

xk+1 = Φxk + wk, (1)

and we are given the observations

zk+1 = Hxk+1 + vk+1, k = 0, 1, 2, ... (2)

here xk ∈ Rn is the system state at k instant, Φ ∈
Rn×n, zk ∈ Rp is observation vector, Hk ∈ Rp×n,

wk, vk are the model and observation uncorrelated

noise sequences which are mutually uncorrelated and

uncorrelated with x0.

It is well known that the optimal in mean square

error (MSE) estimate x̂k based on the set of obser-

vations Z[1, k] := {z1, ..., zk} is a filtered estimate

and for the linear dynamical system (1)(2), its compu-

tation can be efficiently performed using the Kalman

filter (KF) [11] which is a sequential procedure.

For the today ocean (or meteorological) numeri-

cal models, the system state xk has the dimension ly-

ing in the range [106 : 107] and there is uncertainty

in statistics of the initial state, model and observa-

tional noises. Due to very large n, it is impossible

to apply traditional optimal procedures to estimate the

system state and for that reason there exist different

approximation algorithms for solving this estimation

problem. At the present and in the near future, the

computer capacity, in both computational power and

memory, is largely insufficient to implement the KF in

real time to produce the filtered estimate and to make

corresponding forecasts.

In this paper, the emphasis is put on the underly-

ing principles in the construction of an AF, especially

on the innovation approach as a basis for representing

the initial dynamical system in a new innovation form

for the input-output system (section 2). This innova-

tion representation allows to consider the optimal AF

as such which minimizes the prediction error (PE) for

the system output and the choice of control variables

from some pertinent parameters in the filter gain. To
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see more the advantages of the AF, the classical vari-

ational method (VM) [16] will be briefly presented

(section 3). A simple method based on stochastic si-

multaneous perturbation (SSP) for estimating a high-

dimensional matrix and decomposing it into the prod-

uct of two matrices in the class of matrices of the given

rank, is presented in section 4 and section 5 (for nu-

merical experiment). The high performance of the AF

will be compared with different assimilation methods

like the extended KF (EKF) [14] in the experiment

with the Lorenz system (section 5). The assimilation

experiment with the ocean model MICOM using sea

surface height (SSH) observations to estimate the cir-

culation in the North Atlantic configuration, is pre-

sented in section 6. Here the AF and three other se-

quential filters will be implemented to show the effi-

ciency of the AF. The conclusions are given in Section

6.

2 Adaptive filtering (AF)

2.1 Innovation approach

The main underlying principle in the construction of

the AF concerns the choice of the innovation repre-

sentation for the original input-output system (1)(2)

to formulate the optimization problem. It is well

known that under standard conditions, the optimal in

MSE estimate x̂k can be obtained by the KF. As the

innovation process for the system output in the KF

forms a white sequence, Kailath [12] has developed

an innovation approach, in an elegant way, to de-

rive the optimal filter for more general linear systems

like non-stationary, filtering problems with Markovian

processes for the model and observation errors ... The

innovation approach to linear least-squares approxi-

mation problems is first to ”whiten” the output data

and then to treat the resulting simpler white-noise ob-

servation problem. Consider the observation (output)

sequence zk. The innovation process, associated with

zk, is written as ζk = zk − E[zk|z1k] where E[zk|z1k]
is conditional expectation, and under standard condi-

tions (gaussianness, uncorrelated noise sequences ...),

we have E[zk|z1k−1] = Hx̂k/k−1 hence

ζk = zk −Hx̂k/k−1, x̂k/k−1 = Φx̂k−1, (3)

where x̂k/k−1 is an optimal in MSE one-step ahead

prediction for xk given z1k−1. Using ζk instead of zk,

under standard conditions, one can write out the for-

mula for the estimate x̂k and the KF

x̂k = Φx̂k−1 +Kkζk,

Kk = MkH
T [HMkH

T +Rk]
−1 (4)

where M(k) is the ECM for the prediction x̂k/k−1.

This matrix can be found recursively as a solution to

the Algebraic Riccati equation (ARE) [11].

Due to the very expensive computational burden

in time stepping the ECM as well as insufficient mem-

ory storage, the KF is impractical for solving data as-

similation problems in very high-dimensional setting.

The idea of the AF is based on the fact that when

the filter is optimal, the innovation ζk has a minimum

variance. By assuming that the filter belongs to the

class of parameterized gains, i.e.

Kk = Kk(θ), θ ∈ Θ, (5)

where θ is a vector of pertinent parameters (control

vector), the optimal AF can be considered as that

which minimizes the prediction error for the system

output

J(θ) = E[Ψ(θ)] → minθ∈Θ,Ψ(ζk) = ||ζk||2,
||ζk||2 :=< ζk, ζk > . (6)

In [10], the different classes of parameterized filters

are found which belong to the class of stable reduced-

order filters (ROF) [1], [10].

As an example for one class of ROFs, consider

Kk = PrKe,k (7)

where Ke,k : Rp → Rne represents the gain, mapping

the innovation vector from the observational space to

the reduced space Rne of dimension ne ≤ n; Pr is

mapping the reduced space Rne to the full space Rn.

The choice of a reduced space is of primary impor-

tance since from it depends the main characteristics of

the filter known as stability. As proved in [10], under

detectability condition, stability of the filter is ensured

by forming the columns of Pr from unstable and sta-

ble eigenvectors (or singular vectors, Schur vectors)

of the fundamental matrix Φ and one can choose

Ke = HT
e [HeH

T
e (k) + Iα]−1, He := HPr, α > 0.

(8)

One class of parameterized filters is (section 5.2.2,

[10])

K(θ) = PrΛKe(θ),

Λ = diag[θ1, ..., θne
],

1− 1/|φi| < ǫ1(i) ≤ θi ≤ ǫ2(i) < 1 + 1/|φi|. (9)

if φi is an unstable eigenvalue of Φ. For the neutral

φi, we have

0 < ǫ1(i) ≤ θi ≤ ǫ2(i) < 2, (10)
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2.2 Implementation of AF

2.2.1 The choice of criteria (6)

The choice of (6) is important in many aspects in order

to obtain a simple and efficient data assimilation algo-

rithm. The idea lying behind (6) is to select the vector

θ of some pertinent parameters as control variables for

minimizing the mean of the cost function Ψ(ζk).
The solution to the problem (6) can be found iter-

atively using a stochastic optimization (SA) algorithm

θk+1 = θk − ak∇θΨ(ζk+1) (11)

where {ak} is a sequence of positive scalars satis-

fying some conditions to guarantee a convergence of

the estimation procedure. The standard conditions are

ak > 0, ak → 0,
∞
∑

k=1

ak = ∞,
∞
∑

k=1

a2k < ∞ (12)

The algorithm (11) is very simple : it requires, at the

kth assimilation instant, to compute only the gradi-

ent of the sample cost function Ψ(ζk). This gradient

can be computed using the adjoint equation (AE) ap-

proach

[δΨ(ζk+1)]θk = − < HΦPrδΛKeζk, ζk+1 >=

< δΛKeζk, ζ
′

k+1 >, ζ ′k+1 := −P T
r ΦTHT ζk+1 (13)

Thus, minimization of (6) by gradient-based SA algo-

rithm requires only one integration of the direct model

Φ and one backward integration of the AE ΦT . For

the structure of the gain (9), the objective function Ψ
is quadratic with respect to (wrt) θ hence one can find

easily the optimal parameters.

A less computational burden can be achieved

by measuring the sample objective function (but not

based on a gradient formula): one approximates the

gradient using the values of the cost function (on the

basis of finite difference scheme (FDSA)). Tradition-

ally, the ith component of the gradient can be approx-

imated by

∇θiΨ(θk) = gi,

gi = [Ψ(θk + ckei)−Ψ(θk − ckei)]/(2ck) (14)

where ei is the unit vector with 1 in the ith component,

0 otherwise. It is seen that FDSA algorithms do not

require the formula for the gradient. However, for the

high-dimensional systems, this algorithm is inapplica-

ble due to component-wise derivative approximation:

for approximation of each partial derivative, we need

to make two integrations of the direct model.

Let us look at the class of simultaneous perturba-

tion SA (SPSA) [15], [9]. The algorithm SPSA is of

the same structure as that of FDSA (14), with the dif-

ference residing in the way to perturb stochastically

and simultaneously all the components of θ. Con-

cretely, let ∆k = (∆k,1, ...,∆k,n)
T be a random vec-

tor, ∆k,i, i = 1, ..., n are Bernoulli independent iden-

tically distributed (iid). The gradient of the sample

objective function is estimated as

∇θΨ(θk) = g = (g1, ..., gn)
T ,

g = [Ψ(θk + ck∆k)−Ψ(θk − ck∆k]∆
−1
k /(2ck),

∆k = (∆k,1, ...,∆k,n)
T ,

∆−1
k := (1/∆k,1, ..., 1/∆k,n)

T . (15)

One sees here that all the directions in the param-

eter space are perturbed at the same time (the numer-

ator is identical in all n components). Thus, SPSA

uses only two (or three) times the direct integration of

the model, independently on the dimension of θ which

makes it possible to apply to high dimensional opti-

mization problems. No development of the AE code

is needed. Generally, SPSA converges in the same

number of iterations as FDSA and it follows approx-

imately the steepest descent direction, behaving like

the gradient method [15]. On the other hand, SPSA,

with the random search direction, does not follow ex-

actly the gradient path. In average, though, it tracks

the gradient nearly because the gradient approxima-

tion is an almost unbiased estimator of the gradient,

as shown in [9].

For SPSA algorithm, the conditions for the se-

quences of positive {ak} and {ck} are

ak > 0, ck > 0, ak → 0, ck → 0,
∞
∑

k=1

ak = ∞,
∞
∑

k=1

(ak/ck)
2 < ∞ (16)

2.2.2 On the operator Pr

As shown in [10], span[Pr] - the subspace, spanned

by the columns of Pr, must be chosen so that the fil-

ter gain K ensures a stability of the filter. Mention

that even the KF may suffer from instability. To en-

sure filter stability, Pr is constructed from all unstable

and neutral eigenvectors of the fundamental matrix Φ
(or real Schur vectors (ScVs), singular vectors). In

practice, we choose Pr to be consisting of the column-

vectors of S

S = ΦX (17)

which are results of integration of leading ScVs

(columns of X). The columns in S have the mean-

ing of the PE for the system state and are used to
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approximate the ECM. As to the real ScVs, they are

preferred to eigenvectors (or singular vectors) because

the ScVs are real and their computation is numerically

stable. Mention that computation of singular vector

requires also adjoint code. The ensemble of columns

of S plays the same role as an ensemble PE samples

in the ensemble-based filtering technique for approx-

imating the background ECM [4]. In section 2.3 an-

other method based on stochastic perturbation tech-

nique for estimation of the ECM will be addressed.

2.2.3 On separation of vertical and horizontal

variables structure in ECM [8]

Let us consider the situation when the dynamical sys-

tem (DS) is described by PDEs. The state vector of

the numerical model at the time instant k is xk =
xk(i, j, l) where (i, j, l) represents a grid point in three

dimensional space. Actually for high-dimensional

systems, the number of generated PE samples is about

100 which is very small compared to the dimension

of the system state. Evidently, the number of PE sam-

ples is insufficient to well approximate the true ECM.

To better approximate the ECM, in [8] it is assumed

that the estimated ECM is a member of the class of

ECMs having a separation of vertical and horizontal

variables structure (SeVHS). This hypothesis is not

new and is used in modeling the ECM in meteorolog-

ical data assimilation [3]. The optimal ECM is found

as a solution to the minimization problem

J(θ) = E||Md −Mv(θ1)⊗Mh(θ2)||2F ,
||.||F denotes matrix Frobenious norm,

J(θ) → minθ, θ = (θT1 , θ
T
2 )

T . (18)

In (18) Mh is a ”data” ECM which is obtained from

an ensemble of PE samples. As the number of vertical

layers in the today’s numerical models is of order 101,

all elements of the vertical ECM Mv (included in θ1)

can be considered as unknown to be estimated. As to

Mh, it is often chosen in an analytical form (for exam-

ple, the 1st or 2nd order autoregressive models). The

parameters like correlation length ... can be selected

as components of the control vector θ2 in Mh.

2.3 A simple method for estimating a high-

dimensional matrix

The minimization problem (18), in fact, gives us

the way to decompose the ”data” matrix Md into

a Kronecker product of two matrices Mv(θ1) and

Mh(θ2). Unlike the traditional Nearest Kronecker

Product problem (NKP) [6] where all elements of Mv

and Mh have to be estimated, here the objective is to

seek only some optimal parameters in these two ma-

trices.

2.3.1 Estimation of a matrix

Suppose we are given the system Φx = b, Φ ∈ Rm×n.

We want to find a Φ subject to the condition that for a

given x′, the product y′ = Φx′ is known. This prob-

lem happens frequently in data assimilation when in

(1) Φ is unknown, but there exists a computer code

for computing Φx′ for some x′. Remark that for

b := (b1, ..., bm)T , the derivatives of bi wrt to the vec-

tor x is defined as

dbi/dx = (∂bi/∂x1, ..., ∂bi/∂xn) =
(φi1, ..., φin), i = 1, ...,m

where φij are the ij element of Φ. We can write then

db/dx = [(db1/dx)
T , ..., (dbm/dx)T ]T = Φ

In what follows, we present a low-cost algorithm

for approximating derivatives of b wrt x, indepen-

dently of the dimension of x, and next to estimate

Φ. The idea on estimation of high dimensional Φ
on the basis of stochastic simultaneous perturbation

(SSP) has been first briefly presented in [9].

Let ∆̄ := (∆1, ...,∆n)
T , ∆i, i = 1, ..., n be iid

Bernoulli distributed variables assuming two values

+/- 1 with equal probabilities 1/2. Introduce [∆̄]−1 :=
(1/∆1, ..., 1/∆n)

T , ∆̄c := c∆̄, c > 0 is a small posi-

tive value.

In the context of estimating Φ, the proposed

algorithm looks as follows :

Algorithm 1. Suppose it is possible to compute

the product Φx = b(x) for a given x. At the beginning

let l = 1. Let the value u be assigned to the vector x,

i.e. x := u, L be a (large) fixed integer number.

Step 1. Generate ∆̄(l) whose components are lth

samples of the Bernoulli i.i.d. variables assuming two

values +/- 1 with equal probabilities 1/2;

Step 2. Compute δb(l) = Φ(u + ∆̄
(l)
c ) − Φu,

∆̄
(l)
c = c∆̄(l), c is a small positive value;

Step 3. Compute g
(l)
i = δb

(l)
i [∆̄

(l)
c ]−1, δbi is the

ith component of δb, g
(l)
i is the column vector consist-

ing of derivative of bi(u) wrt to u, i = 1, ...,m.

Step 4. Go to Step 1 if l < L. Otherwise, go to

Step 5.

Step 5. Compute

ĝi =
1
L

∑L
l=1 g

(l)
i , i = 1, ...,m,

Φ̂(L) := Dxb = [ĝ1, ..., ĝm]T
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Theorem 1 Consider Algorithm 1 for estimation

of the elements of the matrix Φ. Then the sequence

Φ̂(L) in Algorithm 1 converges to the true Φ with

MSE proportional to (1/L) where L is the number of

samples used in the estimation procedure.

2.3.2 Estimation of decomposition of Φ

For very high dimensional Φ, it is impossible to store

all the elements of Φ. One way to overcome this dif-

ficulty is to approximate Φ by some matrix in a sub-

space of fewer dimensions (for example, the class of

matrices of given rank). Let Φ ∈ Rm×n,m ≤ n,

rank(Φ) = m. We want to find the best Φ among

members of the class of matrices

Φe = ABT , A ∈ Rm×r, B ∈ Rn×r,

A,B are matrices of dimensions

m× r, r × n, r ≤ m, rank(ABT ) = r. (19)

Under the condition (19), the optimization prob-

lem is formulated as

J(A,B) = ||Φ− Φe||2F =

||Φ−ABT ||2F → min(A,B), (20)

where ||.||F denotes the Frobenius matrix norm. Con-

sider Φ and let UΣV T be SVD (singular value decom-

position) of Φ [6], i.e.

Φ = UΣV T , U ∈ Rm×m, V ∈ Rn×n,Σ = [Σm|0],
Σm = diag[σ1, ..., σm], σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0. (21)

Theorem 2 Suppose AoB
T
o is a solution to the

problem (19)-(20). Then

J(Ao, Bo) =
m
∑

k=r+1

σ2
k (22)

Theorem 2 implies that Φo
e := AoB

T
o is equal to the

matrix formed by truncating the SVD of Φ (21) to its

first r singular vectors and singular values.

In the same way (like Algorithm 1), one can write

out the algorithm for estimating A and B based on

SSP of all elements of A and B (denoted as Algo-

rithm 2).

3 Variational method (VM) [16]

Return to the problem of estimating {xk} in (1)-(2).

The VM consists of minimizing

J [x0, ..., xN ] = e0M
−1
0 e0 +

N
∑

k=1

(zk −Hxk)
TR−1(zk −Hxk),

J [x0, ..., xN ] → min[x0,...,xN ], (23)

under the constraints (1) (24)

where e0 := x0 − x̄0. Thus, the VM seeks an optimal

solution in the functional space (space of functions

{xk}). For systems of high dimension, this task is

impossible to perform. The simplification is required.

Suppose the system (1) is perfect, i.e. wk = 0. Ex-

pressing all xk as functions of the initial state x0,

xk = Φ(k, 0)x0,

Φ(k, l) = Φk−l, (k > l),Φ(k, k) = I, (25)

Iis the identity matrix of appropriate dimension

and substituting xk, ∀k (25) into (2), at each kth ob-

servation instant we have

zk = H1
kx0 + ǫ′k, k = 1, 2, ..k = 1, 2, .... (26)

H1
k := [(H1Φ(1, 0))

T , ..., (HΦ(k, 0))T ]T ,

v1k = [vT1 , ..., v
T ]T .

The optimization problem (23)-(24) now is simplified,

J [x0] → min[x0], (27)

J [x0] := eT0 M
−1
0 e0 +

N
∑

k=1

(zk −H ′

kx0)
TR−1

k (zk −H ′

kx0), (28)

H ′

k := HΦ(k, 0).

We have now the unconstrained optimization problem

(27)(28) with the control vector θ := x0 - the initial

state. This problem can be solved using standard op-

timization techniques [6].

It is not hard to write out a solution to the problem

(27)(28). For high-dimensional systems, the problem

(27)(28) is solved iteratively to find θ,

∇θJ [θ] = 0

∇θJ [θ] := [∂J/∂θ1, ..., ∂J/∂θ1]
T (29)

Comment 1 Usually, finding a solution to

(27)(28) requires about 20-30 iterations to reach a rel-

atively good approximate solution.

Comment 2 Writing out ∇θJ [θ] shows that solv-

ing (29) requires implementation of the operation

(H ′

k)
T y = ΦT

kΦ
T
k−1...Φ

T
1 H

T y

for some y. The AE method is used then for com-

puting the product ΦT
k y. In the next section we see

that the SPSA can also be used to solve this problem

at a much lower cost.
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4 Differences between AF and VM

4.1 Differences between VM and AF

We list here the main differences between two ap-

proaches VM and AF from which it becomes clear

what are the advantages of the AF over the VM.

(D1) Dynamical system (DS): if in (23)(24), the

DS is the initial system (1), in (6) the DS is the filter-

ing equation (3)(4). This difference has an interesting

consequence : if in practice, there is very little known

about statistics of wk, the sequence ζk is observed and

hence it is possible to estimate its statistics.

(D2) wk in (1) is white, while ζk in (10) is a white

only if the filter is optimal : This allows to apply dif-

ferent statistical tests for verifying the optimality of

the assimilation procedure.

(D3) Control variable x0 in the VM is the initial

state, whereas the control variable in (6) is the gain

parameters.

This difference has an important consequence :

as x0 has to be of precise physical meaning (depend-

ing, for example, on the ocean domain of interest), the

structure for the guess θ0 := x̂00 - initial state, as well

as its correction δx̂ν0 , must be chosen carefully so that

x̂ν0 , x̂ν0 = x̂ν−1
0 + δx̂ν0 , must be of physically admissi-

ble structure. That is not an easy task. As to the AF,

the parameters usually are immaterial (see θ in (10))

hence the choice of structure for θ is of no importance.

(D4) Suppose (1) is unstable. It implies the error

growth in estimating x0 during integration of the di-

rect and AE. As for the AF, by its construction, the

filtering system remains stable. This can be seen by

representing the filtering Eqs (3)(4) through its funda-

mental matrix Lk,

x̂k = Lkx̂k−1 +Kkvk

Lk = (I −KkH)Φk. (30)

As shown in [10], the filter (30) is stable under the

conditions (9)(10). It means that the filtering error is

bounded during model integration since the parame-

ters θi are lying in the interval guaranteeing a stability

of the filter (18).

(D5) Return to the objective function (23)(24).

Taking the derivative of (23)(24) wrt x0 yields

∇x0
J [x̂ν0 ] = M−1

0 eν0 +

−
N
∑

k=1

ΦT (k, 0)HT
k R

−1
k (zk −HΦ(k, 0)xν0) =

−
N
∑

k=1

ΦT (k, 0)HT
k R

−1
k (HΦ(k, 0)eν0 + vk),

eν0 := x0 − x̂ν0 . (31)

Table 1: Number of elementary arithmetic operations

VM (n2(N2 +N) +N(2np+ p2) + n2)Nito

AF [(n2 + 2np+ p2)Nit + 2(np+ n2)]N

ROF [CNit +n2 + np+ ne(ne + p+ 1)]N

C = n2
e + 2nep+ p2

One sees that Eq. (31) requires computation of N
terms (without counting for the term M−1

0 eν0). The

kth term is associated with the assimilation instant k
and one needs to compute first µk := Φ(k, 0)eν0 - i.e.

to integrate k times the direct model Φk and next to

integrate backward (k times also) the AE ΦT , i.e. to

compute ΦT (k, 0)HT
κ R

−1
κ (Hµk + vk). The larger k,

the bigger amplification of the initial error eν0 and the

observation error vk. The error eν0 is amplified doubly

since it is integrated by the direct and adjoint models.

But the amplification of vk (and wk when wk 6= 0) is

most worrying since it is integrated in the gradient es-

timate, making the gradient direction to be, possibly,

completely erroneous.

4.2 Computational comparison between VM

and AF

We give here a brief comparison (computational bur-

den) between the VM and AF algorithms based on

AE approach. Here the AF has the gain structure (7)-

(9). Table 1 shows the number of elementary arith-

metic operations required for the implementation of

the VM and AF filtering algorithms based on AE ap-

proach. These numbers are related to gradient com-

putations since they represent the most computational

burdens in the implementation of VM and AF algo-

rithms. Here the AF means that the ECM M ∈ Rn×n

is given. The numbers of operations are rounded up

to the dimensions of the entry matrices. Here Nito
is a number of iterations required to solve the min-

imization problem (23)-(24), Nit is a number of it-

erations required to solve the equation of the type

Ξy = ζk,Ξ := [HMH +R].
In the MV algorithm, the computation of

M−1
0 , R−1 is not taken into account. In Table 1 there

is also the number of operations required for the ROF,

when the ECM M is given in the form M = PrP
T
r ,

Pr ∈ Rn×ne .

Comment 3 Looking at Table 1 one sees that

the dominant numbers nd of operations in VM and

NAF are nd(VM) = n2N2Nito and nd(NAF ) =
n2NNit. If we assume that Nito ≈ Nit the number

nd(VM) is N times larger than nd(NAF ).
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5 Numerical experiments

5.1 Lorenz system

The experiment is performed for the following Lorenz

attractor [13],

dy1
dt

= −σ(y1 − y2),
dy2
dt

= ρy1 − y2 − y1y3,

dy3
dt

= y1y2 − βy3, (32)

where σ is called the Prandtl number and ρ is called

the Rayleigh number. All σ, β, ρ > 0, but usually

σ = 10, β = 8/3 and ρ is varied. The system exhibits

chaotic behavior for ρ = 28 but displays knotted peri-

odic orbits for other values of ρ.

In the experiments the parameters σ, ρ, β are cho-

sen to have the values 10, 28 and 8/3 for which the

”butterfly” attractor exists.

The numerical model is obtained by applying the

Euler method (first-order accurate method) to approx-

imate (32). The corresponding model time step is

δt = 0.005, and the interval between two observa-

tions is ∆Tk = 1. Thus we are given the sequence

of observations z(k) := z(Tk), k = 1, ..., No where

z(k) consists of the first and third components x1,

x3 observed at each time instant Tk, k = 1, ..., 100.

The observation error is zero mean uncorrelated se-

quence with the covariance R = 2I2. As to the

model error, the zero mean uncorrelated sequence

with variances 2, 12.13 and 12.13 is added to the nu-

merical model at each instant Tk. The true system

state x∗ is simulated subject to the initial condition

x∗0 = (1.508870,−1.531271, 25.46091)T .

The problem considered in this experiment is

to apply the Extended KF (EKF), non-adaptive fil-

ter (NAF) and adaptive filter (AF) to estimate the

true system state using the observations zk, k =
1, 2, ..., No and to compare their performances. In all

the filters the initial state is x̂0 = (5, 10, 27)T . Here

the NAF is the Prediction Error Filter (PEF) described

in [7].

Figure 1 shows the evolution of the prediction er-

rors resulting from three filters: NAF(L1), AF(L1)

and EKF. The symbol L1 in the NAF signifies that

the gain in the NAF is estimated on the basis of an en-

semble of samples for the first Schur vector (or Krylov

vectors). It is of no surprise that the NAF has pro-

duced the estimates with larger estimation error. By

adaptation, however, it is possible to design an AF (on

the basis of the NAF) which improves significantly

NAF performance and even behaves better than the

EKF.

Mention that the VM is much less appropriate for

assimilating the observations in the Lorenz model due

Figure 1: Prediction errors resulting from three filters:

Nonadaptive filter (NAF), Adaptive filter (AF) and EKF
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Figure 2: Time averaged variance between the true tra-

jectory and model trajectory in the VM as a function of

perturbed third component of the initial state. The global

minimum is attained at the true initial condition, but there

is no guarantee for the VM to approach the true initial state

even in the perfect model case. For the noisy model, the

global minimum is not attained at the true initial state. The

curve ”noisy-model” is scaled by the factor C = 1/15.
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Figure 3: Cost function in the PEF as a function of per-

turbed third gain parameter θ3. It is seen that in the PEF

the cost function is quadratic wrt to the gain parameter in

both situations of the perfect and noisy models. The curve

”noisy-model” is scaled by the factor C = 1/50.

to the choice of the initial state as a control vector. For

simplicity, let three components be observed, H = I3.

In Figure 2 we show the cost function (time aver-

aged variances of the difference between the true tra-

jectory and model trajectory, denoted as AV (x∗, x̂)),
resulting from varying the third component of the ini-

tial state for two situations of the perfect model and

noisy model. Namely, we initialize the model by the

initial state, which is the same as the true one, with the

difference, that the third component x3(0) is varying

in the interval [24.5 : 26.5]. For the perfect model,

the global minimum is attained at x∗0(3) = 25.46091
as expected. However, if the system is initialized by

the estimate in a vicinity, even not so far from the true

x∗3(0), there is no guarantee that the VM can approach

the true initial state and the resulting estimation error

may be very large. For the noisy model, the global

minimum is not attained at x∗0(3).
As for the PEF, the function AV (x∗, x̂) is

quadratic wrt to the gain parameter, for both situations

of the perfect and noisy models, as seen in Figure 3 :

here the sample cost function is averaged over all as-

similation period, by varying the third parameter θ3 in

the gain (related to the third observed component of

the system state). From Figure 2 and Figure 3 it is

seen that the estimation error in the VM is about 10

times larger than that produced by the filtering algo-

rithm for the perfect model case.

5.2 Estimation of matrix

Let us consider the problem of estimating el-

ements of the following matrix Φ ∈ R4×5

(see https://en.wikipedia.org/wiki/Singular-value-

decomposition)

Φ := A = [ai,j ] =











1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 4 0 0 0











(33)

In the SVD-decomposition the matrix A has 3

non-zero singular values σ1 = 4, σ2 = 3, σ3 =
√
5.

In the experiment, first we have applied Algorithm 1

to obtain the estimate Ae and next decomposed this

matrix Algorithm 2 into the product of two matrices.
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Figure 4. Cost function resulting from Algorithm 1 :

convergence is observed after about 50 iterations

Figure 4 displays the cost function during the es-

timation process by Algorithm 1. It is seen that the

process converges after about 50 iterations.
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Figure 5. Estimates of matrix elements by

three-dimensional subspace approximation : All elements

a4,2 = 4, a2,3 = 3, a1,5 = 2, a1,1 = 1

Next we solve the decomposition problem (20)

(by Algorithm 2, section 2.3.2) subject to Φe :=
ABT , A ∈ Rm×3, B ∈ Rn×3. rank (ABT ) = r =
3. Fig. 5 shows the estimates for four elements

Ae(1, 1), Ae(1, 5), Ae(2, 3), Ae(4, 2) produced by the
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decomposition problem. One sees that all the coeffi-

cients converge to their true values, but compared to

Figure 3, the decomposition algorithm requires more

iterations to reach a convergence. A more quick con-

vergence is obtained for r = 4 (not shown here).

6 Assimilation in high dimensional

ocean model MICOM

In this section first we apply the results in section 2

(Algorithm 1) to obtain the ”data” ECM Md
ssp based

on an ensemble of PE samples generated by the SSP

method (denoted as En(SSP )). The decomposition

algorithm (Algorithm 2) will be implemented to es-

timate the unknown parameters of the ECM M̂ssp

represented in the form of the Kronecker product as

shown in (20). Once having M̂ssp we can construct

the filter PEF(SSP).

The other ”data” ECM Md
sch is formed on the ba-

sis of an ensemble of PE samples generated by the

sampling procedure in [7] (denoted as En(SCH). In

the same way, the problem (20) is solved to estimate

the second ECM M̂sch. We have then the second fil-

ter PEF(SCH)). The efficiency of these two PEFs as

well as that of the CHF (Cooper-Haines Filter, [2])

will be compared in the context of the experiment with

sea surface height (SSH) data assimilation with the

ocean model MICOM. Mention that the CHF is a filter

widely used in the SSH data assimilation in oceanog-

raphy. It is constructed on the basis of the principle of

lowering and lifting the water column.

6.1 Ocean model MICOM

The ocean model used here is the MICOM (Miami

Isopycnal Ocean Model) which is identical to that de-

scribed in [7]. The model configuration is a domain

situated in the North Atlantic from 300 N to 600 N

and 800 W to 440 W; for the exact model domain

and some main features of the ocean current (mean,

variability of the SSH, velocity ...) produced by the

model, see [7]. The state of the model is x := (h, u, v)
where h = h(i, j, lr) is the thickness of lrth layer,

u = u(i, j, lr), v = v(i, j, lr) are two velocity com-

ponents. The layer stratification is made in the isopy-

cnal coordinates, i.e. stratification characterized by a

constant potential density of water. Thus, with three

variables x := (h, u, v), the state of the numerical

model has the dimension n = 302400.

To be closer to realistic situations with the ob-

servations available only at along-track grid points,

only the SSH values from the true state situated at the

Table 2: rms of prediction error for ssh, and u, v velocity

components

rms CHF PEF(SCH) PEF(SSP)

ssh(fcst) (cm) 6.455 4.091 3.704

u(fcst) (cm/s) 7.501 5.255 4.966

v(fcst) (cm/s) 7.618 5.599 5.331
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Figure 4: Filtered errors for the u-velocity component es-

timate, resulting from PEF(SCH) and APEF (SCH) (AF

based on PEF(SCH)). Optimization is performed by SPSA.

By tuning the parameters in the filter gain, one can improve

considerably the performance of the PEF

points i = 1, 11, ..., 131, j = 1, 11, ..., 171 are taken

as observations. They are noise-free.

6.2 Assimilation results

In Table 2 the performances of the three filters are dis-

played. The errors are averaged (spatially and tempo-

rally) root mean square (rms) of prediction error for

the SSH and two velocity components u and v.

The results in Table 2 show that two filters

PEF(SCH) and PEF(SSP) largely outperform the

CHF, with a slightly better performance for the

PEF(SSP). It may be explained by the fact that the best

theoretical performance of PEF(SCH) can be obtained

only if the model is linear, stationary and the number

of PE samples in En(SCH) at each iteration must

be large enough. The ensemble size of En(SCH) in

the present experiment is too small compared with the

dimension of the MICOM model. As to En(SSP ),
the samples are obtained by stochastically perturbing

all directions of the state, hence probably they capture

more variability of the prediction error.

To see the effect of adaptation, Figure 4 dis-

plays the filtered estimation errors for the u-velocity

component at the surface, produced by the PEF (i.e.
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PEF(SCH)) and by its adaptive version (APEF) re-

spectively. Here the free parameters of the gain are

optimized by the SPSA method. For the choice of

tuning parameters in the gain, see [10]. From the com-

putational point of view, the SPSA requires much less

time integration and memory storage compared with

the traditional the AE method. At each assimilation

instant, we have to make only two integrations of the

MICOM for approximating the gradient vector. From

Figure 4 one sees that adaptation can serve as an use-

ful tool to reduce significantly the estimation error in

the non-adaptive filter.

7 Conclusion

In this paper the AF based on innovation approach is

presented and its performance is compared with other

estimation methods. The optimality of such AF is de-

fined as minimal PE for the system outputs, with the

control variables chosen as pertinent parameters in the

gain. This choice is very beneficial : it allows to for-

mulate and solve the optimization problem for high-

dimensional AF on the basis of the SPSA approach.

We show further how one can estimate the elements of

an unknown matrix of high dimension and decompose

it into the product of two matrices, in a simple way, on

the basis of SSP technique, under the condition that

only the matrix-vector product is accessible. By this

way there is no difficulty in manipulating matrices of

high dimensions as well as generating an informative

ECM for the construction of the filter gain.

Numerical experiments in section 5 (low and

moderate systems) and section 6 (high dimensional

system) well illustrate the theoretical results and the

efficiency of the proposed algorithms.
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