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Abstract: - Most industrial processes are nonlinear, multivariable, with time delay, variable parameters and 

model uncertainty, subjected to disturbances. There exist methods that compensate the impact of these plant 

peculiarities but are developed for linear control systems. Most of them are based on the system frequency 

response since they give a compact and easy design solution. A novel frequency domain approach is suggested 

for the design of fuzzy logic nonlinear systems with parallel distributed compensation (PDC) from 

requirements for global nonlinear system stability, robustness and good performance. It uses modified transfer 

functions based Takagi-Sugeno-Kang (TSK) plant model and PDC and the merits of the linear control 

frequency design methods. The modified PDC-TSK system is represented by a number of equivalent linear 

systems for which equivalent frequency responses are defined and frequency domain design criteria applied to 

ensure stability, robustness and desired performance specifications. The approach is demonstrated for the 

design of a PDC for the real time control of the air temperature in a laboratory scale dryer and its effectiveness 

confirmed in the experiments. 
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1 Introduction and State-of-the-Arts 
The parallel distributed compensation (PDC) 

opened a new era in the development of fuzzy logic 

controllers (FLCs). Their better response to plant 

nonlinearity, model uncertainty and inertia leads to 

improvement of the closed loop system performance 

and energy efficiency. Introduced first in [1, 2] the 

PDC establishes as a model-based controller. The 

necessary for its development Takagi-Sugeno-Kang 

(TSK) plant model can easily be derived out of an 

available nonlinear plant model usually of a 

mechanical system (robot, helicopter, etc.) or form 

experimental data from the operation of the plant 

(process) in an open loop or in a feedback system 

with a model-free Mamdani controller [1-5]. The 

PDC is appealing because it is simple in structure 

and the fuzzy logic nonlinear PDC system design 

and stability analysis are based on the well mastered 

and proven in the engineering practice linear control 

methods.  

The PDC structure is determined by the TSK 

plant model and is designed to perform soft 

switching among local linear mainly state feedback 

controllers [1]. Further advanced PDCs with PID-

based local controllers are developed and the 

Lyapunov system stability conditions modified [3, 

6].  

Presently modified transfer function-based TSK 

plant models are introduced in [7] to facilitate both 

the TSK plant modelling and the PDC engineering 

design. More sophisticated but compact linear local 

plants models such as multivariable, with pure time 

delay, etc. are easily derived via advanced linear 

control methods [8-10]. On their basis simple PDCs 

are designed consisting of local controllers which 

can perform various sophisticated linear control 

algorithms such as Smith predictors, internal model 

controllers, multivariable decoupling controllers, 

adaptive controllers, etc. [8-10] to better conform 

with the real world nonlinear plant model 

uncertainty, inertia, time delay, multivariable 

character, disturbances impact, parameter variations 

etc.  

The design of the PDC nonlinear system consists 

generally of two stages [1, 3]. First, the local linear 

systems are designed to ensure systems stability and 

desired performance using linear control systems 

methods. Then the global nonlinear PDC system 

stability is validated using the time domain 

Lyapunov approaches based on the TSK-PDC 
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system description or on Lyapunov functions. The 

stability conditions, however, are sufficient and 

strong. If the validation fails the PDC is redesigned 

[3, 6]. In the more progressive approaches the global 

nonlinear PDC system design is bounded with the 

nonlinear system stability. In [1] a relationship is 

derived between the local linear state feedback 

controllers’ gains and the nonlinear system stability. 

The relationship, however, is difficult to solve, 

needs numerical techniques and may have no 

solution.  

Recently the frequency domain approaches mark 

a new progress in the advanced linear control 

system design. In [11] a stability boundary locus of 

the individual channels is suggested for the design 

of a stabilizing PI controller for a multi-input multi 

output (MIMO) coupled tank system. A MIMO 

system is passified and stabilized via shaping of the 

individual channels sensitivity using gain and phase 

margins in [12]. A MIMO controller is designed 

after approximation of the generalized Nyquist 

stability criterion by convex constraints with respect 

to the controller’s parameters in [13]. The frequency 

domain methods which are simple, well developed 

and widely spread for linear control systems design 

out of stability and robustness considerations [3, 14-

16] have found a limited application in the nonlinear 

PDC system design. They are employed mainly for 

the design of the local linear control systems. Their 

potential for direct design of the nonlinear PDC 

ensuring system stability, good performance and 

robustness especially for plants with time delay, 

model uncertainty, etc. stays unexplored. So, the 

investigation of the possibility to design the PDC 

from the global nonlinear system stability 

requirements in the frequency domain is a 

challenging task.  

In the present research a novel approach is 

suggested based on the definition of a frequency 

response of the PDC-TSK system and its application 

for the design of stable global nonlinear closed loop 

PDC systems with desired performance. The 

frequency domain approach considers single-input 

single-output (SISO) systems and needs no 

approximation of the plant pure time delay. It is 

especially effective for building more sophisticated 

PDCs. 

The paper is further organized as follows. In 

Section 2 the theoretical background is presented. 

Section 3 is devoted to the novel frequency 

approach for the design of modified PDCs from 

nonlinear fuzzy logic closed loop system stability 

and robustness requirements defined in the 

frequency domain. The approach is demonstrated 

for the design of a PDC for the control of the air 

temperature in a laboratory scale dryer in Section 4.  

The designed PDC is tested in Section 5 in a closed 

loop system with the TSK plant model via 

simulations and in real time control of the dryer’s 

air temperature. There the advantages of the PDC 

control compared to a Mamdani fuzzy logic control 

(FLC) in real time are discussed. The conclusion 

and the future work are outlined in Section 6. 

 

 

2 Theoretical Background 
The PDC-based FLC is designed on the basis of an 

existing TSK plant model. The standard TSK plant 

model is described by the following fuzzy rules [1, 

2]: 

Rk: IF z1(t) is Lzk1 AND…AND zp(t) is Lzkp  

THEN.





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where z(t)=[zj(t)], j=1÷p is the vector of the premise 

variables zj that measure or estimate the system 

current state, zj take linguistic values Lzkj, 

represented by fuzzy sets, x(t)R
n
 is the vector of n 

state space variables, u(t)R
m

 is the vector of m 

plant inputs (control actions), y(t)R
m

 is the vector 

of m plant outputs and AiR
nxn

, BiR
nxm

, CiR
mxn

 

are the corresponding state, control and output 

matrices, k=1÷ r. The number of the rules r 

corresponds to the number of the operation zones 

where the plant is described by a linear model. 

Each current measured or estimated by z(t) plant 

state matches the defined by Lzkj overlapping linear 

operation zones to different degrees. Thus each rule 

condition is fulfilled to a certain degree. The rules 

conclusions with the local linear models outputs are 

qualified to the degrees of activation of the rules. 

Then the scaled outputs in all rules are united. The 

final plant output is computed after a weighted 

average defuzzyfication.  

As a result of the fuzzy inference mechanism and 

the defuzzyfication the model output is obtained as a 

soft blending of the individual rules conclusions 

(weighted average of the outputs of the local linear 

models) in the form: 

,
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1j

kjk tztzw 
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  is the degree of 

fulfillment of the compound condition in the fuzzy 

rule premise and ))((μ jkj tz  is the degree of 

matching of zj(t) with Lzkj.  

TSK models are developed via linearization of 

existing nonlinear models in [1, 2]. In [3-5] neuro-

fuzzy structures that represent first order Sugeno 

models (TSK models) are trained on available 

experimental and expert data using MATLAB
TM

 

toolbox Adaptive Neuro-Fuzzy Inference System 

(ANFIS) [17]. First the number of the membership 

functions (MFs) is computed by partitioning of the 

input-output space via fuzzy clustering, then the 

fuzzy rules are automatically generated and finally 

the parameters of the MFs and the gains in the 

conclusions are optimized. The obtained TSK model 

conclusions 

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contain free terms Dk which approximate the 

nonlinear terms in the state space linearization. The 

training sample should be representative and pre-

processed by normalization or standardization, noise 

filtering, correlation elimination, etc. The training, 

however, can be slow and validation may turn out 

unsuccessful. 

In [3, 6, 7] a modified transfer function based 

TSK plant model is derived based on plant input-

output data via model parameters optimization for 

minimization of the modelling error using genetic 

algorithms (GA). An example of a modified TSK 

plant model is shown in Fig.1. It consists of a 

Sugeno model for defining of r plant linearization 

zones, r=3, and for computing of the degrees of 

matching of the current plant output to each of the 

zones, and r parallel branches with input u - the real 

world plant input, and dynamics, described by 

transfer function Pk(s) in each zone. The Sugeno 

model has a single input - the measured plant output 

when deriving the TSK plant model or the TSK 

model output after the derived TSK model is 

validated. In Fig.1 three input Gaussian MFs of the 

Sugeno model define three linearization zones. The 

Sugeno model has a separate output for each k-th 

linearization zone. Each k-th output has singletons 

for MFs, the k-th singleton is located at 1 and the 

rest are placed at 0. The fuzzy rules, the fuzzy  
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Fig.1. Modified transfer functions based TSK plant 

model  

inference and the defuzzyfication in the Sugeno 

model aim each of its outputs to yield the MFs 

values µk of matching of the current measured plant 

output to each k-th zone. Thus the output of each 

local linear plant model yk is scaled by the 

corresponding match µk to the k-th zone and then all 

scaled outputs of the local plant models are summed 

to result in the final nonlinear TSK plant model 

output yTSK. The TSK plant model parameters – the 

parameters of the transfer functions of the local 

dynamic models and the parameters in the input 

MFs of the Sugeno model if not assigned by experts 

are computed to minimize the integral squared 

relative modelling error usually using GA [6, 7, 10]. 

In Fig.1 the input MFs of the Sugeno model are GA 

optimized using experimental input-output data 

about the plant. 

The transfer functions based description of the 

local plants dynamics makes representation compact 

as transfer functions and matrices represent plant 

input-output relationships instead of detailed state 

space variables. Thus the nonlinear plant is 

represented by soft switching between linear plants, 

which dynamics experts can easily define by the use 

of simple transfer functions that also ease the design 

of the corresponding local linear controllers even 

the sophisticated ones by engineering methods. 

The standard PDC, based on the TSK plant 

model, is described by the following fuzzy rules 

[1,2]: 

Rk: IF z1(t) is Lzk1 AND…AND zp(t) is Lzkp  

THEN. )()( k txFtu  ,    (3) 

where the state feedback controller Fk is designed to 

compensate the local plant in the corresponding 
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TSK plant model rule using linear control systems 

methods. 

As a result of the fuzzy inference mechanism and 

the weighted average defuzzyfication the control 

action u(t) is computed by soft blending of the 

individual rules conclusions in the form: 
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In case of PI local linear controllers, the 

incremental PI algorithm is transformed into state 

space representation in the fuzzy rules conclusions 

[6]: 

 

Rk: IF z1(t) is Lzk1 AND…AND zp(t) is Lzkp  
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where  pkikpkk / KTKF  and  0/ ikpkk TKG  

with Kpk and Tik - the gain and the integral action 

time of the local PI controller in the k-th zone, and xr 

- the vector of references for the state variables. The 

necessary integration of the control rate )(tu  is 

included as an extension to the plant input thus 

making the local plants critically stable and 

increasing their order by one.  

The global PDC-TSK nonlinear closed loop 

system stability analysis is based on the Lyapunov 

stability sufficient condition - the existence of a 

common positive determined matrix P for all local 

linear systems that satisfies the matrix inequalities 

[1, 3, 6]: 
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m, n=1r, n>m. 

The solution of (6) is searched by the numerical 

linear matrix inequalities (LMIs) technique [1, 6]. 

The modified PDC is based on a modified TSK 

plant model of the type, demonstrated in Fig.1. It 

uses the same Sugeno model of the TSK plant 

model to recognize the degrees of belonging of the 

current plant state to the defined operation zones 

where the plant model is assumed linear. An 

example of a PDC structure is shown in Fig.2, 

where Ck(s) are the local linear controllers, each 

designed for its corresponding local linear plant  
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Fig.2. Modified transfer functions based PDC with 

three linearization zones 

 

model in the TSK plant model. In Fig.2 the 

presented Sugeno model is designed by experts. 

 

 

3 A Frequency Domain Approach for 

PDC Design from Nonlinear Closed 

Loop System Stability and Robustness 

Requirements 
The frequency domain methods for the design of 

SISO linear control systems are well developed for 

transfer function based plant and controller 

description. They are suitable for plants with time 

delay as the transcendental time delay element e
-s

 is 

represented in the frequency domain without 

approximation by the Euler’s expression  

e
-j

=cos()-j.sin(). The main frequency domain 

performance indicators such as degree of 

oscillations m, gain C and phase G margins, 

oscillation index M, etc. are closely related with the 

location of the dominating roots of the closed loop 

system characteristic polynomial or of the open loop 

system Nyquist plot. Thus they are related with the 

closed loop system stability and robustness [14-16]. 

These indicators allow also to estimate important 

time domain performance measures of the closed 

loop system such as settling time ts, overshoot , 

etc. [16]. The design of the linear controllers from 

the requirement to ensure desired frequency domain 

performance indices of the closed loop system can 

also ensure system stability and robustness and 

desired time domain specifications. 

The nonlinear PDC-TSK closed loop system (1), 

(3) for each measured current values for z(ti), u(ti), 

x(ti) and y(ti) computes the next moment ti+1 

necessary control and plant output according to (2), 
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(4). The closed loop system with the modified 

transfer functions based TSK plant model and PDC 

is presented in Fig.3, where z(t) = y(t) and hence in 

(2), (4) wk=µk. For each different combination of 

µ1÷µr as a result of the current measurement of y(ti) 

the nonlinear closed loop system is represented by a 

different linear system which consists of an 

equivalent linear plant P
eqi

(s) and a corresponding 

equivalent linear controller C
eqi

(s), both computed 

as current for this measured y(ti) as weighted 

average of the local plants and controllers. So, the 

nonlinear PDC-TSK system can be viewed upon as 

a family of linear systems of the possible equivalent 

linear plants and controllers computed for all 

combinations of µ1÷µr. The number of the linear 

systems that represent the PDC-TSK nonlinear 

system is theoretically infinite since µ1÷µr can take 

continuous values in the range [0, 1]. Usually the 

Sugeno model is designed by an expert to have an 

overlapping of two adjacent fuzzy sets for the input 

and orthogonal MFs - ∑   
 
   (y(ti))=1. 

The Laplace representation of the equivalent 

linear plants and controllers are defined considering 

(2) and (4) and Fig. 3 as follows: 

 .
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The equivalent linear plant and controller 

description (8) enables to define equivalent open 

loop system Nyquist plots WOL
eqi

(j) and equivalent 

closed loop system spectrums ACL
eqi

(). The worst 

Nyquist plot of all with respect to stability, i.e. the  
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Fig.3. Modified transfer functions based TSK plant 

model and PDC with three linearization zones  

closest to the Nyquist point (-1, j0), computed for 

some measured y(ti) or combination of µ1÷µr, 

defines the equivalent gain C
eq

=
i

min(C
eqi

) and 

phase G
eq

=
i

min(G
eqi

) margins of the nonlinear 

PDC-TSK system. From the oscillation indices 

M
eqi

=ACLmax
eqi

(peak
i
) of all equivalent closed loop 

systems the highest determines the equivalent 

oscillation index of the PDC-TSK system  

M
eq

=
i

max (M
eqi

).   

These definitions enable the simultaneous design 

of all local linear controllers from the requirement 

for desired equivalent stability margins (C
eq

d, G
eq

d) 

or a desired equivalent oscillation index M
eq

d thus 

ensuring nonlinear system stability, robustness and 

good time domain performance.  

The most commonly used desired values for the 

frequency domain performance indicators are shown 

in Table 1, where the degree of oscillations α/βm , 

determined by the dominating roots of the 

characteristic equation of the closed loop system 

1,2=-+j, and the oscillation index M shape 

underdamped closed loop system step responses. 

The gain C and the phase G margins are related to 

the system robustness. The corresponding values of 

the time domain indicators damping ratio  and 

overshoot σ are also given in Table 1. They are 

computed on the basis of a relationship between the 

frequency domain and the time domain indicators 

for a second order system. For a higher order system 

the relationship between the indicators is 

approximate and refers to the dominating pair of 

roots. For overdamped closed loop system step 

responses M=1 and σ=0%. 

A PDC design procedure is suggested that 

consists of the following steps. 

Input data: number of linearization zones r; 

derived modified TSK plant model of a Sugeno 

model and local linear dynamic plants, described by 

transfer functions; type of the local linear 

controllers; range D=[o,f] of significant for the 

system frequencies, determined by the greatest time 

constant of the local plants; desired performance 

indicators of the tuned equivalent linear systems. 

1. Computation of a finite number of 

combinations µ=[µ1…µr] by discretizing the interval  

 

Table 1 Most commonly used performance indices 

 σ, % m M C G, deg 

0.75 50 0.222 2.38 0.30 24 

0.90 33 0.366 1.55 0.39 38 

0.96 20 0.511 1.25 0.50 48 
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[0, 1] for each µk with a fixed step µk and 

considering equally spaced discrete values for µk. 

The combinations of the discrete values for µ1÷µr 

are of specific type for orthogonal MFs, e.g. for r=3 

and µk=0.2 the eleven combinations are: 

 

µ=[µ1 µ2 µ3]
T
=

 

=[
                                                   
                                              
                                                      

].   (9) 

 

2. Estimation of the ranges for the tuning 

parameters with respect to the acceptable tolerance 

for the system performance.  

3. Initial tuning of the parameters of the local 

linear controllers using engineering methods for 

ensuring local linear systems stability and 

performance.  

4. Computation of the equivalent open loop 

system Nyquist plots WOL
eqi

 (j) and closed loop 

system spectrums ACL
eqi

 () for each combination 

µ=[µ1…µr], i=1÷11. 

5. Estimation of the current performance 

indicator from the worst equivalent system. If the 

current performance indicator is close to the desired, 

the tuning is over and the design procedure ends. 

Else the procedure continues with step 6. 

6. Correction of the tuning parameters of the 

local linear controllers within the established ranges 

and repeating of the design procedure from step 4. 

 

 

4 Application of the Frequency 

Domain Procedure for the Design of 

PDC for the Control of Temperature 
The suggested frequency domain procedure for the 

design of a PDC accounting for the global nonlinear 

system stability and performance is applied to 

design a PDC for the real time control of the air 

temperature in laboratory-scale dryer [3, 18]. The 

temperature is controlled in MATLAB
TM

 real time 

by the help of an interfacing board between the 

plant and the Simulink model of the PDC. The PDC 

computes the control u on the basis of the measured 

temperature by the temperature sensor and 

transmitter and its reference. The control is then 

passed to a pulse-width modulator (PWM) that 

connects via a solid state relay an electrical heater 

and a fan to the power supply during the duration of 

the pulses. The control action u is limited in the 

range [0, 10]V for the proper operation of the PWM. 

The TSK plant model derived and validated from 

plant input-output experimental data is shown in 

Fig. 4. It distinguishes three linearization zones  
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Sugeno 

model 
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Fig.4. Modified TSK plant model for air 

temperature in three linearization zones  

 

which are defined by experts in the Sugeno model. 

The TSK plant model parameters qTSK are computed 

to minimize the integral squared relative modelling 

error using GA – qTSK=[K1=5.34, K2=17.53, 

K3=8.84, T1=32s, T2=154s, T3=112s, T4=1.4, y0=35]. 

Each local plant model is approximated to a Ziegler-

Nichols (ZN) model Pk(s)= Kk.e
-k.s

.(Tks+1)
-1

 based 

on the Taylor’s series expansion of the time delay 

element e
-k.s

(ks+1)
-1

, where 1=2=3=T4 since 

k=min(Tk, T4). The ZN local plant models enable 

the application of engineering methods for fast 

tuning of standard local linear controllers. Here PI 

local controllers with transfer functions 

Ck(s)=Kpk(1+1/Tiks) are initially tuned accounting 

for the corresponding local linear ZN plant models. 

The tuning criterion is a desired overshoot and 

settling time of the local linear closed loop systems 

and the method used is empirical [14-16] - 

Kpk=A*Tk/(k.Kk), Tik=B*Tk. The ranges for the 

tuning parameters (Kpk, Tik) are determined by the 

coefficients A[0.1, 1.4] and B=0.5/A which define 

various acceptable overshoots. The discrete values 

of the MFs for the three linearization zones make 

the combinations (9). These combinations result 

from all possible measured values for the 

temperature and determine the weighted average in 

mixing the outputs of the three local linear plants. 
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For each couple of coefficients (A, B) eleven 

equivalent open loop system Nyquist plots 

WOL
eqi

(j) and closed loop system spectrums 

ACL
eqi

(), i=1÷11, are computed and depicted in 

Fig. 5. The accepted requirement in the frequency 

domain for the PDC tuning is M
eq

=M
eq

d=1, i.e. 

overdamped step responses of the nonlinear PDC 

closed loop system (=0%). The subset of the 

equivalent open loop system Nyquist plots and the 

equivalent closed loop system spectrums that satisfy 

this requirement, are shown in Fig. 6.  

The optimal PDC tuning parameters qPDC
o
 are 

determined among these that ensure M
eq

=1 using an 

additional criterion for minimal product of Kpk/Tik, 

k=1÷3. Thus qPDC
o
=[Kp1=0.87, Kp2=1.27, Kp3=1.83, 

Ti1=81, Ti2=386 s,  Ti3=280 s] and are computed for 

(A
o
=0.2, B

o
=2.5) and i=6 that defines µ=[µ1=0, 

µ2=1, µ3=0]. The equivalent Nyquist plot and 

system spectrum for the PDC optimal parameters 

are outlined in green in Fig. 6. 
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Fig.5. Equivalent open loop system Nyquist plots 

and equivalent closed loop system spectrums for all 

values of (A, B) 

 

 

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

B
e
s
t 

N
y
q

u
is

t 
p
lo

ts

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
e
s
t 

M
a

g
n
it

u
d
e

s

 

Real 

Imaginary 

WOL
eqi

(j) 

M
eq

=1 

 

ACL
eqi

() 

 
 

Fig.6. Equivalent open loop system Nyquist plots 

and equivalent closed loop system spectrums with 

M
eq

=1, in green - for the optimal PDC parameters  

 

 

5 Investigation of the Designed PDC 

system via Simulations and in Real 

Time Temperature Control  
The investigation of the designed PDC system 

pursuits several goals: 

- to prove that the frequency domain based 

approach for the design of PDC ensures nonlinear 

system stability and good performance by simple 

means; 

- to prove that the system performance indices do 

not surpass the used in the PDC design despite the 

plant nonlinearity expressed in different parameters 

when operating in different operation points (zones), 

so the design criteria are observed; 

- to compare the PDC system performance with 

the performance of the empirically designed in [3, 

18] model-free Mamdani FLC system, a design of a 

PDC based on more knowledge about the plant 
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contained in its TSK model gives grounds for better 

responding to the plant nonlinearity and hence for 

PDC system performance improvement; 

- to assess the energy efficiency of the control; 

- to assess the impact of the TSK plant model 

accuracy on the PDC design.  

The step responses for various temperature 

references, that cover the operation range of the 

plant, are obtained for three different closed loop 

control systems: 

 - Mamdani FLC system in real time temperature 

control; 

- PDC system with the derived TSK plant model 

in simulations;  

- PDC system in real time control of the air 

temperature in the laboratory scale dryer.  

The investigation of the systems via simulations 

and in real time control is carried out using the 

facilities of MATLAB
TM 

and its Toolboxes [19, 20]; 

The temperature step responses of the simulated 

PDC-TSK system, of the PDC system from the real 

time control and of the Mamdani FLC system from 

the real time control are depicted in Fig.7. The 

control actions are shown in Fig.8. 

The analysis of the results shows: 

 The PDC-TSK system step responses from 

simulation are fast and overdamped in all operation 

points and correspond to the PDC frequency domain 

based design criterion. 

 The PDC system step responses from real 

time control are close to the PDC-TSK system step 

responses but have a small overshoot which can be 

explained by the measurement noise that causes 

oscillations in the control u and the real time control 

restrictions. This proves the good accuracy of the 

TSK plant model and hence the precise tuning of the 

local PI controllers of the PDC; 

 In real time control the PDC system is 2-5 

times faster than the Mamdani FLC system with 

settling times in the range –[60, 200]s against [200, 

450]s; 

 The PDC system control u is 2-3 times 

smaller and with shorter settling time than the 

Mamdani FLC system control except for the short 

peaks at the reference step changes. This is an 

evidence for an improved energy efficiency of the 

control – good systems performance is achieved 

with less energy for the control - low u means low 

duty ratio and less energy consumed by the dryer’s 

heater and fan. 

 

 

6 Conclusion and Future Research 
A novel frequency domain approach is suggested  

 

Temperature step responses 

Fig.7. Temperature step responses from real time 

control in PDC and Mamdani PI FLC systems and 

in simulated PDC-TSK system 

 

 

Control action u  

Fig.8. Control action u from real time control in 

PDC and Mamdani PI FLC systems and in 

simulated PDC-TSK system 

 

for the design of a parallel distributed compensation 

from requirements for global nonlinear system 

stability, robustness and good performance. It 

considers modified transfer functions based TSK 

plant model and PDC and defined for them 

equivalent linear systems frequency responses and 

frequency domain performance indicators. 

The approach is demonstrated for the design of a 

PDC for the real time control of the air temperature 

in a laboratory scale dryer. The step responses to 

different reference changes during the real time 

PDC control prove the closed loop system stability 

and closeness to the desired specifications used in 

the design procedure despite the plant nonlinearity. 

The PDC control reduced the settling time and the 

control action compared to the Mamdani FLC. The 

PDC design is based on relatively accurate modified 

TSK plant model derived and validated from 

processed experimental input-output data rich in 

magnitudes and frequencies. 
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The suggested frequency domain approach can 

be used with all transfer function based design 

methods, developed for linear control systems. In 

this way it facilitates the design and tuning of more 

sophisticated PDCs with various local linear 

controllers such as Smith predictor, internal model 

controllers, multivariable controllers, etc. 

The future research will focus on the 

development of the suggested approach for the 

purpose of the PDC design for MIMO plants. 
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