
Fast Information Detection in Big Data using Neural Networks and 
Matrix Decomposition 

Hazem M. El-Bakry 

Information Systems Dept.,  
Faculty of Computers and Information Sciences, 

 Mansoura University, EGYPT. 
Email: elbakry@mans.edu.eg 

 

 

 
Abstract: - In previous work, fast neural networks (FNNs) for information extraction was presented. The operation 
of these networks relies on performing cross-correlation between the input patterns and the weights of processing 
elements in the frequency domain. In this paper, a new strategy to accelerate this approach is introduced. Such 
strategy applies the concept of divide and conquer to reduce the number of calculation steps required by FNNs. The 
big data matrix is decomposed into smaller sub-matrices. Each generated sub-matrix is processed by using a single 
FNN implemented in the frequency domain. As a result, the speed up ratio is increased with the size of the input 
big data matrix. This is in contrast to using only FNNs. Simulation results show that the proposed approach for 
information detection in big data is faster than the conventional neural networks and FNNs. Moreover, 
experimental results for big data matrices with different sizes show good performance. 

 
Key-Words: - Big data, Neural networks, Cross correlation, Frequency domain, Fast information detection 

 
 

1 Introduction 
Information detection in big data has many important 
applications in different fields. Examples are the data 
stored in our computers, storage devices, mobile 
communications, social networks, Internet documents, 
Internet search indexing and sensor networks. In these 
applications, high speed detection is a critical issue. 
Therefore, in this paper a new algorithm for fast 
information detection in big data is introduced. Big 
data is term that describes the exponential growth of 
vast amount of data. Big data usually includes data 
sets with large sizes beyond the ability of existing 
software tools to process input data within a short 
time. When dealing with big data, organizations face 
difficulties in being able to manipulate theses big data 
to get the required information. Analyzing big data is 
a complex problem in data processing because 
standard tools and procedures are not designed to 
search among these massive data [7-12]. 
The speed of neural networks was enhanced for 
information extraction from big data [1]. This was 
done by applying cross-correlation in the frequency 
domain between the matrix of big data and weights of 
neural networks. Our theory of FNNs was applied 
successfully for speeding up object/face detection [2-

6]. The fundamental contribution of this paper is to 
further accelerate FNNs and achieve faster FNNs.  
The rest of this paper is organized as follows: section 
2 describes the concept of FNNs for information 
detection in a given matrix. A faster approach for 
information detection by applying matrix 
decomposition is presented in section 3. Applying 
parallel processing techniques to accelerate this new 
approach is introduced in section 4. 

 
2 Fast Information Detection using 
Neural Networks 
In this section, a fast algorithm for information 
detection is presented. Such algorithm relies on 
performing cross correlations between the tested 
matrix and the sliding window (20x20 elements) in 
two dimensions. The sliding window contains the 
weights that located between the input units and the 
first hidden layer. According to the convolution 
theorem, the convolution of r with s in the spatial 
domain is typically equivalent to the final output of 
the following procedures:  

1. Calculate the Fourier transform of r and s and 
let the results be R and S.  

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 49 Volume 15, 2016

mailto:elbakry@mans.edu.eg
http://www.webopedia.com/TERM/D/data_set.html


2. Multiply R and S element by element. Let the 
result of this product D.  

3. Finally, compute the inverse Fourier 
transform of D to achieve the same result of 
convolution in the spatial domain.  

The cross correlations can be realized in the frequency 
domain by the same way. Thus, information detection 
process can be accelerated in an order of magnitude 
[1-6].      

In the test phase, a sub matrix I of size mxn (sliding 
window) is selected from the input big data matrix 
with size PxT. Such sub-matrix is applied to the first 
hidden layer of the neural network. Assume that Wi is 
the vector of weights located between the input sub 
matrix and the first hidden layer. Such vector has mxn 
elements and can be described as mxn dimensional 
matrix. The final result of each neuron in the hidden 
layer h(i) can be expressed according to the following 
equation:  











∑
=

+∑
=

=
m

1j ibk)k)I(j,(j,
n

1k iXaih          (1) 

where, b(i) is the bias of each hidden neuron (i) and a 
is the nonlinear activation function. The output of 
each hidden processing element for a tested sub-
matrix I is represented by Eq.1. It can be evaluated for 
the big data matrix Z as: 











∑
−=

∑
−=

+++

=

m/2

m/2j

n/2

n/2k ibk)vj,  Z(uk)(j,iXa

v)(u,ih

  (2) 

Eq.2 is equivalent to cross correlation operation 
performed in time domain. For any two matrices f and 
d, their cross correlation can be determined by [13]: 









∑
∞

−∞=
∑
∞

−∞=
++

=⊗

m n
n)n)d(m,ym,f(x

y)d(x,y)f(x,
           (3) 

Therefore, Eq.2 may be expressed as follows: 

( )ibiXZaih +⊗=                  (4) 

where, hi is the activity of the hidden processing 
element (i) when the weight matrix is applied at 
location (p,t) and (p,t) ∈[U-m+1,V-n+1].  

Eq. 4 can be realized in the frequency domain as 
follows: 

( ) ( )( )iX*FZF1FiXZ •−=⊗           (5) 

So, by performing cross correlation operation between 
the input big data matrix and the weights of the first 
hidden layer, the speed of information detection in big 
data will be increased compared to traditional neural 
networks. By the same way, the final result can be 
represented according to the following equation:  









∑
=

+=
µ

1i
ob)tp,(ih (i)owat)O(p,       (6) 

where, µ is the number of neurons in the first hidden 
layer. bo is the bias of output neuron. O(p,t) is the 
output of the neural network when the sliding window 
of weights is located at the position (p,t) in the tested 
big data matrix Z, and wo represents the vector of 
weights situated between the last hidden layer and the 
output stage. 

The computational complexity of cross correlation 
implemented in the frequency space can be 
investigated as explained below [1-6]: 
1- For a given matrix of NxN elements, a number of 
complex calculation steps equal to N2log2N2 is 
required to compute 2D-FFT. Computing the 2D-FFT 
of the weight matrix for each neuron in the first 
hidden layer requires the same number of complex 
calculation steps.  

2- Furthermore, the inverse 2D-FFT must be 
determined for each processing element in the first 
hidden layer. Therefore, µ backward and (µ+1) 
forward transforms have to be computed. As a result, 
for a NxN tested matrix, the total number of the 2D-
FFT to compute is (2µ+1)N2log2N2. 

3- In addition, the processed big data matrix and the 
weights must be dot multiplied in the frequency 
domain. Therefore, a number of complex calculation 
steps equal to µN2 should be considered. So, 6µN2 
real calculation steps are required to perform complex 
dot product in the frequency space. 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 50 Volume 15, 2016



4- The resulted number of calculation steps required 
by fast neural networks is complex. In order to 
compare with traditional neural networks such number 
must be converted into a real version. It is known that 
(N2/2)log2N2 complex multiplications and N2log2N2 
complex additions are required to perform 2D-FFT 
[14]. Every complex multiplication requires 6 real 
calculation steps and every complex addition needs 2 
real calculation steps. So, the total number of 
calculation steps required to perform the 2D-FFT for a 
big data two dimensional matrix is: 

ρ=6((N2/2)log2N2) + 2(N2log2N2)           (7) 

Eq.7 can be reformulated as: 

ρ=5(N2log2N2)                           (8) 

5- Moreover, to perform cross correlation in the 
frequency domain, the weight and input big data 
matrices must have the same size. Because the weight 
matrix is the smaller, a number of zeros = (N2-n2) 
must be added to that matrix. This operation requires a 
total real number of calculation steps = µ(N2-n2) for 
all processing elements. Furthermore, after the 2D-
FFT of the weight matrix is determined, the conjugate 
of this matrix must be evaluated. So, a real number of 
calculation steps =µN2 should be added in order to 
compute the conjugate of the weight matrix for all 
processing elements on the hidden layer. In addition, a 
number of real calculation steps equal to N is required 
to create butterflies complex numbers (e-jk(2Πn/N)), 
where 0<K<L. These (N/2) complex numbers are 
multiplied by the elements of the input big data matrix 
or by previous complex numbers during the 
calculation of 2D-FFT. Moreover, two real floating 
point calculation steps are required to create a 
complex number. As a result, the total number of 
calculation steps required for fast neural networks 
becomes: 

σ=((2µ+1)(5N2log2N2) +6µN2+µ(N2-n2)+ µN2 +N ) (9) 

which can be simplified to: 

σ=((2µ+1)(5N2log2N2) +µ (8N2-n2) +N )        (10) 
 
6- Under the same conditions, by using a moving 
window of size nxn for the same big data matrix of 
NxN elements, (µ(2n2-1)(N-n+1)2) calculation steps 

are required by conventional traditional neural 
networks for detecting specific information in the 
input big data matrix. The theoretical speed up factor 
η can be computed as follows: 

 
N)n-µ(8N)Nlog1)(5N2µ(

)1)(1(2nµ
222

2
2

222

+++

+−−
=

nNη  

(11) 
The theoretical speed up ratio with various sizes of the 
tested big data matrix and different sizes for the 
weight matrix is listed in Table 1. The practical speed 
up ratio for processing big data matrices of various 
sizes with weight matrices of different sizes is 
described in Table 2.  

3 Faster Neural Networks for 
Information Detection in Big Data 
Here, a novel faster neural algorithm for information 
detection in big data is presented. Table 3 shows the 
number of calculation steps required for FNNs with 
various matrix sizes. By investigating these values, it 
is clear that as the size of the big data matrix is 
increased, the number of calculation steps required by 
FNNs is much increased. For example, the number of 
calculation steps consumed by a matrix of size 
(50x50) is much less than that needed for a matrix of 
size (100x100). Also, the number of calculation steps 
needed for a matrix of size (200x200) is much less 
than that required for a matrix of size (400x400). As a 
result, for example, if a matrix of size (100x100) is 
divided into 4 smaller sub-matrices of size (50x50), 
then the speed up ratio for information detection in 
big data will be increased. The number of calculation 
steps required by faster neural networks (fast neural 
networks + matrix decomposition) to process a big 
data matrix after decomposition can be computed as 
follows: 

1. Suppose that the size of the big data matrix has 
(NxN) elements. 
2. Such matrix is divided into α (LxL elements) sub-
matrices. So, the speed up ratio can be determined 
according to the following equation: 

α=(N/L)2                              (12) 
3. Let the number of calculation steps required for 
processing one (LxL) sub-matrix is ε. So, the total 
number of calculation steps (T) needed to manipulate 
these smaller sub-matrices generated after matrix 
decomposition will be: 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 51 Volume 15, 2016



T = α ε                                 (13) 
The final speed up ratio (ηd ) can be evaluated as 
follows: 

ΔsN)2n-2
s(8Nα)2

sN2log2
sα)(5N1)α(

21)n1)(N2(2n

dη

µµ(
µ

+++++

+−−

=

   

(14) 
where, 
    
Ns: is the size of each small sub-matrix, and Ns=L. 
∆: is a small number of calculation steps required to 
determine the final values at the boundaries between 
sub-matrices. Such number depends on the size of the 
sub-matrices. 

To find information of a specific size (for ex. 20x20) 
in a given big data matrix of any size by using faster 
neural networks after matrix decomposition into 
smaller sub-matrices, the optimal size of these sub-
matrices must be computed. By investigating the 
values clarified in Table 3, it is obvious that, the best 
size for the sub-matrix which consumes the smallest 
number of calculation steps is 25x25 elements. 
Furthermore, Fig. 1 clarifies that the fastest speed up 
ratio is obtained when using a sub-matrix of size 
(25x25). In addition, the same figure explains that the 
speed up ratio is increased when the size of the sub-
matrix (L) is decreased. A comparison between the 
speed up ratio for FNNs and faster neural networks 
with various sizes of the processed big data matrices 
is listed in Table 4. In contrast to using only FNNs, by 
using faster neural networks, it is obvious that the 
values of speed up ratio are increased with the size of 
big data matrix. As shown in Fig. 2, the number of 
calculation steps needed by FNNs increases rapidly 
with the size of the input big data matrix. So, the 
speed up ratio is decreased with the size of the input 
big matrix. While in case of using faster neural 
networks, the number of calculation steps needed by 
faster neural networks is increased smoothly. 
Therefore, the speed up ratio is increased. Increasing 
the speed up ratio with the size of the input big data 
matrix is very important for many applications. In 
addition, for massively big data matrices, while the 
speed up ratio of FNNs for information detection is 
decreased, the speed up ratio still increases in case of 
using faster neural networks as shown in Table 5. 
Moreover, as shown in Fig. 3, the speed up ratio in 
case of faster neural networks is increased with the 
size of the weight matrix which has the same size (n) 

as the required information. For example, it is obvious 
that the speed up ratio for detecting information of 
size 30x30 is larger than that of size 20x20. 
Simulation results for the speed up ratio in case of 
using FNNs and faster neural networks are clarified in 
Table 6. Practical results confirm the theoretical 
considerations. This proves that the speed up ratio 
after matrix decomposition is faster than using only 
FNNs. In addition, the practical speed up ratio is 
increased with the size of the input big data matrix. 

It should be taken into account that the dimensions of 
the generated sub matrix after matrix decomposition 
(L) must not be less than the dimensions of the 
required information to be detected which has the 
same size as the weight matrix as follows:  

nL ≥                                    (15) 

In order not to loss any information in the input big 
data matrix, Eq. 15 clarifies the constrain which 
governs the relation between the length of the 
generated sub matrix after matrix decomposition and 
the size of weight matrix. 
 
For example, when searching for information of size 
(20x20), the big data matrix must be divided into 
smaller sub matrices of size not less than 20x20.  

4 Faster Information Detection in Big 
Data using a Neural Parallel Processing 
Technique 
In this section, a neural parallel processing technique 
is presented to enhance the performance of 
information detection in big data. As described in the 
previous section, for each sub-matrix, a single FNN is 
used to extract the required information from the 
matrix of big data. In order to reduce the manipulation 
time as well as enhance the speed up ratio of 
information detection, parallel processing approaches 
are used. Each sub-matrix is manipulated by using a 
single FNN simulated on a separated node in a 
grid/clustered system or using a single processor. The 
number of calculation steps (ω) manipulated by each 
node/processor (sub-matrices processed by one 
node/processor) =  

nodes/ProcessorsofNumber
imagessubofnumbertotalThe −

=ω            (16) 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 52 Volume 15, 2016



Pr
αω =                             (17) 

where, Pr is the number of nodes or processors. 

The total number of calculation steps (γ) required to 
test a big data matrix by using this approach can be 
computed as follows: 

γ=ωε                                (18) 

As shown in Table 7, using a symmetric 
multiprocessing system with 16 parallel processing 
elements or 16 nodes in either a massively parallel 
processing system or a clustered system, the speed up 
ratio (with respect to conventional neural networks) 
for information detection is increased. By dividing 
each sub-matrix into smaller groups, a further 
reduction in the calculation steps can be done. For 
each group, the neural processing (multiplication of 
input values by weights and summation) is performed 
for each group by using a single processing element. 
This operation is done for all of these groups as well 
as other groups in all of the sub-matrices at the same 
time. The optimal case can be achieved when each 
group contains only one element. In this case, one 
operation is required to multiply one element by its 
weight and also a small number of calculation steps is 
needed to compute the total summation for each sub-
matrix. If the sub-matrix has n2 elements, then the 
required number of processing elements will be n2. 
Therefore, the number of calculation steps will be 
αq(1+β), where β is a small number depending on the 
value of n. For example, when n=20, then β=6 and if 
n=25, then β=7. The speed up ratio can be computing 
as: 

η=O((2n2-1)(N-n+1)2/α(1+β))               (19)  

Furthermore, if the number of processing elements = 
αn2, then the number of calculation steps will be 
q(1+β), and the speed up ratio can be calculated: 

η=O((2n2-1)(N-n+1)2/ (1+β))                (20)  

Moreover, if the number of processing elements = 
qαn2, then the number of calculation steps will be 
(1+β), and the speed up ratio can be computed as: 

η=O(q(2n2-1)(N-n+1)2/ (1+β))               (21)  

In this case, as the length of each group is very small. 
As a result, there is no need to apply cross correlation 
between the input big data matrix and the weights of 
the neural network in the frequency domain.  

5 Conclusion 
Faster neural networks have been presented for 
accelerating information detection in big data. Such 
approach has decomposed the input big data matrix, 
which contains big data, into many small in size sub-
matrices. This has been achieved by performing cross-
correlations in the frequency domain between these 
sub-matrices and the weights of neural processing 
elements. Furthermore, by using faster neural 
networks (FNNs + matrix decomposition), the speed 
up ratio has been increased with the size of the big 
data. This is in contrast to using only FNNs. 
Experimental results for different big data matrices 
have proven that the proposed faster neural networks 
detects the required information in real-time 
efficiently. Moreover, it can locate the required 
information despite noise and missing data. 
Experimental results have confirmed the theoretical 
considerations. 
 
References: 
[1] Hazem M. El-Bakry, Nikos E. Mastorakis, 

Michael E. Fafalios, “Fast Information Retrieval 
from Big Data by using Cross Correlation in the 
Frequency Domain,” International Journal of 
Neural Networks and Advanced Applications, Vol. 
1, 2014, pp. 68-72. 

[2] Hazem M. El-Bakry, "An Efficient Algorithm for 
Pattern Detection using Combined Classifiers and 
Data Fusion," Information Fusion Journal, vol. 11, 
2010, pp. 133-148.  

[3] Hazem M. El-Bakry, "Fast Virus Detection by 
using High Speed Time Delay Neural Networks," 
Journal of Computer Virology, vol. 6, no. 2, 2010, 
pp. 115-122. 

[4] H. M. El-Bakry, and Q. Zhao, "Fast Normalized 
Neural Processors For Pattern Detection Based on 
Cross -Correlation Implemented in the Frequency 
Domain," Journal of Research and Practice in 
Information Technology, Vol. 38, No.2, May 
2006, pp. 151-170. 

[5] H. M. El-Bakry, and Q. Zhao, "Speeding-up 
Normalized Neural Networks For Face/Object 
Detection," Machine Graphics & Vision Journal 
(MG&V), vol. 14, No.1, 2005, pp. 29-59. 

[6] H. M. El-Bakry, and Q. Zhao, "Fast Time Delay 
Neural Networks," the International Journal of 
Neural Systems, vol. 15, No.6, December 2005, 
pp.445-455. 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 53 Volume 15, 2016



[7] S. del Rio, V. L pez, J.M. Benitez, F. Herrera, On 
the use of MapReduce for imbalanced big data 
using Random Forest, ElSEVIER, (2014). 

[8] X.-W. Chen, Big Data Deep Learning: Challenges 
and Perspectives, IEEE, (2014). 

[9] Yingyi Bu, Vinayak Borkar, Michael J. Carey, 
Joshua Rosen, Neoklis Polyzotis, Tyson Condie, 
Markus Weimer, Raghu Ramakrishnan, Scaling 
Datalog for Machine Learning on Big Data, (2012). 

[10] A. Cassioli , A. Chiavaioli , C. Manes , M. 
Sciandrone, An incremental least squares algorithm 
for large scale linear classification, ElSEVIER, 
(2012). 

[11] C.L. Philip Chen, Chun-Yang Zhang, Data-
intensive applications, challenges, techniques and 

technologies: A survey on Big Data, ElSEVIER, 
(2013). 

[12] Alicia Fernández a, ÁlvaroGómez a, 
FedericoLecumberry a,n, ÁlvaroPardo b, Ignacio 
Ramírez a, Pattern Recognitionin Latin 
Americainthe “Big Data” Era, ElSEVIER,(2014). 

[13] R. Klette, and Zamperon, "Handbook of image 
processing operators," John Wiley & Sons, Ltd, 
1996. 

[14] James W. Cooley and John W. Tukey, "An 
algorithm for the machine calculation of complex 
Fourier series," Math. Comput. 19, 297–301 
(1965). 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 54 Volume 15, 2016



Table 1. The Theoretical Speed up Ratio for Big Data 
Matrices with Different Sizes 

Matrix 
size 

Speed up 
ratio (n=20) 

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30) 

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 
1100x1100 3.62 5.60 7.99 
1200x1200 3.58 5.55 7.93 
1300x1300 3.55 5.51 7.93 
1400x1400 3.53 5.47 7.82 
1500x1500 3.50 5.43 7.77 
1600x1600 3.48 5.43 7.72 
1700x1700 3.45 5.37 7.68 
1800x1800 3.43 5.34 7.64 
1900x1900 3.41 5.31 7.60 
2000x2000 3.40 5.28 7.56 

 

Table 2. Practical Speed up Ratio for  Big Data 
Matrices with Different Sizes  

Matrix 
size 

Speed up 
ratio (n=20) 

Speed up 
ratio (n=25) 

Speed up 
ratio (n=30) 

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25 

 

 
Table 3. The Number of Calculation Steps Required by 

FNNs  for  Big Data Matrices of Sizes (25x25 - 
1000x1000 elements), µ=30, n=20 

Matrix size No. of calculation steps in case 
of using FNNs 

25x25 1.9085e+006 
50x50 9.1949e+006 

100x100 4.2916e+007 
150x150 1.0460e+008 
200x200 1.9610e+008 
250x250 3.1868e+008 
300x300 4.7335e+008 
350x350 6.6091e+008 
400x400 8.8203e+008 
450x450 1.1373e+009 
500x500 1.4273e+009 
550x550 1.7524e+009 
600x600 2.1130e+009 
650x650 2.5096e+009 
700x700 2.9426e+009 
750x750 3.4121e+009 
800x800 3.9186e+009 
850x850 4.4622e+009 
900x900 5.0434e+009 
950x950 5.6623e+009 

1000x1000 6.3191e+009 

 

 

 
Table 4. The Speed up Ratio in case of using FNNs 

and FNNs after  Big Data  Matrix Decomposition into 
Sub-Matrices (25x25 elements) for  Big Data Matrices 

of Different Sizes (from N=50 to N=1000, n=25, 
µ=30) 

Matrix 
size 

Speed up ratio in 
case of using 

FNNs 

Speed up ratio in case of 
using FNNs after matrix 

decomposition 
50x50 2.7568 5.0713 

100x100 5.0439 12.4622 
150x150 5.6873 15.6601 
200x200 5.9190 17.3611 
250x250 6.0055 18.4073 
300x300 6.0301 19.1136 
350x350 6.0254 19.6218 
400x400 6.0059 20.0047 
450x450 5.9790 20.3034 
500x500 5.9483 20.5430 
550x550 5.9160 20.7394 
600x600 5.8833 20.9032 
650x650 5.8509 21.0419 
700x700 5.8191 21.1610 
750x750 5.7881 21.2642 
800x800 5.7581 21.3546 
850x850 5.7292 21.4344 
900x900 5.7013 21.5054 
950x950 5.6744 21.5689 

1000x1000 5.6484 21.6260 
 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 55 Volume 15, 2016



Table 5. The Speed up Ratio in case of using FNNs and 
FNNs after Big Data Matrix Decomposition into Sub-

Matrices (25x25) for very large Matrices (from 
N=100000 to N=2000000, n=25, µ=30) 

Matrix size 
 

Speed up 
ratio in case 

of using 
FNN 

Speed up ratio in 
case of using FNN 

after matrix 
decomposition 

100000x100000 3.6109 22.7038 
200000x200000 3.4112 22.7092 
300000x300000 3.3041 22.7110 
400000x400000 3.2320 22.7119 
500000x500000 3.1783 22.7125 
600000x600000 3.1357 22.7128 
700000x700000 3.1005 22.7131 
800000x800000 3.0707 22.7133 
900000x900000 3.0448 22.7134 

1000000x1000000 3.0221 22.7136 
1100000x1100000 3.0018 22.7137 
1200000x1200000 2.9835 22.7138 
1300000x1300000 2.9668 22.7138 
1400000x1400000 2.9516 22.7139 
1500000x1500000 2.9376 22.7139 
1600000x1600000 2.9245 22.7140 
1700000x1700000 2.9124 22.7140 
1800000x1800000 2.9011 22.7141 
1900000x1900000 2.8904 22.7141 
2000000x2000000 2.8804 22.7141 

 

Table 6. The Practical Speed up Ratio in case of using 
FNNs and FNNs after Big Data Matrix Decomposition 

into Sub-Matrices (25x25 elements) for Big Data 
Matrices  of Different Sizes (from N=100 to N=2000, 

n=25, µ=30) 

Matrix 
size 

Speed up ratio 
in case of 

using FNNs 

Speed up ratio in case 
of using FNNs after 

matrix decomposition 
100x100 10.75 34.55  
200x200 9.19 35.65   
300x300 8.43 36.73  
400x400 7.45 37.70  
500x500 7.13 38.66  
600x600 6.97 39.61  
700x700 6.83 40.56  
800x800 6.68 41.47  
900x900 6.79 42.39  

1000x1000 6.59 43.28  
1100x1100 6.66 44.14 
1200x1200 6.62 44.95 
1300x1300 6.57 45.71 
1400x1400 6.53 46.44 
1500x1500 6.49 47.13 
1600x1600 6.45 47.70 
1700x1700 6.41 48.19 
1800x1800 6.38 48.68 
1900x1900 6.35 49.09 
2000x2000 6.31 49.45 

 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 56 Volume 15, 2016



 
Table 7. The Speed up Ratio in case of using FNN after Big Data Matrix  Decomposition into Sub-matrices 

(25x25 elements) for Big Data matrices of Different Sizes (from N=50 to N=1000, n=25, µ=30) using 16 Parallel 
Processors or 16 Nodes 

Matrix size Speed up ratio  

50x50 81.1403 
100x100 199.3946 
150x150 250.5611 
200x200 277.7780 
250x250 294.5171 
300x300 305.8174 
350x350 313.9482 
400x400 320.0748 
450x450 324.8552 
500x500 328.6882 
550x550 331.8296 
600x600 334.4509 
650x650 336.6712 
700x700 338.5758 
750x750 340.2276 
800x800 341.6738 
850x850 342.9504 
900x900 344.0856 
950x950 345.1017 

1000x1000 346.0164 
 

 

0

2

4

6

8

10

100 300 500 700 900 1100 1300 1500 1700 1900

N Elements

Sp
ee

d 
up

 R
at

io

L=25 L=50 L=100

 
Fig. 1: The speed up ratio for big data matrices decomposed into different in size sub-matrices (L). 

 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 57 Volume 15, 2016



0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
1.40E+09
1.60E+09

100 300 500 700 900 1100 1300 1500 1700 1900
N Elements

N
um

be
r o

f C
om

pu
ta

tio
n 

St
ep

s Number of Computation Steps
Required by Faster Neural Networks
Number of Computation Steps
Required by FNNs

 
Fig. 2: A comparison between the number of calculation steps required by FNNs before and after big data matrix 

decomposition. 

0

5

10

15

20

100 300 500 700 900 1100 1300 1500 1700 1900

N elements

Sp
ee

d 
up

 R
at

io

Speed up ratio (n=20 pixels)
Speed up ratio (n=25 pixels)
Speed up ratio (n=30 pixels)

 
Fig. 3: The speed up ratio in case of big data matrix decomposition and different window size (n), (L=25x25). 

WSEAS TRANSACTIONS on SYSTEMS Hazem M. El-Bakry

E-ISSN: 2224-2678 58 Volume 15, 2016


	Hazem M. El-Bakry
	Key-Words: - Big data, Neural networks, Cross correlation, Frequency domain, Fast information detection



