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1 Introduction
In recent years, linear switching systems are being
used to study modelling control problems in diverse
fields, such as electrical networks, networked con-
trol systems, power electronics aerospace, automotive
technologies.

At this time, a large list of articles can be found on
fundamental topics like stability, controllability and
reachability of switched linear systems (see [18] and
[9] for example), the authors Meng and Zhang in [14]
provided necessary conditions and sufficient condi-
tions for reachability. However, a small number of
contributions can be found dealing with disturbance
decoupling problem on linear switching systems.

It is well known that robustness is an important
objective in control system theory because the design
of plants are vulnerable to unpredicted external distur-
bances and noises causing always difference between
the mathematical model used for design and the actual
plant. Therefore, it is required to find if it is possible,
a feedback to guarantee the stability and performance
of the system under such uncertainties.

Different authors analyze robustness and satabil-
ity problems for linear systems (see [3], [4] and [8]
for example). Disturbance decoupling problems have
been studied for time invariant linear systems under
a geometrical point of view by using the concepts of
some particular invariant subspaces associated to the
systems (see [2] and [7] for example).

This concept of invariant subspaces has been gen-
eralized to various types of systems as for example
singular linear systems in order to study the same kind
of problems. N. Otsuka in [16] and E. Yurtseven,
W.P.M.H. Heemels, M-K. Camlibel in [19], use si-

multaneous invariant subspaces to study families of
linear systems; concretely study disturbance decou-
pling problem for switched systems, that is to say fam-
ilies of subsystems with switching rule that concerns
with several environmental factors and different con-
trollers, which many authors studied for different kind
of switched systems as for example E. Feron [5], D.
Liberson [13] and Z.D. Sun and S.S. Ge [18], among
others.

Singular switched linear systems are an important
class of switched systems that appears in many engi-
neering problems as for example electrical networks.

Example 1
Let us consider a resistor-capacitor (RC) circuit

as shown in the figure 1.
Where C represents capacitance, R load resis-

tance and E the source voltage.
Equations when the switch S1 is closed are:(

RC 0
0 0

)(
Q̇

İ

)
=(

−1 0
1 RC

)(
Q
I

)
+

(
C
−C

)
E

(1)

and when the switch S2 is closed are:(
RC 0
0 0

)(
Q̇

İ

)
=(

−1 0
RC −1

)(
Q
I

)
+

(
0
0

)
E.

(2)

We are concerned with dynamical systems de-
scribed by a combination of linear dynamical systems
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Figure 1: RC-Circuit

and discrete switching events, in the following man-
ner.

Definition 1 A switched singular linear system is a
system which consists of several linear subsystems
and a switching well-defined path σ taking values into
the index set M = {1, . . . , `} which indexes the dif-
ferent subsystems.

Eσẋ(t) = Aσx(t) +Bσu(t),
y(t) = Cσx(t)

}
(3)

where Ei, Ai ∈ Mn(IR), Bi ∈ Mn×m(IR), Ci ∈
Mp×n(IR, and ẋ = dx/dt.

i) switching path σ : [t0, T ) −→M , t0 < T ≤ ∞,
for some initial time t0,

ii) switching sequence of σ over [t0, T ),
{(t0, σ(t+0 )), (t1, σ(t+1 ), . . . , (t`, σ(t+` ))}.

Remark 2 For simplicity, the singular switched lin-
ear system 3, will be written simply as a quadruple
of matrices (Eσ, Aσ, Bσ, Cσ) and the standard ones
as a triple of matrices (Aσ, Bσ, Cσ). And in the case
where the matrices Cσ are not involved in the prob-
lem, will be written as (Eσ, Aσ, Bσ) for the singular
case and (Aσ, Bσ) for the standard case.

The paper is organized as follows. In section 2,
the disturbance decoupling problem is presented, sec-
tion 3 is devoted to define and construct simultane-
ously invariant subspaces. Finally, in section 4, we

Figure 2: Switching times (discontinuities of σ for
` = 3)

apply the concept of simultaneously generalized in-
variant subspace to obtain some conditions to solve
the disturbance decoupling problem for some particu-
lar cases of singular switched linear systems.

2 Disturbance decoupling problem
Definition 3 A switched singular linear system with
“continuous” disturbance is a system which consists
of several linear subsystems with disturbance and a
piecewise constant map σ taking values into the index
set M = {1, . . . , `} which indexes the different sub-
systems. In the continuous case, such a system can be
mathematically described by

Eσẋ(t) = Aσx(t) +Bσu(t) +Dσd(t)
y(t) = Cσx(t)

(4)

where Eσ, Aσ ∈ Mn(IC), Bσ ∈ Mn×m(IC), Dσ ∈
Mn×q(IC), Cσ ∈Mp×n(IC) and ẋ = dx/dt.

Remark 4 The term d(t), t ≥ 0, represents a distur-
bance, which may represent modeling or measuring
errors, noise, or higher order terms in linearization.

Problem 2.1 The disturbance decoupling problem is
stated as follows: find necessary and sufficient con-
ditions under which we can choose proportional and
derivative feedback such that, the matrix pencil (Eσ+
BσF

E
σ , Aσ + BσF

A
σ ) is regular of index at most one

and Dσ has no influence on the output y.

Remark 5 It is not sufficient that the subsystems of
a switched linear system are disturbance decoupled
for the switched linear system itself to be disturbance
decoupled.

Example 2
Consider a switched singular system consisting of

the following two systems with disturbance
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- First subsystem1
1

0


ẋ1(t)ẋ2(t)
ẋ3(t)

 =

0
0

1


x1(t)x2(t)
x3(t)


+

0
0
1

u(t) +

0
1
0

 d(t)

y(t) =
(
1 0 0

)x1(t)x2(t)
x3(t)




- Second subsystem1

1
0


ẋ1(t)ẋ2(t)
ẋ3(t)

 =

0
0

1


x1(t)x2(t)
x3(t)


+

0
0
1

u(t) +

1
0
0

 d(t)

y(t) =
(
0 1 0

)x1(t)x2(t)
x3(t)




With the following switched law:

σ(t) =

{
1 0 ≤ t < t1
2 t1 ≤ t

It is easy to compute the output at t1 that is given
by

y(t1) =
(
0 1 0

)x1(0) +
∫ t
t1
d(τ)dτ

x2(0) +
∫ t1
0 d(τ)dτ

−u(t1)

 =

x2(0) +
∫ t1
0 d(τ)dτ

Then the switched system is not disturbance de-
coupled.

Nevertheless, both subsystems are disturbance
decoupled:

- First subsystem:

(
1 0 0

) x1(0)

x2(0) +
∫ t
0 d(τ)dτ

−u(0)

 = x1(0)

- Second subsystem:

(
0 1 0

)x1(0) +
∫ t
0 d(τ)dτ

x2(0)
−u(0)

 = x2(0)

The problem of constructing feedbacks that sup-
press the disturbance in the sense that d(t) does not af-
fect the input-output behavior of the system has been
largely analyzed in both cases standard and singular
state space systems (see [1], [15], [17] for example).
In this paper we analyze the disturbance decoupling
problem for standard switched systems and a particu-
lar case of singular switched systems, using geometric
tools.

3 Geometric Tools
The disturbance decoupling problem of a structural
control problem can be solved by geometric methods.

3.1 Invariant subspaces

Remember that a subspace G ⊂ ICn is called invariant
under (A,B) (also called robust controlled invariant
subspace) if if

AG ⊂ G+ ImB (5)

Equivalently, we have that a subspace G is
(A,B)-invariant if

(A+BFA)G ⊂ G.

This definition is easily generalized to (E,A,B)-
invariant subspaces in the following maner

Definition 6 A subspace G ⊂ ICn is said invariant
under (E,A,B), if

AG ⊂ EG+ ImB (6)

(For more information see [6] and [10], for exam-
ple).

Remark 7 Observe that if E = In, this definition co-
incides with definition of (A,B)- invariant subspace.

We can construct (E,A,B)-invariant subspaces
in the following manner. Let H ⊂ ICn be a subspace
(in particular we can chose H = ICn, we define

Gk+1 = H∩{x ∈ ICn | Ax ∈ EGk+ImB}, G0 = H,

limit of recursion exists and we will denote by G(H).
This subspace is the supremal (E,A,B)-invariant
subspace contained in H .

Example 3
Let (E,A,B) be a triple of matrices with E =1
1

0

, A =

0
1

1

, B =

1
0
0

 and H =

{(x, y, z) | x = 0},
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Computation of G1:0
1

1


xy
z

 =

1
1

0


0
µ
ν

+

λ0
0


[(x, y, 0)] ∩H = [(0, 1, 0)] = G1.

Computation of G2:0
1

1


xy
z

 =

1
1

0


0
µ
0

+

λ0
0


[(x, y, 0)] ∩ H = [(0, 1, 0)] = G2 = G1. Then G =
G1.

Obviously AG ⊂ EG+ ImB.

Proposition 8 Let (E,A,B) be a triple of matrices.
A subspace G ⊂ ICn is invariant under (E,A,B) if
and only if is invariant under (E+BFE , A+BFA, B)
for all possible feedbacks FE , FA ∈Mm×n(IC).

Proof:
Suppose that AG ⊂ EG+ ImB, then for all x ∈

G, there exists y ∈ G, v = Bw ∈ ImB such that
Ax = Ey +Bw so, for any FE , FA ∈Mm×n(IC), we
have

Ax+BFAx−BFAx = Ey +BFEy −BFEy +Bw
(A+BFA)x = (E +BFE)y +B(FAx− FEy + w).

Consequently, for all x ∈ G, (A + BFA)G ⊂
(E +BFE)G+ ImB.

Reciprocally. If G ⊂ ICn is invariant under (E +
BFE , A + BFA, B) for all possible feedbacks FE ,
FA ∈ Mm×n(IC), in particular it is invariant under
(E +BFE , A+BFA, B) for FE = FA = 0. ut

Let (E1, A1, B1), (E2, A2, B2) be two triples of
matrices, we say that they are equivalent, if and only
if, there exist invertible matrices P,Q ∈ Gl(n) and
R ∈ Gl(m) and rectangular matrices FE , FA ∈
Mm×n such that

(E2, A2, B2) =
(QE1P +QB1FE , QA1P +QB1FA, QB1R).

Proposition 9 Let (E1, A1, B1), (E2, A2, B2) be two
equivalent triples. Then G ⊂ ICn is an invariant sub-
space under (E1, A1, B1) if and only if P−1G is in-
variant under (E2, A2, B2).

Proof:
Suppose that A1G ⊂ E1G+ ImB.
Then,

A2P
−1G

= (QA1P +QB1FA1)P−1G
= Q(A1G+B1FA1P

−1G) ⊂ Q(E1G+ ImB1)
= Q((Q−1E2P

−1 −Q−1B2R
−1FEP

−1)G+
ImQ−1B2R

−1)
= Q(Q−1(E2P

−1 −B2R
−1FEP

−1)G+
Q−1ImB2R

−1)
= QQ−1((E2P

−1 −B2R
−1FEP

−1)G+
ImB2R

−1)
⊂ (E2 −B2R

−1FE)P−1G+ ImB2.

Now, it suffices to apply proposition 8. ut
Example 4

Let (E1, A1, B1) be the triple in the exam-
ple 3, and G the invariant subspace obtained in it.
Let (E2, A2, B2) = (QE1P + QB1FE , QA1P +
QB1FA, QB1R) be an equivalent triple with

P =

1 0 1
1 2 0
1 0 −1

 , Q =

1 1 1
0 1 1
0 0 1

 ,
FE = FA =

(
1 1 1

)
, R =

(
1
)

.
Clearly3 3 0

2 2 −1
1 0 −1


 0

2λ
0

 =

3 3 2
1 2 0
0 0 0


 0

2λ
0

 .
Consequently,G is a (E2, A2, B2)-invariant subspace.

In particular, if E is an invertible matrix, we have
the following corollary.

Corollary 10 A subspace G is (E,A,B)-invariant if
and only if it is (E−1A,E−1B)-invariant.

Proof:
It suffices to take Q = E−1, P = In, R = Im

and FE = FA = 0 ut
Now, we are going to present a particular case of

invariant subspaces.
First of all we observe the following result.

Proposition 11 Let (A,B) be a standard pair. Then

G = [B,AB, . . . , An−1B]

is a (A,B)-invariant subspace.

Proof:

AG = A[B,AB, . . . , An−1B] = [AB,A2B, . . . , AnB]

Now, it suffices to apply the Cayley-Hamilton theo-
rem. ut
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Theorem 12 Let

Cr =


E B
A E B

. . . . . . . . .
E B
A B


∈Mnr×(n(r−1)+mr)(IC)

be the r-controllability matrix. Suppose r being the
least such that rankCr < (n(r − 1) + mr), and
let
(
v1 . . . vr w1 . . . wr+1

)
∈ KerCr (vi are

vectors in ICn and wi vectors in ICm). Then G =
[v1, . . . , vr] is a (E,A,B)-invariant subspace.

Proof:
We consider v = λ1v1+λ2v2+ . . .+λr−1vr−1+

λrvr, Av = λ1Av1 + λ2Av2 + . . . + λr−1Avr−1 +
λrAvr = λ1(−Ev2 − Bw2) + λ2(−Ev3 − Bw3) +
. . .+ λr−1(−Evr −Bwr)− λrBwr+1 = E(λ1v2 −
λ2v3 − . . . − λr−1vr) + B(−λ1w2 − λ2w3 − . . . −
λr−1wr − λrwr+1) ∈ EG+ ImB. ut

Definition 13 The space sum of all spaces G in the-
orem before is a invariant subspace that we will
call controllability subspace and we will denote it by
C(E,A,B).

Notice that C(E,A,B) is the set of states in which the
system is controllable.

Corollary 14 Let (E,A,B) be a triple with E = In.
In this case the invariant subspace G obtained in
the above theorem, coincides with the controllability
(A,B)-invariant subspaces [B,AB, . . . , Ar−1B].

Proof:
Making block-row elemental transformations to

the matrix Cr we obtain the equivalent matrix


In B
0 In −AB B

. . .
. . .

. . .
In (−1)r−2Ar−2B −AB B
0 (−1)r−1Ar−1B −AB B

 .

ut

3.2 Simultaneously invariant subspaces

For standard case we define simultaneously invariant
subspaces in the following manner.

Definition 15 A subspace G of ICn is said to be si-
multaneously (Ai, Bi)i∈M -invariant; if and only

AiG ⊂ G+ ImBi, ∀i, 1 ≤ i ≤ `.

and we have the following result.

Proposition 16 A subspace G of ICn is simultane-
ously (Ai, Bi)i∈M -invariant if and only if there exist
FAi such that

(Ai +BiFAi)G ⊂ G ∀i, 1 ≤ i ≤ `..

In general, for singular switched linear systems,
we have:

Definition 17 A subspace G of ICn is said to be si-
multaneously (Ei, Ai, Bi)i∈M -invariant; if and only

AiG ⊂ EiG+ ImBi, ∀i, 1 ≤ i ≤ `.

Proposition 18 A subspace G of ICn is simultane-
ously (Ei, Ai, Bi)i∈M -invariant if and only if, for all
FAi and FBi we have

(Ai +BiFAi)G ⊂ (Ei +BiFEi)G.

Proof:
It is a direct consequence of proposition 8. ut

3.3 Construction of Simultaneously invari-
ant subspaces

Analogously to the method to get invariant sub-
spaces, we construct simultaneously invariant sub-
spaces. A.A. Julius, A.J. van der Schaft in [11] with
a similar method, constructs controlled invariant sub-
spaces of standard switched linear systems.

i) For standard switched systems

Definition 19 Let H ⊂ ICn be a subspace, we define:

V0 = H,
Vk+1 = H ∩ {x ∈ ICn | (Ai +BiFAi)x

∈ Vk + ImBi, ∀i, 1 ≤ i ≤ `}.

Proposition 20

Vk+1 ⊂ Vk, ∀k = 0, 1, 2, . . .

Proof:
Clearly, V1 ⊂ V0, and if Vk ⊂ Vk−1, then for all

x ∈ Vk+1 is x ∈ H and ⊕(Ai + BiF
A
i )x = ⊕(Ei +

BiF
E
i )u+⊕Bivi with u ∈ Vk ⊂ Vk−1.
So, ⊕(Ai + BiF

A
i )x ∈ ⊕(Ei + BiF

E
i )Vk−1 +

⊕ImBi, that is to say x ∈ Vk. ut

Remark 21 Limit of recursion exists and we will de-
note by V (H). This subspace is the supremal simulta-
neously (Ai, Bi)-invariant subspace contained in H .
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We are interested in the case where the subspace
is ∩σKerCσ.

So, from now, on we consider

H = ∩σKerCσ.

ii) For singular switched systems

Definition 22 Let H ⊂ ICn be a subspace, we define:

W0 = H,
Wk+1 = H ∩ {x ∈ ICn | (Ai +BiFAi)x

∈ (Ei +BiFEi)Wk + ImBi.∀i, 1 ≤ i ≤ `}.

Proposition 23

Wk+1 ⊂Wk, ∀k = 0, 1, 2, . . .

Proof:
Analogous to proposition 20. ut

Remark 24 Limit of recursion exists and we will de-
note by W (H). This subspace is the supremal simul-
taneously (Ei, Ai, Bi)-invariant subspace contained
in H .

As in the standard case, we are interested in the
case where the subspace is ∩σKerCσ.

So, from now on, we consider

H = ∩σKerCσ.

Example 5
Let (Eσ, Aσ, Bσ, Cσ) be the triples considered in

example 2, and H = ∩σKerCσ = [(0, 0, 1)].
Computing W1: in this particular case E1 = E2,

A1 = A2 and B1 = B2, then

0
0

1


xy
z

 =

1
1

0


0

0
µ

+

0
0
λ


Then, W1 = W0 and W (H) = W0.

4 Solving disturbance decoupling
problem

Hereinafter and in order to simplify notations, we
identify Di by ImDi.

We will use invariant subspaces constructed in
the previous section to analyze the disturbance decou-
pling problem.

The solution for standard case can be found in
[16] and [19], but we show for a better understanding
of Article

Proposition 25 Let (Aσ, Bσ, Cσ) be a standard
switched system with disturbance Dσ. Then the dis-
turbance decoupling problem is solvable if and only
if ∑

Di ⊂ V (H).

with H = ∩iKerCi

Proof:
Suppose that the switched system 4 is activated

by the switched rule as follows.

(Ai1 , Bi1 , Ci1 , Di1)→ (Ai2 , Bi2 , Ci2 , Di2)→ . . . ,
(7)

where i1, i2, i3, . . . ∈M .
When the first system (Ai1 , Bi1 , Ci1 , Di1) is acti-

vated the state space generated by the disturbanceDi1
is

〈Ai1 +Bi1Fi1 | Di1〉
= [Di1 , (Ai1 +Bi1Fi1)Di1 , . . . , (Ai1 +Bi1Fi1)n−1Di1 ]
=
{∫ τ

0
e(Ai1+Bi1Fi1 )(t−τ)Di1d(τ)dτ

}
.

If the subsystem (Ai1 , Bi1 , Ci1 , Di1) is changed
to (Ai2 , Bi2 , Ci2 , Di2) by the switched rule 7, then
the subspace generated by disturbances through
〈(Ai1 +Bi1Fi1) | Di1〉 and Di2 is

〈(Ai2 +Bi2Fi2) | 〈(Ai1 +Bi1F11) | Di1〉+Di2〉

Analogously, we have the following subspaces.

〈
(Aij +BijFij ) |

〈
(Aij−1

+Bij−1
Fij−1

) | Dij−1

〉
+Dij

〉
,

(8)
for j ≥ 2.

From the construction of subspaces 8 we have that

∑
Dij ⊆ 〈(Ai1 +Bi1Fi1) | Di1〉 ⊆ . . . ⊆〈

(Aij +BijFij ) |
〈
(Aij−1 +Bij−1Fij−1) | Dij−1

〉
+Dij

〉
⊆ . . .

Since they are subspaces of a finite-dimensional
space, there exists a finite number ρ such that

. . . ⊆〈
(Aiρ +BiρFiρ) |

〈
(Aiρ−1

+Biρ−1
Fiρ−1

) | Diρ−1

〉
+Diρ

〉
=〈
(Aiκ +BiκFiκ) |

〈
(Aiκ−1

+Biκ−1
Fiκ−1

) | Diκ−1

〉
+Diκ

〉
= . . .

for all ` ≥ ρ and κ = `+ ρ..
Clearly all these subspaces are simultaneously

(Ai, Bi)-invariant.
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Obviously, the decoupling problem has solution
if and only if

〈
(Aij +BijFij ) |

〈
(Aij−1 +Bij−1Fij−1) | Dij−1

〉
+Dij

〉
⊂ ∩iKerCi

So,

〈
(Aij +BijFij ) |

〈
(Aij−1

+Bij−1
Fij−1

) | Dij−1

〉
+Dij

〉
⊂ V (H)

because of V (H) is the maximal simultaneously
(Ai, Bi)-invariant subspace contained in ∩iKerCi. ut

Now, we are going to try to solve the problem for
standardizable systems.

Lemma 26 Let (Eσ, Aσ, Bσ) be a singular switched
system and suppose that rank (Ei, Bi) = n for all
i ∈ σ. Then the system can be reduced to a standard
switched system.

A switched system verifying this property will be
called standardizable (by feedback) switched system.

The disturbance decoupling problem can be trans-
lated into the following geometric problem.

Theorem 27 Let (Eσ, Aσ, Bσ, Cσ) be a standardiz-
able (by feedback) switched system with disturbance
Dσ. Then the disturbance decoupling problem is solv-
able if and only if∑

(Ei +BiFEi)
−1Di ⊂W (H).

with H = ∩iKerCi

Proof:
Observe that if the system is standardizable, then

the index is zero.
After proposition 9, we have that the

supremal simultaneously invariant subspace
W (H) for (Eσ, Aσ, Bσ, Cσ) coincides with
the supremal simultaneously invariant sub-
space V (H) for ((Eσ + BσFEσ)−1Aσ, (Eσ +
BσFEσ)−1Bσ, Cσ). And, the switched system
(Eσ +BσFEσ)−1Aσ, (Eσ +BσFEσ)−1Bσ, Cσ) with
disturbance (Eσ + BσFEσ)−1AσDσ) is solvable if
and only if∑

(Ei +BiFEi)
−1Di ⊂ V (H).

ut
Following example 5, and taking

FEi =
(
0 0 1

)
,

we have
(Ei +BiFEi)

−1Di = Di,∑
Di⊂/ V (H).

But, if we consider the subsystems separately then it is
easy to show that Gi ⊂ V (KerCi) for each i = 1, 2.

Corollary 28 Suppose that Di are (Ei, Bi)-
invariant. If

∑
iDi ⊂ V (H), then the distur-

bance decoupling problem of the switched system
(Eσ, Aσ, Bσ, Cσ) with disturbance Dσ is solvable.

Proof:
If Di is (Ei, Bi)-invariant then

Di = (Ei +BiFEi)
−1Di.

So,

∑
Di =

∑
(Ei +BiFEi)

−1Di ⊂ V (H) = W (H).

ut
Finally, we try to solve the problem for the case

where the switched system is regularizable equisin-
gular of index one (quite natural in applications as
for example modeling a pulse-width modulator boost-
converter, [12]).

Definition 29 A switched system (Eσ, Aσ, Bσ, Cσ) is
called regularizable equisingular of index one, if and
only if there exist matrices Q,P ∈ Gl(n; IC),R ∈
Gl(m; IC), S ∈ Gl(p; IC), FEi , FAi ∈ Mm×n(IC) and
OEi , OAi ∈Mn×p(IC), such that

(Ēi, Āi, B̄i, C̄i) =
(QEiP +QBiFEi +OEiCiP,QAiP +QBiFAi+
OAiCiP, SCiP,QBiR) =

(Q(Ei +BiFEiP
−1 +Q−1OEiCi)P,

Q(Ai +BiFAiP
−1 +Q−1OAiCi)P,

SCiP,QBiR)
(9)

with

Ēi =

(
Ir

0

)
, Āi =

(
Āir

In−r

)
,

B̄i =

(
B̄ir

0n−r×m

)
, C̄i =

(
C̄ir 0p×n−r

)
.

(10)

We will call equisingular reduced form the
switched system expressed in the form 10.

(Observe that matrices Q, P , R, S are the same
for all i, all subsystems are regularizable and the re-
duced subsystems are of index one).

In the case where we have a switched system in
its equisingular reduced form with a disturbance D̄σ

we have the following corollary.
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Corollary 30 The disturbance decoupling problem
for the system 10 with disturbance D̄σ is solvable if
and only if ∑

Dσr ⊂ V (H).

where V (H) is the supremal simultaneously invariant
subspace corresponding to the standard switched sys-
tem (Āir , B̄ir , C̄ir), and Dir corresponds to the r first
rows of Di and H = ∩σKerCσr .

5 Conclusions
In this paper disturbance decoupling problem for
switched linear systems has been formulated under a
geometrical point of view. Necessary and sufficient
conditions in order to obtain solutions of the distur-
bance decoupling problem with standardizable condi-
tion are given.

It is noteworthy that all controllable systems are
necessarily standardizable, therefore this condition is
not very restrictive.
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