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Abstract: In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised 

locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the 

local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly 

distributed. Moreover, like other manifold learning algorithms, the results of LLE and SLLE depend on the choice 

of the nearest neighbors. In order to weaken the influence of the random selection of the nearest neighbors, R-

NSLLE, a supervised learning method, is used to find the best neighborhood parameter by analyzing residual. In 

addition, a nonlinear measurement based on SLLE is proposed as new criterion. In this paper, the original feature 

set is obtained through singular value decomposition in the phase space reconstructed by the C-C method. R-

NSLLE is used for nonlinear dimensionality reduction, which can further extract fault features. Following this, 

R-NSLLE is compared with other nonlinear methods of dimensionality reduction, such as SLLE, LLE, LTSA 

and KPCA. The effectiveness and robustness of R-NSLLE have been verified in the experiment, and the accuracy 

and silhouette coefficient of the proposed method have been further discussed. These show that this feature 

extraction method, which is based on R-NSLLE, is more effective and can identify the intrinsic structural of 

rolling bearing even when there is a little fault. 
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1 Introduction 
During rolling bearing fault diagnosis, because 

vibration signals contain a wealth of information, 

bearing states can be effectively identified and 

classified by analysing and processing the vibration 

signal [1]. Traditional fault diagnosis methods often 

adopt the time-frequency signal as the general fault 

characteristics, and the short-time Fourier transform, 

and wavelet transform are more commonly used 

time-frequency analysis methods. The multisensor 

data fusion method collects datasets from different 

channels in order to achieve signal processing, which 

helps improve the accuracy of fault diagnosis. For 

complex, nonlinear, and non-Gaussian signals, 

higher order spectrums can be used to extract fault 

features. Before, rolling bearing fault diagnosis was 

built on the basis of one-dimensional signals. 

However, one-dimensional nonlinear bearing signals 

collected by the sensor are essentially a one-

dimensional projection of the entire mechanical 

system during high-dimensional operations, which 

does not fully characterise complete fault information. 

According to the theory of dynamics, some features 

in the phase space remain unchanged [2]. So, we 

attempted to extract the bearing features from those 

of the phase space in order to find more fault 

information.  

As a good method for nonlinear dimensionality 

reduction, manifold learning has paid great attention 

to many researchers. It was put forward in a famous 

magazine "Science" in 2000, and the basic idea of it 

is that if the data sampled from high-dimensional data 

manifolds, there must be a mapped low-dimensional 

smooth manifold in the European space [3]. Manifold 

learning has obtained very good application in face 

recognition and data mining. As more scholars on the 

research of the manifold learning algorithm, 

manifold learning has already applied in mechanical 

fault diagnosis, such as signal de-noising, feature 

extraction and data dimension reduction, etc. Wang 

Guanwei systematically studied the application of 

manifold learning in mechanical fault diagnosis [4]; 

Wang lei’s doctoral dissertation proposed a signal de-
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noising method using maximum variance on 

manifold learning algorithm (MVU); some people 

combined manifold learning with SVM algorithm for 

fault diagnosis of mechanical and electronic systems 

[5]; Literature [6] combined mode decomposition 

(EMD) with supervised the locally linear embedding 

(SLLE) put forward a new method of data mining; 

LTSA was used in diesel engine wear fault feature 

extraction obtained a better result in Literature [7]. 

Based on the understanding of the above methods, 

this paper compares a variety of different algorithms 

of manifold learning. Though each method has its 

own advantage, this paper chooses LLE as a suitable 

method for feature extraction of rolling bearing. LLE 

[8] is a kind of manifold learning, which is a new 

unsupervised learning method; it is to find the nature 

low-dimensional structure form original high-

dimensional data in the observation space, using the 

weights of neighbour points to construct the output 

vectors [9-11]. In recent years, a lot of researchers are 

working on the improved method of this manifold 

learning algorithm. Wang combined the locally linear 

embedding (LLE) with the kernel Fisher for rolling 

bearing fault analysis [12]. Li Benwei proposes a new 

machinery fault diagnosis approach based on 

supervised locally linear embedding projection 

(SLLEP) [13]. However, many researchers focus on 

the combination of LLE with other algorithms, but do 

not study pure algorithms. This is of limited 

effectiveness when data is sparse or non-uniformly 

distributed. Besides, the results of LLE and SLLE 

depend on the choice of the nearest neighbours. 

Therefore, in order to increase the practicality and 

robustness of the algorithm, we proposed an 

improved supervised locally linear embedding (R-

NSLLE), which is a nonlinear supervised learning 

method that can find the best neighbourhood 

parameters by analysing residual.  

This paper presents an improved C-C method that 

integrates supervised locally linear embedding (R-

NSLLE) as a new extraction method for bearing fault 

signal characteristics. By reconstructing the phase 

space, the original one-dimensional signal is mapped 

into a high-dimensional phase space. From this we 

can obtain the original feature set via singular value 

decomposition [14]. Next, R-NSLLE is used for 

nonlinear dimensionality reduction, and compared 

with another nonlinear dimensionality reduction 

method called KPCA [15, 16], as well as other 

manifold methods such as SLLE, LLE and LTSA 

[17]. The experimental results show that this feature 

extraction method based on R-NSLLE works better 

and can foind the intrinsic structure of rolling 

bearings.  

The main flowchart is shown in Fig.1: 

Vibration signal for 

different 

bearing conditions 

Phase space reconstruction

Singular value 

decomposition
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Quantitative 

evaluation

Dimensionality reduction

Feature 

extraction

Flowchart

LLE

 

Fig.1 Flowchart of proposed rolling bearing fault 

diagnosis method 

The rest of this paper is arranged as follows. 

Section 2 describes the feature extraction method in 

detail. Section 3 introduces LLE and SLLE, and then 

put forward a new algorithm called R-NSLLE. 

Furthermore, R-NSLLE is compared with SLLE, 

LLE, LTSA and KPCA by practical applications. 

Section 4 presents the quantitative evaluation of 

algorithm. Finally, conclusions are drawn in Section 

5. 

 

 

2 Feature extraction 
2.1 Experimental data 

The test data set used in this work was acquired 

from Diagnosis and Self-healing Engineering 

Research Center of Beijing University of Chemical 

Technology. The experimental platform is shown in 

Fig.2. The analyzed data consist of four different 

types based on the rolling element bearing are shown 

in Fig.3, including healthy, inner-race defect, outer-

race defect, and rolling-element defect [18]. The 

bearing type is NTN204. And we set the sampling 

frequency 100 kHz with rotating speed 900r/min. 
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Fig.2 Experimental platform 

 
Fig.3 Bearing vibration signal 

Table 1  

                                The best time delay and embedding dimension of improved C-C method 

Sample defect type Time delay Embedding dimension 

Inner-race defect 3 11 

Outer-race defect 3 19 

Rolling-element 

defect 
3 17 

Healthy 3 17 

 
                                                        (a)                                                               (b) 

Fig.4 The singular value feature set 
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According to Fig.3, bearing characteristics under 

different fault status is not obvious, the difference, 

especially at where the impulses occurred, cannot be 

identified from the waveforms. Therefore, feature 

extraction becomes extremely important. 

 

 

2.2 Improved C-C method 
C-C method was put forward by H.S.Kim [19] 

and others in 1999; correlation integral was used to 

estimate the time delay and embedding window. 

However, there are some deficiencies of C-C method. 

The correlation integral defined generally uses the 

infinite norm, only considering the influence of the 

largest one-dimensional vector [20, 21]. There are 

some differences in calculating correlation integral 

for the improved algorithm. In this paper, two-norm 

is used instead of the infinite norm. In this way, the 

improved algorithm can reflect the effect of each 

dimension, which can well reflect the relevant 

characteristics of the original sequence. For different 

fault signals, we find the best time delay and 

embedding dimension by C-C method. The results 

are placed in Table 1 for comparison. 

By reconstructing the phase space we can get a 

high-dimensional data feature set, it carries a lot of 

bearing fault information. Besides, for the 

convenience of the original feature set compression, 

take a unified embedding dimension m a value of 17, 

the time delay τ a value of 3 under four different 

states of the bearing vibration signal. Here the 

original signal 𝑥𝑡  with N data points, the ith phase 

point vector in the m-dimensional phase as below: 

𝑋𝑖
𝑚 = [𝑋𝑖 ,  𝑋𝑖+𝜏,  ⋯  , 𝑋𝑖+(𝑚−1)𝜏]                         (1) 

The constructed phase point vectors of m× n is 

given as: 

[
 
 
 
 
 
𝑋1
𝑚

𝑋2
𝑚

⋮
𝑋𝑖
𝑚

⋮
𝑋𝑛
𝑚]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

  

𝑥1          𝑥2             ⋯         𝑥𝑚 

𝑥2          𝑥3             ⋯     𝑥𝑚+1 

⋮          ⋮            ⋮         ⋮

𝑥𝑖         𝑥𝑖+1          ⋯          𝑥𝑖+(𝑚−1) 
 

⋮           ⋮            ⋮          ⋮

𝑥𝑛         𝑥𝑛+1          ⋯          𝑥𝑛 ]
 
 
 
 
 
 
 
 
𝑇

=

[
 
 
 
 
 
𝑃𝑆1

𝑃𝑆2

⋮
𝑃𝑆𝑖

⋮
𝑃𝑆𝑚]

 
 
 
 
 

 

                                                                          (2) 

Where 𝑃𝑆𝑗(𝑗 = 1,2,⋯ ,𝑚) denotes a vector with the 

meaning of time series [22]. 

2.3 Singular value decomposition 
Take each 50 groups of data from four defect 

states on the rolling element bearing, thus the original 

data set reconstructed by improved C-C is 200*17 

just as it shown in equation (2). After singular value 

decomposition [23, 24] we can get the original 

feature set in descending order, as it indicated in 

Fig.4(a), where (b) is a partly enlarged view of (a). 

Although there is some cross between extracted 

features, we still can see from figures that the singular 

values can generally differentiate different state of 

bearing failure in the initial phase of feature 

extraction. 
 

 

3 Dimensionality reduction 
3.1 Manifold 

Manifold learning is a nonlinear dimensionality 

reduction method, which provides low-dimensional 

representations that are useful for processing and 

analysing data in a transformation-invariant way. 

And compared with previous nonlinear 

dimensionality reduction methods, manifold learning 

has powerful nonlinear dimensionality reduction and 

the ability to retain almost the same way as a simple 

linear dimension reduction algorithm [25]. The initial 

manifold learning mathematics is defined as follows: 

let Y∈R^d is a low-dimensional manifold, f:Y→
R^d is a smooth embedding, where D>d. The data set 

{y_i } is randomly generated ， and the data 

{x_i=f(y_i)} is mapped by f as the observed space. 

Indeed, manifold learning is to reconstruct f and {y_i } 

by given the sample set {x_i }. In other words, 

assuming that the data is sampled at a high-

dimensional Euclidean space, manifold learning is to 

restore the low-dimensional manifold structure from 

high-dimensional data sampling in order to achieve 

data reduction and data visualization. In current 

studies, manifold learning algorithm including 

isometric feature mapping (IsoMap), locally linear 

embedding (LLE), Laplace eigenmaps (LE), local 

tangent space alignment (LTSA), etc. 

 

 
3.1.1 Locally linear embedding (LLE) 

The LLE algorithm attempts to preserve local 

order relation of the given data, which could be 

summarized as follows: 
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LLE: X = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} ∈ 𝑅
𝑑  is the original 

dataset in the observation space;  Y =
{𝑦1, 𝑦2, ⋯ , 𝑦𝑛} ∈ 𝑅

𝑑(𝑑 ≪ 𝐷)is the low-dimensional 

manifold by a nonlinear mapping f(∙). The purpose of 

LLE is to construct f(∙) and Y by the given data X. 

Step1: Find K nearest neighbours of each vector 𝑋𝑖; 
Suppose the data consist of N vectors, choose K 

nearest neighbours measured by Euclidean distance. 

Step2: Compute the weights and reconstruct; 

Reconstruction errors are computed by the function 

below: 

ε(W) = ∑ |𝑥𝑖 − ∑ 𝑤𝑖𝑗𝑥𝑖𝑗 |2𝑁
𝑖=1                              (3) 

Where 𝑤𝑖𝑗 represent the importance between the jth 

data point and the ith neighbor point. Assuming that 

each data point is reconstructed by its K neighbors, if 

𝑥𝑗 does not belong to the set, there is 𝑤𝑖𝑗 = 0; and 

∑ 𝑤𝑖𝑗 = 1𝑗 , then  

2

1

2 2
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 
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  

  
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 
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





                   (4) 

By using the Lagrange multiplier, we can get  

1 1

( ) ( ) ( 1)
N k

T

i jk i ij

i j

L w w C w w
 

                            (5) 

( L) / ( )i jk iw C w                                                 (6) 

So the weights are defined by 
1

1

jkk

j

lmlm

C
w

C








                                                          (7) 

Step3: Compute output vectors; 

𝑌𝑖  is best reconstructed by the weights 𝑊𝑖𝑗 , the 

embedding cost function is defined as follows: 

2

1

( ) | |
N

i ij j

i j

Y Y w Y


                                             (8) 

Where ∑ 𝑌𝑖 = 0,
1

𝑁
∑ 𝑌𝑖𝑌𝑖

𝑇 = 𝐼𝑁
𝑖=1

𝑁
𝑖=1 , and I is an d ×

d unit matrix. Minimizing the function above: 

2 2

1 1

2 2

1

min ( ) | | | |

| ( ) | | ( ) | ( )( )

N N

i ij j i i

i j i

N
T T

i i

i

T

Y Y w Y YI YW

Y I W Y I W Y I W I W Y

YMY


 



   

      



  


                                  

(9) 

Similarly, by using the Lagrange multiplier, we can 

get  

( ) ( )T TL Y YMY NI YY                                    (10) 

( ) / ( ) T TL Y MY Y                                           (11)  
T TMY Y                                                          (12) 

Therefore we can get the bottom d+1 eigenvectors of 

M as the optimal d-dimensional embedding vectors 

[26]. 

 

 
3.1.2 Supervised locally linear embedding (SLLE) 

LLE has good performance of discovering the 

intrinsic structure of nonlinear high-dimensional data 

and it is helpful to reduction dimensionality analysis. 

However, LLE cannot meet the needs of some certain 

aspects. To be precise, LLE is unsupervised learning 

mode, and not taking the class information of the data 

into account. 

SLLE [27] is presented on the basis of LLE, in 

the processing of the first step increases the category 

information of the sample point. When calculating 

the distance between point and point, SLLE using the 

following equation: 

𝐷𝑛𝑒𝑤 = D + αmax (D) ∙ ∆                                  (13) 

Where D denotes the Euclidean distance between the 

sample points; max(D) represents the maximum 

distance between class and class; ∆ is 0 or 1, when 

two points belong to the same class, ∆= 0, else ∆= 1; 

α is the experience parameter, and α ∈ [0,1], when 

α = 0, SLLE is the same to LLE [28]. 

In virtue of taking full advantage of the information 

of labelled data and local neighbour structure, SLLE 

can obtain the whole intrinsic geometry of the dataset, 

and has good performance of data classification. 

 

 
3.1.3 R-NSLLE 

SLLE algorithm has a good pattern recognition 

peculiarity; it has been used in many fields. However, 

SLLE still exists some defects. K is the key 

coefficient to SLLE, and it cannot be chosen too 

small or too big otherwise the output vectors are not 

similar to the original structure. For choosing the best 

value of K, this paper put forward a new supervised 

locally linear embedding, that is R-NSLLE as it can 

be seen in Fig.5. 
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Fig.5 R-NSLLE 

             
             Fig.6 Residual of Euclidean distance                        Fig.7 Residual of Geodesic distance 

(1) Residual 

Residual is defined as follows: 

Residual = 1 − 𝐶𝑜𝑟𝑟2(𝐷𝑥 − 𝐷𝑦)                     (14) 

Where Corr(𝐷𝑥 − 𝐷𝑦) is standard linear correlation 

coefficient, 𝐷𝑥  is the Euclidean distance matrix of 

original high-dimensional space, and 𝐷𝑦  is the 

Euclidean distance matrix of low-dimensional 

embedding space. Residual can reflect the extent of 

keeping the original distance after dimensionality 

reduction, the more it is close to zero indicates that 

the effect of data embedded is better. The original 

fault feature set of 100×17 is used for test. For 

different values of K, Residual is calculated, as it is 

shown in Fig.6. 

As can be seen from Fig.8, we can get k=10 is the 

best result. However, we know in advance that when 

k=10 it has poor clustering effect. Considering the 

nature structure of manifold, we introduce the 

concept of geodesic distance [29]. The following 

Fig.9 llustrates the concept of geodesic distance. A 

and B are any two points on the manifold, a straight 

line connecting between A and B is frequently used 

Euclidean distance. But the Euclidean distance can’t 

reflect the true relationship between A and B. On the 

manifold one of the shortest curve through A and B 

is called geodesic distance. For the equation of 

Residual we use geodesic distance instead of 

Euclidean distance and get the result in Fig.7. 

Different from the former, K=5 is the best choice, 

which is exactly the result what we want. In the 

subsequent analysis, we can still see the correctness 

of the results. 

(2) The evaluation of residual 

In order to further verify the validity of the 

method of residual, we here use CV to evaluate. CV 

is the coefficient of variation, which can describe the 

degree of aggregation in each fault state. For different 

values of K, CV is calculated, as it shown in Fig.10 

From the Fig.10 we can see that only when k=5 that 

the value of CV is nearly to zero. In another words, 

when k=5, almost every fault type has a high 

cohesion, and the output vectors can maintain the 
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original structure. That is the results are the same as 

the method of Residual. So we can come to the 

conclusion that Residual is a good method to choose 

the best value of K.  

Besides, nonlinear supervised distance is used 

instead of linear supervised distance to improve the 

ability of the supervision of samples. The detail 

algorithm of R-NSLLE can be described as follow 

steps: 

R-NSLLE: X = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} ∈ 𝑅
𝑑  is the original 

dataset in the observation space; 

 Y = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} ∈ 𝑅
𝑑(𝑑 ≪ 𝐷) is the low-

dimensional manifold by a nonlinear mapping f(∙). 
Step1: Find K nearest neighbours of each vector 𝑋𝑖; 
For choosing the optimal value of K, we use the 

method of Residual, 

Residual = 1 − 𝐶𝑜𝑟𝑟2(𝐷𝑥 − 𝐷𝑦)                     (15) 

Where Corr(𝐷𝑥 − 𝐷𝑦) is standard linear correlation 

coefficient, 𝐷𝑥  is the geodesic distance matrix of 

original high-dimensional space, and 𝐷𝑦  is the 

Euclidean distance matrix of low-dimensional 

embedding space. 

We use nonlinear supervised distance to choose K 

nearest neighbours： 

𝐷𝑛𝑒𝑤
′ =

{
 
 

 
 √𝑒

𝐷2

𝛼 ,         𝐿𝑖 ≠ 𝐿𝑗

√
1 − 𝑒

−𝐷2

𝛽 ,   𝐿𝑖 = 𝐿𝑗 

                        (16) 

 

Fig.9 New nonlinear supervised distance 

Where D is the distance of original data set, if 𝐿𝑖 =
𝐿𝑗 it means the point i and j belong to the same class, 

otherwise they belong to different classes. α and β 

are adjustable parameters, which can be adjusted 

according to the degree of sparse data. 

It can be seen from Fig.8 that with the growth of D 

the growth rate of between-class is far greater than 

the growth rate of within-class. That is this nonlinear 

supervised distance can enhance the discriminant 

ability of the algorithm. 

Step2: Compute the weights and reconstruct;  

Step3: Compute output vectors. 

Step2 and step3 are the same to the steps of LLE. 

           
Fig.10 Geodesic distance

 
Fig.11 CV value
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3.2 Experimental analysis 
The test data acquired from experiment is weak 

failure data of rolling bearings. In the diagnosis of 

future research, we can construct computer and 

communication systems for data collecting and 

analysing [30]. Here the experimental platform is 

simply connected to the computer. The fault size is 

0.5mm  0.15mm with the sampling frequency 100 

kHz. The experimental data obtained by sensor is 

one-dimensional vibration signal. We randomly 

selected 200 sets of sample data, and get the feature 

set of 200 × 17 after singular value decomposition. 

R-NSLLE is used for feature dimensionality 

reduction, which is compared with another nonlinear 

method called KPCA and other manifold learning 

SLLE, LLE and LTSA. We can get the data set of 

200 × 3 after dimensionality reduction. (We know 

each method has its own optimal reduced 

dimensionality, experiments show that 3 is more 

appropriate). 

Analyse the data with different fault types. As the 

parameter d=3, the calculated first three features are 

shown in the left of Fig.11. In the figure, the first 50 

samples are inner-race defect data, 50-100 are outer-

race defect data, 101-150 are rolling-element defect 

data, and 151-200 are the normal state data. The 

dimensionality reduction results of features for all the 

samples are given in the right of Fig.11 and each 

coloured dot represents a sample. As seen from the 

figure, the green part represents the inner-race defect, 

the red section represents the outer-race defect, the 

blue part represents the rolling-element defect, and 

the pink part represents the normal state. 

As we can see from figures above, for weak fault 

data of rolling bearings R-NSLLE has a better result 

in comparison with SLLE, LLE, LTSA and KPCA. 

As the results shown in KPCA feature, for a given 

fault it is not very stable parameters of each 

dimension. That is KPCA is susceptible to noise and 

other external conditions, it will affect the fault 

recognition. LTSA does not recognize the weak fault; 

it is associated with the defect itself. To some extent, 

LLE can recognize the weak fault, but there are still 

some external interference conditions. It can be seen 

that SLLE also has a good effect in spite of there are 

some fluctuations in Dimension1. But we must be 

clear that it was tried many times to choose the best 

value of K in the first step of SLLE. However, R-

NSLLE is more robust via utilizing class information 

to guide the procedure of nonlinear mapping. R-

NSLLE enhances local within-class relations and 

helps to classification. To further compare the 

effectiveness of the algorithm, the analysis of 

quantitative evaluation is discussed next.  
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(c) LLE feature 

   
(d) LTSA feature 

   
(e) KPCA feature 

Fig.12 Rolling features by dimensionality reduction 

4 Quantitative evaluation 
4.1 Accuracy 

ELM is a new method based on single-hidden 

layer feedforward neural network (SLFN), which has 

a better capacity of generalization and a faster 

convergence speed [31, 32]. Nowadays, intelligent 

algorithm is widely used in machine learning and 

other fields, which can improve the effectiveness in 
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practical applications [33, 34]. Here ELM is applied 

to fault identification. 

After dimensionality reduction by R-NSLLE we 

can obtain characteristic parameter matrix of 200 3 . 

Randomly generated training set and testing set, for 

each fault generated 30 samples as the training set, 

and the remaining 20 samples as the testing set. Thus 

the total training samples is 120 groups, as well as 80 

groups of testing samples. These samples are then 

sent to ELM network. The results are indicated in 

Table 2. We also compare the Residual of each 

algorithm. Residual is a description of the data 

embedding, the smaller the value, the better it is. 

It is obvious that R-NSLLE is better than other 

methods. As seen from the table 2, the diagnostic 

accuracy of R-NSLLE is up to 100%. Also, residual 

of R-NSLLE is the smallest in comparison with other 

algorithms. In other words, R-NSLLE is good to keep 

the structure of the original data after reducing 

dimension. It means that R-NSLLE method is more 

suitable for feature dimensionality reduction of 

rolling bearings. As for SLLE, the results are depends 

on the value of K. This will result in a higher 

complexity of the time. If the value of K is selected 

appropriate, the results are better. However 

inappropriate value of K will lead to poor results even 

down to 60%. 

 

 

4.2 Silhouette coefficient 
Silhouette coefficient [35] can be defined as 

follows, which is a measure used to describe the 

clustering effect. For the data set D, assume that D is 

divided into k clusters 𝐶1, 𝐶2, ⋯ , 𝐶𝐾,O ∈ 𝐶𝐼(1 ≤ 𝑖 ≤
𝑘), then  
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Where −1 ≤ s(o) ≤ 1 . a(o)  is a measure of 

compactness within one cluster, and b(o) describes 

the dispersion between clusters. Thus s(o)close to 

one means that the cluster contains o is compact and 

o is far away from other clusters. However, when the 

value of s(o) is negative, we think that the clustering 

result is not acceptable. Here the average of s(o) is 

used for evaluation, it can be the measure of how 

appropriately the data has been clustered [36]. 

The average of silhouette coefficient is calculated 

for R-NSLLE, SLLE, LLE, LTSA and KPCA 

features, respectively. As shown in Table 3, the 

average of silhouette is equal to one for every status 

of rolling bearings. It shows that R-NSLLE can fully 

identify all types of faults. SLLE and LLE also have 

a good result, but the silhouette coefficient of rolling-

element defect is smaller, that can reduce the 

diagnostic accuracy. It is obvious that Silhouette 

coefficient is affected by the value of K. As for LTSA 

and KPCA, there exists a negative value of silhouette 

coefficient; it means that the result has a certain 

degree of error. So we can draw the conclusion that 

R-NSLLE can effectively extract the bearing features, 

and it has good capability of classification. 

 

 

Table 2  Accuracy 

Performance 

indicators 
R-NSLLE SLLE LLE LTSA KPCA 

Training sample 120 120 120 120 120 

Test sample 80 80 80 80 80 

Accuracy 100% 100% 60% 98%  86.25%  90% 

Residual 0.3829 0.7932 0.9679 0.8982 0.6881 0.8218 

 

 

WSEAS TRANSACTIONS on SYSTEMS Hongfang Yuan, Xue Zhang, Yangyang, Huaqing Wang

E-ISSN: 2224-2678 231 Volume 14, 2015



Table 3 The average of silhouette coefficient 

Silhouette 

coefficient 

Inner-race 

defect 

Outer-race 

defect 

Rolling-element 

defect 
Healthy 

R-NSLLE 1 1 1 1 

SLLE 
1 1 0.9768 1 

1 -0.7906 1 -0.7061 

LLE 1 1 0.8725 1 

LTSA 0.9944 1 0.9592 -0.3799 

KPCA 0.9755 -0.1527 0.7821 0.9862 

 

5 Conclusions 
Considering the complex mechanical state of 

rolling bearings, the general features of time-

frequency characteristics are susceptible to noise, 

thus they do not fully reflect the operational status of 

rolling bearings. This paper proposes a new feature 

extraction method. Using the improved C-C 

algorithm, the optimal time delay and embedding 

dimension are obtained from the one-dimensional 

vibration signal of a rolling bearing. This signal 

contains a wealth of information after the phase space 

is reconstructed. Then, singular values are extracted 

from the high-dimensional signal, which are used as 

fault features. Following this, R-NSLLE is used for 

nonlinear dimensionality reduction. Experimental 

results show that R-NSLLE can better mine the 

intrinsic low-dimensional data from high-

dimensional data, which has certain advantages in 

terms of the weak fault diagnosis of rolling bearings. 
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