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Abstract: - Two possible controller parameters tuning methodologies based on the computational shaping of 
zeros/poles spectrum of unstable time delay systems (TDS) are presented. Namely, the spectral abscissa 
minimization based on Quasi-Continuous Shifting Algorithm (QCSA) followed by an advanced iterative 
optimization algorithm, and the Pole Placement Shifting based Algorithm (PPSA) moving the dominant poles 
and/or zeros of infinite spectra to the prescribed positions as close as possible step by step are introduced. 
These desired loci can be determined by a finite-dimensional model matching problem. In contrast to works we 
extend and to our previous works, the paper concerns unstable TDS in the sense of exponential stability and, 
moreover, both retarded and neutral TDS are considered. As presented by numerical examples, both the 
methodologies are closely related to each other and the latter one can collapse close to the former one. The 
reader is also provided with potential ideas of the future research within this task. 
 
 
Key-Words: - Model matching, Optimization, Root locus, Spectrum shaping, Unstable system, Time-delay 
systems 
 
1 Introduction 
A suitable control system selection, a mathematical 
formulation of the controller structure and tuning of 
controller parameters are usually three essential steps 
in the control design procedure. Whereas for standard 
controllers (such as proportional-integral-derivative 
(PID) ones) there have been derived and proposed a 
plenty of controller parameters setting strategies, 
procedures and algorithms so far [1]-[5], many design 
ideas yield an unusual control law for which a known 
tuning method can not be directly applied. Such 
controllers are mostly obtained by the use of some 
advanced (e.g. optimization) algorithms [6] or when 
dealing with non-standard plant or models; for 
instance, nonlinear, hybrid or time delay systems - 
the control of which is attacked in this paper. 

Linear time-invariant time delay systems (TDS) 
belonging to the more general class of infinite-
dimensional systems have been intensively studied 
during past decades, see e.g. [7]-[9], to name just a 
few of the most important recent publications 
dealing with TDS. Many various control design 
algorithms in the time- or frequency domain have 
been proposed and derived since then; however, the 
most of them are far from to be practically 
applicable [10]. Nevertheless, some others provide 
rather simple engineeringly applicable procedures 
giving rise to the linear controller structure; for 

instance, elegant and attractive frequency-domain 
based algebraic control methods [11]-[13]. 

Even if the suitable controller law for a TDS 
plant is found, it is mostly parameterized by the set 
of unknown bounded or unbounded parameters 
which have to be appropriately set. Unfortunately 
again, there is a lack of engineeringly effortless 
methods for this class of systems and controllers, 
and the tuning of the final control laws is widely 
neglected; if exists any, usually suffers from an 
excessive mathematics [10] or the controller model 
is altered using a rationalization to enable the 
implementation of standard procedures and 
algorithms from the finite-dimensional systems 
theory [14]. 

As indicated above, one of crucial features of 
TDS is that the spectrum of such systems is infinite. 
Regarding spectral properties, there exist three basic 
types of TDS: advanced, retarded and neutral [7]. 
Whereas the two former ones have been quite well 
investigated, the latter one owns a rather complex 
properties and it is a challenging task to analyze and 
control such systems. The class of pole placement 
(assignment) controller parameters tuning principles 
is aimed at the setting of the finite number of 
undetermined controller parameters to shape the 
infinite spectrum as close to the desired form as 
possible by shifting or placing the dominant system 
eigenvalues [15]-[19]. 

WSEAS TRANSACTIONS on SYSTEMS Libor Pekař

E-ISSN: 2224-2678 203 Volume 14, 2015



Unstable TDS constitute a very delicate subclass 
of systems to be attacked by means of control 
theory. Note that the notion of stability of TDS, 
however, can not be comprehended in the simple 
and cohesive meaning as for finite-dimensional 
systems since conditions for asymptotical, 
exponential, H∞, bounded-input bounded-output 
(BIBO), stability etc. are not often straightforward 
[7], [8], [10], [20]-[23] and they are not given solely 
by algebraic roots loci. Most of control design 
studies, so far, deal with input-output delays of a 
finite-dimensional plant yet with an infinite-
dimensional feedback only by means of several 
stabilization and control techniques [24]-[27] 
including also the plant rationalization [28], internal 
model control (IMC) [29] or the Smith predictor 
control system structure [30], etc. Solutions of 
various stabilization and control tasks of unstable 
TDS with state (or internal) delays, however, can 
also be found in the literature [22], [31]-[34]. 

This contribution is focused on two possible 
quasioptimal controller parameters tuning 
techniques for unstable TDS (retarded or neutral 
ones with internal delays) that are closely related to 
each other, so that one may turn to another in some 
cases as shown herein. It extends the results of 
Michiels et al. [18], [19] by means of the well-
known Nelder-Mead minimization algorithm [35]. 
In this sense, the work resembles the spectral 
abscissa optimizations e.g. in [36], [37]; however a 
different (easier and better applicable) algorithm is 
used. But we are going further this problem – not 
only poles but zeros loci as well are optimized by 
placing the dominant ones to desired positions as 
close as possible – we called it as the PPSA (Pole-
Placement Shifting based controller tuning 
Algorithm) [38]. Independently, this task has been 
solved in [39]; however, the authors have used 
different tools and strategies. The step of selection 
and prescription process of a demanded finite-
dimensional model enables to view the methodology 
as a model-matching problem.  

Basic ideas and practically computational 
aspects, that we see as useful for the reader, are 
concerned rather then rigorous mathematical 
formulations which will be the content of some of 
our future contributions. We highlight some of our 
recent results and add new ones related to a complex 
class of neutral TDS. Because of a wide range of 
possibilities for the improvement of the 
methodology, some proposals are suggested and 
provided to the reader as well. 

The research contribution of this paper consists 
in the presentation of two easy-handling computing-

based optimization algorithm for a very intricate 
family of delayed systems. 

The paper is organized as follows. Section 2 
provides the reader with the preliminaries of TDS 
description in the state as well as input-output 
domain, basic spectral properties and stability 
notions of both types of systems. The problem 
formulation and an introductory concise overview 
and insight into the topics of the spectral abscissa 
minimization, quasi-continuous root shifting and the 
PPSA technique can be found in Section 3. 
Numerical examples supporting the preceding 
section and giving rise to some novel findings and 
results are the contents of Section 4. Section 5 
includes the discussion on the computational and 
numeric aspects of the algorithms, matching model 
selection, etc. for the future research. Section 6 
concludes and summarizes the paper. 

  
 
2 Preliminaries 
Mathematical background of time-delay systems 
and models, and their properties including stability 
can be found in many sources, e.g. in [7]-[9]; hence, 
the necessary basic facts are presented only.   
 
 
2.1 TDS model 
Consider the following single-input single-output 
(SISO) TDS model 
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where ⋅<<<= ϑϑϑ ...0 10  stand for state (internal) 
and input-output delays, respectively, ∈yu, R, 
expresses input and output, respectively, ∈xx &, Rn 
means the state vector and its derivative, 
respectively, Ai, Bi, C, Hi are matrices of 
compatible dimensions. Note that whenever 

0H ≠∃ ii : , the system is of neutral type, while the 
retarded model is obtained if Hi ni ,...2,1, ∈∀= 0H  
[7]. By means of the Laplace transform, model (1) 
directly gives rise to the following transfer function 
 

( ) ( )
( ) ( )( ) ( )sss
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sbsG H BAC 1−−==  (2) 

 
where 
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and ( )sa , ( )sb  are quasipolynomials in C∈s  as 
 
( ) ( )∑ ∑= = −+= n

i
h
j ij

i
ij

n i ssxssx 0 1 exp η  (3) 
 
where 0≥ijη  are delays (linear combinations of 
state and/or input delays), and R∈ijx . A retarded 
system has 0=nja  for all 0>njη ; whereas, it holds 
that 0≠nja  for some 0>njη  for a neutral TDS. 
 
 
2.2 TDS spectral properties 
The two considered system types, retarded and 
neutral, has significantly different spectral features. 

Assumption 1. There are no common roots of 
( )sa  and ( )sb . ■ 

Remark 1. Under Assumption 1, 
i) ( )sa  coincides with the characteristic 

quasipolynomial of (1), 
ii) roots of ( )sa  are system poles, iσ , and 
iii) roots of ( )sb  are system zeros, iζ . ■ 
Definition 1. The associate characteristic 

exponential polynomial of a neutral system (1) is 
 

( ) ( )∑ = −+= nh
j njnjn sasa 1 exp1 η  ■ 

 
2.2.1 Retarded system 
Remark 2. Consider system (1) of retarded type. 
Then 

i) the system has only isolatedly distributed 
poles, 

ii) there is only a finite number of poles in any 
vertical strip ( ) βα << sRe , α , R∈β , C∈s , 

iii) for any R∈γ  with ∞<γ , only finitely 
many poles are in the half-plane ( ) γ>sRe  while 
infinitely many are located in ( ) γ<sRe , 

iv) poles are continuous w.r.t. coefficients and 
delays of ( )sa  [7]. ■ 
 
2.2.2 Neutral system 
Definition 2. Define sets of roots 
 

( ){ }0:: ==Ω σσ aP  
( ) ( ){ }0:Re: ==Ω anaa a σσ  ■ 

 

Remark 3. For a TDS (1) of neutral type, we can 
claim: 

i) all system poles are isolated, 
ii) for the closure aΩ  of aΩ  it holds that if 

aΩ∈γ , then there is an infinite sequence of poles 
{ }∞

=1, iiaσ  such that ( ) γσ =→∞ iai ,Relim , 
( ) ∞=∞→ ii σImlim , 

iii) if there are poles of (1) in bounded vertical 
strip ( ) βα << sRe  on the complex plane, these 
poles converge to the infinite sequence defined in ii) 
as ∞→iσ , 

iv) for any 0>ε , the system has only a finite 
number of poles in the right half-plane 

( ) ( ) ε+Ω> as supRe  
v) poles are continuous w.r.t. coefficients of ( )sa  

but not w.r.t. small delay perturbations [7]. ■ 
Corollary 1. The rightmost infinite vertical chain 

of poles of a neutral TDS (1) approaches the vertical 
line 
 

( ) ( ) Cs a =Ω= :supRe  ■ 
 

A detailed analysis of asymptotic behavior of 
chains of neutral-type poles for TDS with 
commensurate delays can be found e.g. in [40]. 
 
2.2.3 Spectral abscissa 
One of crucial notions for this paper is the spectral 
abscissa. 

Definition 3.  The spectral abscissa R∈Pα  (of 
poles) is defined as 
 

PP Ω= Resup:α  ■ 
 

The spectral abscissa may be nonsmooth, 
nonconvex or non-Lipschitz [36], especially for 
neutral delayed systems and, moreover, according to 
v) of Remark 3, this function can not be continuous 
due to small delay changes in general [19]. 
 
 
2.3 TDS stability 
Several stabilities can be established for TDS, 
namely, asymptotic, exponential, strong, BIBO, H∞, 
and others. Let us briefly provide the reader with 
basic stability properties useful for this contribution. 

Asymptotic and exponential stabilities are 
defined as for finite-dimensional systems, that is: 

Definition 4. 
i) System (1) is asymptotically stable if 
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where ( )tx  stands for the solution of (1) with the 
initial condition ( ) ( )txt =φ  from the Banach space 
of real valued continuous functions on [ ]0,Lt −∈  
and L means the sum of all system delays. 

ii) System (1) is exponentially stable if 
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Note that exponential and asymptotic stability of 

retarded are equivalent; while for neutral TDS, 
exponential stability implies the asymptotic one but 
the converse does not hold. For exponential 
stability, the following statements can be claimed 
[7]. 

Proposition 1. If Assumption 1 is satisfied, it 
holds that: 

i) System (1) (or (2)) of retarded type is 
exponentially stable iff  

 
( ) Pii Ω∈<∀ σσ ,0Re  

 
where PΩ  is defined in Definition 2. 

ii) System (1) (or (2)) of neutral type is 
exponentially stable iff 
 

( ) Pii Ω∈−<∀>∃ σεσε ,Re:0  ■ 
 

Considering asymptotic stability, a TDS with 
commensurate delays may or may not be stable in 
the case of chains of poles asymptotic to the 
imaginary axis [23]. Analogously, H∞ or oven the 
stronger notion of BIBO stability are not possible to 
be defined in terms of poles loci, in particular, in 
case of chains of poles asymptotic to the imaginary 
axis [22], [40]. For instance, a system governed by 
the transfer function with poles tending to the 
imaginary axis ( ) ( ) ( )( ))exp(11/1 sssssG k −+++=  is 
BIBO stable for 4≥k . 

Strong stability is connected solely with neutral 
TDS and expresses the sensitivity of ( )aΩsup  to 
infinitesimal perturbations in internal delays; 
namely, the system is strongly stable if  
 

λτδ −<Ω= Δ→ + ,0 suplim: aC  (4) 
 

for some 0>λ  where τΔΩ ,a  stands for roots of 
( )san  under a delay perturbation τττ δ+=Δ , 

εδ <τ  in which τ  means the vector of all system 
delays. 
Proposition 2 [19]. A system (2) is strongly stable 
iff  
 

11 <∑ =
nh

j nja  (5) 

 
where nja , nhj ,...2,1=  are real coefficients of the 
exponential polynomial defined in Definition 1. ■ 

Notice that if none of nja  can be adjusted by 
selectable controller parameters in the designed 
feedback structure, a strongly unstable plant can not 
be stabilized. 
 
 
3 Problem Formulation and Main 
Results 
Let us concisely introduce and summarize the 
formulation of the problem solved herein and 
corresponding basic developed algorithms. The 
reader is referred to literature for further details if 
necessary. Two controller design tasks are attacked.  
 
3.1 Spectral abscissa minimization 

As first, once the controller structure is 
determined, the spectrum (of feedback poles) is to 
be shaped so that the “maximum possible” 
exponential stability is reached. Rephrasingly, the 
objective is to solve the optimization problem  
 

( ) ( ) PPΦ Ω== Resupminminmin
KKK

KK α  

 
where [ ] rT

rKKK R∈≠= 0K ,...,, 21  represents the 
vector of tunable controller parameters, taking 
account of limitations on K  and specific features of 
neutral TDS, namely, strong stability condition (5). 
For instance, the use of the penalty function ( )Kπ  
as  
 
( ) ( ) ( ) ( ) 0,0, ≥⋅>+= πλλπα KKK PΦ  (6) 

 
In [41], the option ( ) ( )( )21∑ == Nh

j nja KKπ  due to 

strong stability of the feedback system was 
suggested; however, it does not guarantee that the 
constrain (5) holds. A rather more suitable option 
would be e.g. 
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( ) ( )( )( ) 10,1,0max
2

1 <<<+−= ∑ = εελπ Nh
j nja KK  

 
yielding ( ) ε−→∑ = 11

Nh
j nja K .  

Another possibility is to introduce a barrier 
function ( )Kϕ  instead of ( )Kπ  in (6), e.g. as 

 
( ) ( )( )∑ =+−−= Nh

j nja11log KK εϕ  

 
as utilized in [37] yet for a state feedback controller 
and the spectral abscissa minimization only. 

Significant contributions to this first problem 
were given e.g. in [18], [19], [36], [37], [41]. In this 
paper, we particularly follow in [18], [19] so that the 
Quasi-Continuous Shifting Algorithm (QCSA) 
derived therein is extended by an advanced iterative 
direct-search algorithm to improve the (sub)optimal 
solution. We have coped with that in [13], [42] 
where also an example of the algebraic control of an 
unstable retarded TDS in a special ring of 
meromorphic functions [43] has been presented. 
Conclusions of the example are briefly summarized 
in Section 4 for the reader. 

The algorithm solving the first problem in the 
form of a meta-optimization framework procedure 
can be summarized as follows. 

Algorithm 1. 
Input: Objective function ( )KΦ  reflecting (5). 
Step 1: Set the number 1=m  of moved 

(controlled) poles arbitrarily giving rise to the initial 
set 0K , and termination parameters for the QCSA 
[18], [19].  

Step 2: Move rm ≤  dominant poles to the left-
half plane by applying small changes in K  using 
the QCSA. If necessary, increase or decrease m . 
Stop when the available degrees of freedom in the 
controller do not allow to further reduce ( )KΦ . 

Step 3: Select an advanced iterative optimization 
algorithm minimizing ( )KΦ , its control and 
termination parameters.  

Step 4: Use the algorithm from Step 3 starting 
with K  from Step 2. 

Output: Values of optK . ■ 
Remark 4. It must be noted here that the root 

dominancy can be viewed in a variety of ways. The 
most of approaches adopt the idea that the dominant 
pole (or a pair) satisfies 
 

( ) ( ){ }ijjiPidom ≠∀≥Ω∈= ,ReRe:: σσσσ  (7) 
 

i.e. it is the rightmost one. This concept seems to be 
acceptable for retarded TDS. However, some 
authors hold another definition, which might be 
useful for neutral TDS due to ii) and iii) of Remark 
3, that the dominancy depends on the distance form 
the origin of the complex plane, i.e. 
 

{ }ijjiPidom ≠∀≤Ω∈= ,:: σσσσ  (8) 

 
The second comment on Algorithm 1 concerns 

the variations in m . The original conception of the 
QCSA allows only increasing the number; whereas 
we observed that the decrease can be useful mainly 
in the case of a clump of the controlled poles. ■ 

During numerical experiment, the following 
substantial observation we made. A sketch of the 
proof of its legitimacy is attached. 

Observation 1. Although it is stated in [19] that 
for a neutral TDS there is no reason to deal with 
poles C<σ  where C  is defined in (4), we have 
observed that it is desirable to control also poles left 
from this vertical line with a sufficiently small 
modulus. □ 

Proof. Consider the pole dominancy according to 
(8). Because of ii) – iv) or Remark 3, the rightmost 
vertical strip for a (exponentially) stable neutral 
TDS given by Corollary 1 goes from ( ) −∈∞− oj0, C  
and tends to ( ) −∈∞ oj, CC , and only a finite number 
of isolated poles lies in Cs >  (or Cs >  - under 
delay perturbations). The essential part of the 
system dynamics is determined by a small number 
of poles with a small modulus in the subset  
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However, such poles must be located mostly 

right from poles within the rightmost strip but left 
from C  or C , i.e. in the region  given by the 
contour 

 
( ) [ ]{ }
( ) [ ]{ } [ ] [ ]⎭

⎬
⎫

⎩
⎨
⎧

∪∈∪
−∈

=
×− maxmax ,0,max

max

,0,j,
,,j0,

:
βαβββ
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for sufficiently high maxα , maxβ  > 0 where 

[ ] [ ]maxmax ,0, βα ×− CS  expresses the continuous curve 
joining poles within the neutral strip in the region 
[ ] [ ]maxmax ,0, βα ×− C j of the complex plane. ■ 
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3.2 Finite-dimensional model matching 
The second task goes beyond the spectral abscissa 
minimization and it based on the endeavour to place 
the dominant poles and/or zeros to prescribed loci. 
The algorithm framework stems from a finite-
dimensional model with the desired behaviour (e.g. 
a suitable maximum relative step response 
overshoot, the relative dumping factor and the 
relative time-to-overshoot), the poles and/or zeros of 
which represent the required goal to be matched. 
The procedure has been called the PPSA [38] – in 
the cited source, three subalgorithms are provided to 
the reader; however, only retarded systems are 
considered therein and many statements have to be 
reformulated or completed. 

The method is similar to the one independently 
derived in [39]; however, there are some crucial 
differences between them. Namely, the PPSA uses 
the input-output frequency space of meromorphic 
Laplace transfer functions, whereas the one in [39] 
operates purely with poles in the state space domain. 
The PPSA takes both poles and zeros into account; 
moreover, they are initially placed in desired 
positions unambiguously according to the desired 
dynamical properties; however, they can leave their 
loci during the shifting. In [39], poles can not leave 
the prescribed positions and the unrestrained rest of 
the spectrum is pushed to the left, which may results 
in a lengthy trial-and-reset placing procedure. Last 
but not least, a different optimization algorithm is 
used in this paper. 

The concept and framework of the algorithm 
followed by remarks on two subalgorithms is being 
introduced now. Recall that they are to be revised in 
the future; nevertheless, useful detail are provided to 
the reader in [38].  

Algorithm 2.   
Input: The closed-loop reference-to-output 

transfer function ( )sGWY . 
Step 1: Select a suitable desired finite-

dimensional model ( )sG mWY ,  structure of the 
feedback relation, and prescribe its poles and/or 
zeros. 

Step 2: Place infinite-dimensional model roots 
into desired positions, e.g. using the technique 
introduced in [15]. 

Step 3: If there roots are dominant, terminate the 
algorithm; else shift the dominant roots to the 
desired ones, e.g. using the QCSA [18], [19], and 
push the rest of both spectra to the left as far as 
possible, i.e. solve Algorithm 1 for this subset. 

 Step 4: If the shifting is successful, terminate the 
algorithm; otherwise, minimize the cost function 
( )KΦ  reflecting the distance of dominant from 

prescribed roots and the spectral abscissa of the rest 
of both spectra, using advanced iterative algorithms, 
e.g. from the realm of artificial intelligence. 

Output: Values of optK . ■ 
Note that the selected matching model ( )sG mWY ,  

has to be of the structure that guarantees requirements 
on the poles (zeros) placement problem solvability, 
model feasibility and a necessary number of degrees 
of freedom that conditions will be specified in the 
future research. This may cause the necessity to reset 
the selection of ( )sG mWY , . 

Remark 4. Within the framework of Algorithm 
2, there it is possible to develop several 
subalgorithms. Let us briefly introduce ideas of two 
of them: The substrategy called “Poles first 
independently” can be used only if there exist 
unspecified numerator parameters in ( )sGWY  not 
included in the denominator. Poles are shifted first, 
and afterwards, the spectrum of zeros can be adjusted 
by the mentioned parameters in the numerator. In 
some cases, it is not possible to use this strategy even 
if the parameters exist, see Section 4 for the example. 
The second subalgorithm attempts to shift poles and 
zeros together. ■ 
 
 
4 Numerical Examples 
Both the spectrum shaping strategies briefly 
discussed in this paper together with the 
highlighting of some specific troubles are supported 
by two following numerical examples. As 
mentioned above, the spectral abscissa minimization 
of an unstable retarded TDS is the matter of the first 
one, and the second example is aimed to 
demonstrate that the PPSA can collapse to a 
simplified form and to indicate the legitimacy of 
Observation 1. 

Example 1 [13]. Consider the model 
  

( )( ) ( ) ( )4.01.02.04 −=−− tutyty &&  
 
of unstable retarded TDS describing a skater on the 
swaying bow where ( )tu  is the input power and 
( )ty  stands for the output angle deviation. By means 

of an algebraic controller design method, the 
following reference-to-output transfer function can 
be obtained 
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where the denominator expresses the characteristic 
quasipolynomial which has obviously two factors, a 
polynomial and a quasipolynomial one. Since the 
spectral assignment for the polynomial factor is 
trivial, the goal is to find seven unknown parameters 
of the quasipolynomial factor. 

The optimization task can be characterized as 
follows 
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The initial unstable setting T]1,1,1,1,1,1,1[0 =K  

with ( ) 0.84920 =Kα  can be stabilized by the use of 
the QCSA as ( ) 1.44543305 −=Kα  giving rise to the 
controller parameters 
 

T]5617613,26247749,106523133

,8222650,10560107,640264.2,469418.2[3305 =K
  

 
The corresponding evolution of real parts of the 

dominant part of the spectrum is displayed in Fig. 1. 
Note that the bold lines mean controlled poles. 

This result then can be slightly enhanced e.g. by 
the well-known Nelder-Mead iterative simplex 
method (see Fig. 2); however the adjustable 
controller parameters almost do not differ from 

3305K . 
Example 2. Let a non-minimum phase unstable 

TDS plant be modeled by the transfer function 
 

( ) ( ) ( )
( )

( )
( )sa
sb

ss
sssG =

−−+
−−

=
4.0exp21

exp4  (10) 

 
Although system (10) is of a retarded type, 
whenever it is controlled by any feasible controller, 
the feedback loop contains neutral delays. 

 
Fig. 1. Evolution of real parts of the dominant 

poles of (9) using the QCSA 

 
Fig. 2. Evolution of ( ) ( )KK Pαα =  using the 

Nelder-Mead algorithm for three different initial 
simplex edge sizes, hj, starting from i = 3305 of the 
QCSA 

 
For instance, using the Two-Degrees-of-Freedom 

(2DoF) control system depicted in Fig. 3 (note that 
( )td  expresses the load disturbance), the simple 

quasipolynomial approach yields the following 
reference-to-output transfer function 
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WY sqsaspssb

pqsrsb
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where [ ]Trrqqqpp 1220101 ,,,,,,=K  stand for suitable 
free real controller parameters which influence the 
feedback zero-pole distribution; however, the 
spectrum of zeros can not be pushed to the stable 
left half-plane in any way. Thus, apply poles 
shifting without any attempt to adjust zeros. 

As first, let us find C defined in Corollary 1. 
Since ( ) ( ) ( )sqsasan −+== exp1 23 , we have 

2/1ln qC −−=  that must be strictly negative. This 
condition yields 

12 <q  (12) 
 

Note that a technique described in [19] enables to 
verify that CC ≈ , i.e. condition (12) guarantees 
also the strong stability of the feedback system. 

Select a pair of prescribed poles 
j2.01.02,1 ±−=s . To obtain the vertical strip of 

neutral poles left from the desired pair, the 
inequality 1.0/1ln 2 −<−− q  must hold, the 
solution of which reads 9048.02 <q . Hence set, for 
instance, 6.02 =q . 

By placing poles of (11) directly to the desired 
loci using for [ ]TD qqpp 0101 ,,,=K  in the 
denominator, the initial feedback spectrum 
computed e.g. via [44] is 

 

⎭
⎬
⎫

⎩
⎨
⎧

±±
±±

=Ω
.16.016j,..  0.461822.1148j,-  0.4612-

0.2j, .13.9438j,-0  0.15403
0,P  

 
Apparently, such a setting results in the 

asymptotically unstable control system; hence, use 
the QCSA for shifting the dominant pair of poles 
towards 2,1s , and simultaneously push the rest of the 
spectrum to the left half-plane. In Fig. 4, the 
distance of the dominant pair, 2,1σ , from the desired 
one, 11 s−σ , the overall spectral abscissa, ( )DKα , 
and the spectral abscissa of the rest of the spectrum, 

( )Dr Kα , are displayed. The spectral abscissa has 
been pushed to the left half-plane and the system is 
thus stabilized while the imaginary part of the 
dominant pair has increased such that the distance 

11 s−σ  is unacceptable. 
Once the QCSA is finished, an iterative 

optimization algorithm initialized by eventual 

values of DK  from the shifting is used to improve 
the values of 11 s−σ  and ( )Dr Kα .  

 

 
 Fig. 3. The TFC control system 
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Fig. 4. The evolution of 11 s−σ , ( )DKα , 
( )Dr Kα  for (11) using the QCSA with 6.02 =q  

 
Consider the following objective function 
 
( ) ( )DrD sΦ KK λασ +−= 11  

 
and solve the problem  ( )DoptD Φ KK

K
minarg, =  

again by the use the well-know NM algorithm. 
Initial parameters setting from the QCSA reads 

 
[ ]TDoptD 0.1184 0.5754, 0.9853, 3.309,15860,0,, == KK

  
Note that the edge length of the initial 

rectangular simplex was set to 10=ih . Since the 
dominant pair of poles is the only pair 1, +iiσ  with 

>+1,Re iiσ C  and hence the solution would be 
trivial while ignoring poles with the real part less 
than 5108.0−=C , we have taken the region for the 
poles seeking as [ ] [ ]j40,015,6 ×−=R  in the 
accordance to Observation 1. Evolutions of 11 s−σ  
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and ( )D
R
r Kα  for three different values of λ  are 

provided in Fig. 5 where ( )D
R
r Kα  means the 

spectral abscissa of the rest of poles in the particular 
region R . Consequently, corresponding step 
responses compared with the desired model where 
the transfer function numerator is taken as a 
constant value (because of unknown zeros) are 
displayed in Fig. 6. 

Finally, verify the Observation 1 by the 
numerical test. Let i

optP 250,,Ω  be the subset with the 
number i  of the most dominant poles of the 
spectrum 250,,optPΩ , see (13), in [ ] [ ]j200,00,3 ×−=R  
covering all low-frequency poles obtained by 250 
iteration steps of the NM algorithm for 2.0=λ . 
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Fig. 5. The evolution of 11 s−σ  and ( )D

R
r Kα  

for (11) with 6.02 =q  using the NM algorithm for 
various λ  
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Fig. 6. The comparison of step responses for (1) 

with the constant numerator and 6.02 =q  using the 
NM algorithm for various λ  
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algorithm 
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In Fig. 7, the comparison of step responses for 
20,3,1=i  as the overall and a detailed view is 

provided. The substantial difference between 
1

250,,optPΩ  and 3
250,,optPΩ  yet a negligible one between 

3
250,,optPΩ  and 20

250,,optPΩ  verifies Observation 1. 
 
 
5 Future Research 
Prior to conclusions of the paper, let us briefly 
discuss weaknesses of both the algorithms yielding 
the suggestions to the course of the future research. 

Computational aspects of the QCSA have been 
touched in [42]. Namely, the convergence and speed 
of the shifting seems to be improved by the strategy 
that only poles (zeros) of the same type (real, 
complex) are approaching to each other, or by 
thorough consideration that a complex conjugate 
pair means two separate roots instead of one for the 
course of the QCSA. Moreover, it might be better to 
consider a multiple root as a nest of single close 
roots. 

The selection of a suitable matching model 
constitutes another problem of the latter algorithm. 
So far, the presented idea of the desired maximal 
step response overshoot, time-to-overshoot and the 
relative dumping has been adopted only. 

Regarding the selection of the minimization 
method, calculation acceleration and the level of its 
computational complexity, the substantial question 
is the number of spectrum determinations per 
iteration which is the most time consumptive 
computational operation of the current version of 
the PPSA. This time can be effectively reduced by a 
suitable demarcation of the region in which the 
spectrum is computed. The searching region, ought 
to be extensive enough providing a sufficient 
margin for possible abscissa discontinuities. There 
is naturally a plenty of possible modern 
evolutionary or genetic algorithms; for instance, the 
Particle Swarm Optimization (PSO) dosed by means 
of the deterministic chaos [45] is a possible 
candidate for the future tests. Moreover, 
optimization algorithms themselves include many 
control and weighting parameters which must be set 
properly, e.g. using trial-to-reset tests. 

Last but not least, the cost function has to be 
subjected a metaoptimization procedure searching 
its (sub)optimal weighting parameters; for instance, 
by applying ideas on intelligent multiagent 
optimization techniques [46]-[48]. We also observed 
e.g. that the higher parameter λ  in the function is, 
the better declination and eventual value of ( )Krα  
would be obtained with a worse approaching of 

prescribed and desired roots loci; which, however, 
does not hold in every cases, see e.g. Fig. 5, 
partially because of a negative value of ( )Krα . 
 
 
6 Conclusions 
To summarize this contribution, two ideas of 
controller parameters tuning strategies for unstable 
TDS based on the shaping of the spectrum of 
feedback poles and/or zeros have been outlined. The 
first one adopts the natural idea of pushing the 
spectrum to the stable left half-plane as far as 
possible. The extension of existing algorithms by 
means of an additional optimization iteration 
algorithm has been proposed and demonstrated by a 
concise example of control of an unstable retarded 
TDS. The second approach (PPSA) goes beyond 
this and attempts to match the feedback system with 
the selected desired finite-dimensional model by 
adjusting tunable controller parameters. This 
strategy has been shown and verified in a numerical 
example of shaping the spectrum of an unstable 
neutral TDS system which has i.a. shown that the 
latter algorithm can almost collapse to the former 
one. Moreover, new findings about the course of the 
PPSA have been obtained. Both the procedures are 
easy to be practically implemented via general 
programming languages and thus useful for 
engineers. The course of the future research has also 
been provided. 
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